
FPGAs:
Verilog

Sequence Alignment (maybe)
Chris Rossbach

cs378 Fall 2018

11/5/2018

1

Outline for Today

• Questions?

• Administrivia
• Re: Exams
• Keep thinking about projects!
• Website updates

• Agenda
• FPGAs: POTPOURRI of things you need to know
• NW

Acknowledgements/References:

• https://s3-us-west-2.amazonaws.com/cse291personalgenomics/Lectures2017/Lecture12_AlignmentVariantCalling.pptx

• https://web.stanford.edu/~jurafsky/slp3/slides/2_EditDistance.pptx

• https://moodle.med.lu.se/pluginfile.php/45044/mod_resource/content/0/sequence_alignment_2015.pptx

• http://www.cbs.dtu.dk/phdcourse/cookbooks/PairwiseAlignmentPhD2.ppt

• http://cwcserv.ucsd.edu/~billlin/classes/ECE111/lectures/Lecture1.pptx

• http://www.cs.unc.edu/~montek/teaching/Comp541-Fall16/VerilogPrimer.pptx

• Evita_verilog Tutorial, www.aldec.com

• http://www.asic-world.com/verilog/
2

https://s3-us-west-2.amazonaws.com/cse291personalgenomics/Lectures2017/Lecture12_AlignmentVariantCalling.pptx
https://web.stanford.edu/~jurafsky/slp3/slides/2_EditDistance.pptx
https://moodle.med.lu.se/pluginfile.php/45044/mod_resource/content/0/sequence_alignment_2015.pptx
http://www.cbs.dtu.dk/phdcourse/cookbooks/PairwiseAlignmentPhD2.ppt
http://cwcserv.ucsd.edu/~billlin/classes/ECE111/lectures/Lecture1.pptx
http://www.cs.unc.edu/~montek/teaching/Comp541-Fall16/VerilogPrimer.pptx
http://www.aldec.com/

Faux Quiz Questions

• Why/when might one prefer an FPGA over an ASIC, CPU, or GPU?

• Define CLB, BRAM, and LUT. What role do these things play in FPGA
programming?

• What is the difference between blocking and non-blocking
assignment in Verilog?

• What is the difference between structural and behavioral modeling?

• How is synthesizable Verilog different from un-synthesizable? Give an
example of each?

• What is discrete event simulation?

3

Review: FPGA Design/Build Cycle

• HW design in Verilog/VHDL

• Behavioral modeling + some
structural elements

• Simulate to check functionality

• Synthesis → netlist generated

• Static analysis to check timing

Verilog

• Originally: modeling language for event-driven digital logic simulator

• Later: specification language for logic synthesis

• Consequence:
• Combines structural and behavioral modeling styles

Components of Verilog

• Concurrent, event-triggered processes (behavioral)
• Initial and Always blocks

• Imperative code → standard data manipulation (assign, if-then, case)

• Processes run until triggering event (or #delay expire)

• Structure
• Verilog program builds from modules with I/O interfaces

• Modules may contain instances of other modules

• Modules contain local signals, etc.

• Module configuration is static and all run concurrently

Discrete-event Simulation

• Key idea: only do work when something changes

• Core data structure: event queue
• Contains events labeled with the target simulated time

• Algorithmic idea:
• Execute every event for current simulated time

• May change system state and may schedule events in the future (or now)

• No events left at current time → advance simulated time (next event in Q)

Two Main Data Types

• Nets represent connections between things
• Do not hold their value
• Take their value from a driver such as a gate or other module
• Cannot be assigned in an initial or always block

• Regs represent data storage
• Behave exactly like memory in a computer
• Hold their value until explicitly assigned in an initial or always block
• Model latches, flip-flops, etc., but do not correspond exactly
• Shared variables

• Similar known shared state issues

Four-valued Data and Logic

Nets and regs hold four-valued data

• 0, 1 → Umm…

• Z
• Output for undriven tri-state (hi-Z)
• Nothing is setting a wire’s value

• X
• Simulator can’t decide the value
• Initial state of registers
• Wire driven to 0 and 1 simultaneously
• Output of gate with Z inputs

• Data representation
• Binary → 6’b100101
• Hex → 6’h25

0 1 X Z

0 0 0 0 0

1 0 1 X X

X 0 X X X

Z 0 X X X

Output 0 if one input is 0

Output X if inputs are junk

• Logical operators work on three-
valued logic

Structural Modeling
• Specification

• Netlist: gates and connections
• Primitives/components (e.g logic gates)
• Connected by wires

• Easy to translate to physical circuit

Dataflow Modeling

• Specification
• Components (similar to logical equations)
• Connected by wires

• Easy to translate to structure, then to physical circuit

Behavioral Modeling

• Specification
• In terms of expected behavior
• Closest to natural language

• Most difficult to synthesize

• Easier for testbenches
• Easier for abstract models of circuits

• Simulates faster
• Provides sequencing

Signals

• Nets
• Physical connection between hardware elements

• Registers
• Store value even if disconnected

Nets

• wire/tri

• wand/triand

• wor/trior

• Force synthesis to insert gates
• (e.g. AND, OR)

Using just wire

Ports and Registered Output

Output ports can be type register
• Add reg type to declaration
• Output holds state

Examples of Nets and Registers

Wires and registers can be bits, vectors, and arrays

wire a; // Simple wire

tri [15:0] dbus; // 16-bit tristate bus

tri #(5,4,8) b; // Wire with delay

reg [-1:4] vec; // Six-bit register

trireg (small) q; // Wire stores a small charge

integer imem[0:1023]; // Array of 1024 integers

reg [31:0] dcache[0:63]; // A 32-bit memory

Continuous Assignment

• Another way to describe combinational function

• Convenient for logical or datapath specifications

wire [8:0] sum;

wire [7:0] a, b;

wire carryin;

assign sum = a + b + carryin;

Define bus widths

• Continuous/”blocking” assignment: sets
the value of sum to be a+b+carryin

• Recomputed when a, b, or carryin
changes

Behavioral Modeling

Initial and Always Blocks

• Basic components for behavioral modeling

initial
begin

… imperative statements …
end

Runs when simulation starts
Terminates when control reaches the end
Good for providing stimulus

always
begin

… imperative statements …
end

Runs when simulation starts
Restarts when control reaches the end
Good for modeling/specifying hardware

Not synthesizable
Great for debugging

synthesizable
workhorse of sequential logic

Initial and Always

• Run until they encounter a delay

initial begin
#10 a = 1; b = 0;
#10 a = 0; b = 1;

end

• or a wait for an event

always @(posedge clk) q = d;
always begin wait(i); a = 0; wait(~i); a = 1; end

Procedural Assignment

• Inside an initial or always block:

sum = a + b + cin;

• Just like in C:
• RHS evaluated
• assigned to LHS
• before next statement executes

• RHS may contain wires and regs
• Two possible sources for data

• LHS must be a reg
• Primitives or cont. assignment may set wire values

Imperative Statements

if (select == 1) y = a;

else y = b;

case (op)

2’b00: y = a + b;

2’b01: y = a – b;

2’b10: y = a ^ b;

default: y = ‘hxxxx;

endcase

For and While Loops

• Increasing sequence of values on an output

reg [3:0] i, output;

for (i = 0 ; i <= 15 ; i = i + 1) begin

output = i;

#10;

end

reg [3:0] i, output;

i = 0;

while (I <= 15) begin

output = i;

#10 i = i + 1;

end

A Flip-Flop With Always

Edge-sensitive flip-flop

reg q;

always @(posedge clk)

q = d;

• q = d assignment
• runs when clock rises
• exactly the behavior you expect

Blocking vs. Nonblocking

• Verilog has two types of procedural assignment

• Fundamental problem:
• In a synchronous system, all flip-flops sample simultaneously

• In Verilog, always @(posedge clk) blocks run in some undefined sequence

A Shift Register
aka Blocking vs Non-blocking assignment

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;

always @(posedge clk) d3 = d2;

always @(posedge clk) d4 = d3;

• These run in some order, but you don’t know which

• So…might not work as you’d expect

“Blocking assignment”

Non-blocking Assignments

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;

always @(posedge clk) d3 <= d2;

always @(posedge clk) d4 <= d3;

Nonblocking rule:
RHS evaluated when
assignment runs

LHS updated only after all
events for the current instant
have run

• Blocking vs. Non-blocking: misnomer
• prefer “continuous” to “blocking”
• Guideline: blocking for combinational
• Guideline: non-blocking for sequential

Non-blocking Behavior

• A sequence of nonblocking assignments don’t communicate

a = 1;
b = a;
c = b;

Blocking assignment:
a = b = c = 1

a <= 1;
b <= a;
c <= b;

Nonblocking assignment:
a = 1
b = old value of a
c = old value of b

Dirty/tricky question:
which assignment type yields a correct shift register?

reg d1, d2, d3, d4;

always @(posedge clk) begin

d2 op d1;

d3 op d2;

d4 op d3;

end

Should op be = or <= ?

Implementation: Building FSMs

• Many ways to do it

• Define the next-state logic combinationally
• define the state-holding latches explicitly

• Define the behavior in a single always @(posedge clk) block

• Define behavior per signal in different @(posedge clk) blocks

• Variations on these themes

FSM with Combinational Logic

module FSM(o, a, b, reset);
output o;
reg o;
input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)
case (state)

2’b00: begin
nextState = a ? 2’b00 : 2’b01;
o = a & b;

end
2’b01: begin nextState = 2’b10; o = 0; end

endcase

Combinational block must be
sensitive to any change on
any of its inputs
(Implies state-holding
elements otherwise)

FSM with Combinational Logic

module FSM(o, a, b, reset);
…

always @(posedge clk or reset)
if (reset)

state <= 2’b00;
else

state <= nextState;

Latch implied by sensitivity
to the clock or reset only

FSM from Combinational Logic

always @(a or b or state)
case (state)

2’b00: begin
nextState = a ? 2’b00 : 2’b01;
o = a & b;

end
2’b01: begin nextState = 2’b10; o = 0; end

endcase

always @(posedge clk or reset)
if (reset)
state <= 2’b00;

else
state <= nextState;

FSM with a Single Always Block

module FSM(o, a, b);
output o; reg o;
input a, b;
reg [1:0] state;

always @(posedge clk or reset)
if (reset) state <= 2’b00;
else case (state)
2’b00: begin

state <= a ? 2’b00 : 2’b01;
o <= a & b;

end
2’b01: begin state <= 2’b10; o <= 0; end

endcase

Outputs are latched
Inputs only sampled at clock
edges

Nonblocking assignments
used throughout.
RHS refers to values
calculated in previous clock
cycle

Parameters

• localparam keyword

localparam state1 = 4'b0001,

state2 = 4'b0010,

state3 = 4'b0100,

state4 = 4'b1000;

localparam A = 2'b00,

G = 2’b01,

C = 2’b10,

T = 4’b11;

2010 DSD 37

Operations for HDL simulation/build

• Compilation/Parsing

• Elaboration
• Binding modules to instances
• Build hierarchy
• Compute parameter values
• Resolve hierarchical names
• Establish net connectivity

• …(simulate, place/route, etc)

38

Generate Block

• Dynamically generate Verilog code at elaboration time

• Usage:
• Parameterize modules when the parameter value determines the module contents

• Can generate
• Modules

• User defined primitives

• Verilog gate primitives

• Continuous assignments

• initial and always blocks

2010 DSD 39

Generate Loop
module bitwise_xor (output [N-1:0] out, input [N-1:0] i0, i1);

parameter N = 32; // 32-bit bus by default

genvar j; // This variable does not exist during simulation

generate for (j=0; j<N; j=j+1) begin: xor_loop
//Generate the bit-wise Xor with a single loop

xor g1 (out[j], i0[j], i1[j]);

end

endgenerate //end of the generate block

/* An alternate style using always blocks:

reg [N-1:0] out;

generate for (j=0; j<N; j=j+1) begin: bit

always @(i0[j] or i1[j]) out[j] = i0[j] ^ i1[j];

end

endgenerate

endmodule */
40

Can do this with code but
requires different numbers
of xor modules depending
on N

Generate Conditional

module multiplier (output [product_width -1:0] product, input [a0_width-1:0] a0, input [a1_width-1:0] a1);

parameter a0_width = 8;

parameter a1_width = 8;

localparam product_width = a0_width + a1_width;

generate

if (a0_width <8) || (a1_width < 8)

cla_multiplier #(a0_width, a1_width) m0 (product, a0, a1);

else

tree_multiplier #(a0_width, a1_width) m0 (product, a0, a1);

endgenerate

endmodule

2010 42

Generate Case
module adder(output co, output [N-1:0] sum, input [N-1:0] a0, a1, input ci);

parameter N = 4;

// Parameter N that can be redefined at instantiation time.

generate

case (N)

1: adder_1bit adder1(c0, sum, a0, a1, ci);

2: adder_2bit adder2(c0, sum, a0, a1, ci);

default: adder_cla #(N) adder3(c0, sum, a0, a1, ci);

endcase

endgenerate

endmodule

43

Nesting
• Generate blocks can be nested

• Nested loops cannot use the same genvar variable

44

Logic Synthesis

• Verilog: two use-cases
• Model for discrete-event simulation
• Specification for a logic synthesis system

• Logic synthesis: convert subset of Verilog language → netlist

Two stages

1. Translate source to a netlist
• Register inference

2. Optimize netlist for speed and area
• Most critical part of the process
• Awesome algorithms

What Can/Can’t Be Translated

• Structural definitions
• Everything

• Behavioral blocks
• When they have reasonable

interpretation as
combinational logic, edge,
or level-sensitive latches

• User-defined primitives
• Primitives defined with

truth tables
• Some sequential UDPs can’t

be translated (not latches or
flip-flops)

• Initial blocks
• Used to set up initial state or

describe finite testbench stimuli
• Don’t have obvious hardware

component

• Delays
• May be in the Verilog source, but

are simply ignored

• Other obscure language features
• In general, things dependent on

discrete-event simulation semantics
• Certain “disable” statements
• Pure events

Example alignment view

Reference genome

Aligned reads

Sequence alignment: Scoring

• Scoring matrices are used to assign scores to each comparison of a pair of characters

• Identities and substitutions by similar amino acids are assigned positive scores

• Mismatches, or matches that are unlikely to have been a result of evolution, are given negative scores

A C D E F G H I K

A C Y E F G R I K

+5 +5 -5 +5 +5 +5 -5 +5 +5

482015-12-09

T A C G G G C A G

- A C - G G C - G

Option 1

T A C G G G C A G

- A C G G - C - G

Option 2

T A C G G G C A G

- A C G - G C - G

Option 3

Pairwise alignment: the problem
The number of possible pairwise alignments increases explosively with the
length of the sequences:
Two protein sequences of length 100 amino acids can be aligned in
approximately 1060 different ways

Time needed to test all possibilities is same order of magnitude as the entire
lifetime of the universe.

Pairwise alignment: the canonical solution
Dynamic programming

(the Needleman-Wunsch algorithm)

Alignment depicted as path in matrix
T C G C A

T

C

C

A

T C G C A

T

C

C

A

TCGCA

TC-CA

TCGCA

T-CCA

Dynamic programming: computing scores

T C G C A

T

C

C

A
x

Any given point in matrix can only be
reached from three possible positions
(you cannot “align backwards”).
=> Best scoring alignment ending in any
given point in the matrix can be found
by choosing the highest scoring of the
three possibilities.

Dynamic programming
T C G C A

T

C

C

A
x

Any given point in matrix can only be
reached from three possible positions
(you cannot “align backwards”).
=> Best scoring alignment ending in any
given point in the matrix can be found
by choosing the highest scoring of the
three possibilities.

score(x,y) = max

score(x,y-1) - gap-penalty

Dynamic programming
T C G C A

T

C

C

A
x

Any given point in matrix can only be
reached from three possible positions
(you cannot “align backwards”).
=> Best scoring alignment ending in any
given point in the matrix can be found
by choosing the highest scoring of the
three possibilities.

score(x,y) = max

score(x,y-1) - gap-penalty
score(x-1,y-1) + substitution-score(x,y)

Dynamic programming

T C G C A

T

C

C

A
x

Any given point in matrix can only be
reached from three possible positions
(you cannot “align backwards”).
=> Best scoring alignment ending in any
given point in the matrix can be found
by choosing the highest scoring of the
three possibilities.

score(x,y) = max

score(x,y-1) - gap-penalty
score(x-1,y-1) + substitution-score(x,y)
score(x-1,y) - gap-penalty

Dynamic programming: example

A C G T

A 1 -1 -1 -1

C -1 1 -1 -1

G -1 -1 1 -1

T -1 -1 -1 1

Gaps: -2

Dynamic programming: example

Dynamic programming: example

Dynamic programming: example

Dynamic programming: example

Dynamic programming: example

T C G C A

: : : :

T C - C A

1+1-2+1+1 = 2

BIG MONGO HINT:
What if each box is a

parallel process?

References:

• Evita_verilog Tutorial, www.aldec.com

• http://www.asic-world.com/verilog/

http://www.aldec.com/

Review: Module definition

• Interface: port and parameter declaration

• Body: Internal part of module

• Add-ons (optional)

Delays on Primitive Instances

• Instances of primitives may include delays

buf b1(a, b); // Zero delay

buf #3 b2(c, d); // Delay of 3

buf #(4,5) b3(e, f); // Rise=4, fall=5

buf #(3:4:5) b4(g, h); // Min-typ-max

Register Inference

• The main trick

• reg does not always equal latch

• Rule: Combinational if outputs always depend exclusively on
sensitivity list

• Sequential if outputs may also depend on previous values

Register Inference

• Combinational:

reg y;
always @(a or b or sel)
if (sel) y = a;
else y = b;

• Sequential:

reg q;
always @(d or clk)
if (clk) q = d;

Sensitive to changes on all of
the variables it reads

Y is always assigned

q only assigned when clk is 1

Register Inference

• A common mistake is not completely specifying a case statement

• This implies a latch:

always @(a or b)

case ({a, b})

2’b00 : f = 0;

2’b01 : f = 1;

2’b10 : f = 1;

endcase

f is not assigned when {a,b} =
2b’11

Register Inference

• The solution is to always have a default case

always @(a or b)

case ({a, b})

2’b00: f = 0;

2’b01: f = 1;

2’b10: f = 1;

default: f = 0;

endcase

f is always assigned

Inferring Latches with Reset

• Latches and Flip-flops often have reset inputs

• Can be synchronous or asynchronous

• Asynchronous positive reset:

always @(posedge clk or posedge reset)

if (reset)

q <= 0;

else q <= d;

Simulation-synthesis Mismatches

• Many possible sources of conflict

• Synthesis ignores delays (e.g., #10), but simulation behavior can be
affected by them

• Simulator models X explicitly, synthesis doesn’t

• Behaviors resulting from shared-variable-like behavior of regs is not
synthesized
• always @(posedge clk) a = 1;
• New value of a may be seen by other @(posedge clk) statements in

simulation, never in synthesis

Compared to VHDL

• Verilog and VHDL are comparable languages

• VHDL has a slightly wider scope
• System-level modeling
• Exposes even more discrete-event machinery

• VHDL is better-behaved
• Fewer sources of nondeterminism (e.g., no shared variables)

• VHDL is harder to simulate quickly

• VHDL has fewer built-in facilities for hardware modeling

• VHDL is a much more verbose language
• Most examples don’t fit on slides

