Transactions
2PC Review

Chris Rossbach
cs378h

Transactions

Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) { create(file, dir) {

delete(file, old-dir) alloc-disk(file, header, data)
add(file, new-dir) write(header)
} add (file, dir)

Transactions

Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) { create(file, dir) {

delete(file, old-dir) alloc-disk(file, header, data)
add(file, new-dir) write(header)
} add (file, dir)
}

* Modified data in memory/caches
* Even if in-memory data is durable, multiple disk updates

Transactions

Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) { create(file, dir) {

delete(file, old-dir) alloc-disk(file, header, data)
add(file, new-dir) write(header)
} add (file, dir)
}

Problem: crash in the middle
* Modified data in memory/caches
* Even if in-memory data is durable, multiple disk updates

Transactions: Implementation

Transactions: Implementation

* Key idea: turn multiple updates into a single one

Transactions: Implementation

* Key idea: turn multiple updates into a single one

* Many implementation Techniques
* Two-phase locking
* Timestamp ordering
* Optimistic Concurrency Control
* Journaling
2,3-phase commit
Speculation-rollback
Single global lock
Compensating transactions

Transactions: Implementation

* Key idea: turn multiple updates into a single one

* Many implementation Techniques
* Two-phase locking
* Timestamp ordering
* Optimistic Concurrency Control
* Journaling
2,3-phase commit
Speculation-rollback
Single global lock
Compensating transactions

Key problems:
* output commit
e synchronization

Transactions: Implementation

* Key idea: turn multiple updates into a single one

* Many implementation Techniques
* Two-phase locking
* Timestamp ordering
* Optimistic Concurrency Control
* Journaling
e 2,3-phase commit
* Speculation-rollback
* Single global lock
* Compensating transactions

Key problems:
* output commit
e synchronization

Two-phase commit

* N participants agree or don’t (atomicity)

* Phase 1: everyone “prepares”

* Phase 2: Master decides and tells everyone to actually commit
* What if the master crashes in the middle?

2PC: Phase 1

Coordinator sends REQUEST to all participants
Participants receive request and

Execute locally

Write VOTE_ COMMIT or VOTE_ABORT to local log
Send VOTE_COMMIT or VOTE_ABORT to coordinator

Example—move: C>S1: delete foo from /, C=>S2: add foo to /

Al S

Failure case: Success case:

S1 writes rm /foo, VOTE_COMMIT to log S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT S1 sends VOTE_COMMIT

S2 decides permission problem S2 writes add foo to /

S2 writes/sends VOTE_ABORT S2 writes/sends VOTE_COMMIT

2PC: Phase 2

* Case 1: receive VOTE_ABORT or timeout

* Write GLOBAL_ABORT to log
* send GLOBAL_ABORT to participants

e Case 2: receive VOTE_COMMIT from all

* Write GLOBAL_COMMIT to log
* send GLOBAL_COMMIT to participants

* Participants receive decision, write GLOBAL * to log

2PC corner cases

Phase 1 Phase 2

1. Coordinator sends REQUEST to all participants Y° Case 1: receive VOTE_ABORT or timeout
* Write GLOBAL_ABORT to log

X 2. Participants receive request and
* send GLOBAL_ABORT to participants

3. Execute locally

. * Case 2: receive VOTE_COMMIT from all
4. Write VOTE_COMMIT or VOTE_ABORT to local log + Write GLOBAL COMMIT to log
5. Send VOTE_COMMIT or VOTE_ABORT to coordinator « send GLOBAL_COMMIT to participants

Z° Participants recv decision, write GLOBAL * to log

What if participant crashes at X?
e Coordinator crashes at Y?

e Participant crashes at Z?

e Coordinator crashes at W?

2PC limitation(s)

2PC limitation(s)

e Coordinator crashes at W, never wakes up

2PC limitation(s)

e Coordinator crashes at W, never wakes up
* All nodes block forever!

2PC limitation(s)

e Coordinator crashes at W, never wakes up

* All nodes block forever!
e Can participants ask each other what happened?

2PC limitation(s)

e Coordinator crashes at W, never wakes up

* All nodes block forever!
e Can participants ask each other what happened?
e 2PC: always has risk of indefinite blocking

2PC limitation(s)

e Coordinator crashes at W, never wakes up

* All nodes block forever!

e Can participants ask each other what happened?
e 2PC: always has risk of indefinite blocking

* Solution: (yes) 3 phase commit!
» Reliable replacement of crashed “leader”
* 2PC often good enough in practice

Questions?

