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IToday

Questions?

Administrivia
e Rust lab due today!

* Project Proposal Due Thursday!

Agenda:
e Dataflow Wrapup

* Concurrency & Consistency at Scale
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I Review: K-Means

public void kmeans () {
while(..) {

map for each point
reduce foy each center

}
}

Input [ Input

/*

* Map: find minimum distance center
*/
@Override

public void map(LongWritable key,

String line = value.toString();
double point =

double minl, min2 =

for (double c mCenters) |
minl = ¢ = point;

Text value,
OutputCollector<DoubleWritable,
Reporter reporter) throws IOException {

Double.parseDouble (line) ;
Double.MAX VALUE,
// Find the minimum center from a point

emit to reducer

for point,

DoubleWritable> output,

nearest center = mCenters.get(0);

if (Math.abs(minl) < Math.abd
nearest center = c;
min2 = minl;
}
}
// Emit the nearest center and t
output.collect (new DoubleWritablg
new DoubleWritable (point)

find nearest center (point);

ompute new center (center)

/*
* Reduce: collect all points per center and calculate
* the next center for those points
*/
@Override
public void reduce(
DoubleWritable key, Iterator<DoubleWritable> wvalues,
OutputCollector<DoubleWritable,
throws IOException {
double newCenter;
double sum = 0;
int no_elements = 0;
String points = "";
while (values.hasNext()) {

double d = values.next () .get():
points = points + " " + Double.toString(d);
sum = sum + d;

++no_elements;

}

// We have a new center now
newCenter = sum / no_elements;

// Emit new center and point

output.collect (new DoubleWritable (newCenter), new Text (points));

[ Input [~

-

Output

Text> output, Reporter reporter)
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public void kmeans () {

Input

while(..) {

===

for each point

flnd nearest cente

foyW each center

ompute new center (center) *

\

Input

/*

* Map: find minimum distance center for point, emit to reducer

“/

@Override
public void map(LongWritable key, Text value,

OutputCollector<DoubleWritable, DoubleWritable> output,
Reporter reporter) throws IOException {

String line = value.toString();

double point = Double.parseDouble(line);

double minl, min2 = Double.MAX VALUE, nearest center = mCenters.get(0);

// Find the minimum center from a point
for (double c¢ : mCenters) {
minl = ¢ = point;

*
if (Math.abs(minl) < MaLh.ab-/
nearest center = c;

min2 = minl;

* the next center for those points
+*

Key idea: adapt workload to parallel patterns
Questions:

* What kinds of computations can this express?
 What other patterns could we use?

while (values.hasNext()) {
double d = values.next () .get():
points = points + " " + Double.toString(d);
sum = sum + d;
++no_elements;

// We have a new center now
newCenter = sum / no elements;

// Emit new center and point

* Reduce: collect all points per center and calculate

bubleWritable> values,

’

Text> output, Reporter reporter)

output.collect (new DoubleWritable (newCenter), new Text (points));

[ Input

-

— Output




How Does Parallelization Work?
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I Execution

Input
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Key idea = shuffle == sort!




ITask Granularity And Pipelining

|map tasks| >> | machines| -- why?



ITask Granularity And Pipelining

Minimize fault recovery time
Pipeline map with other tasks
Easier to load balance dynamically



I MapReduce: not without Controversy

MapReduce: A major step backwards | The Database
Column

on Jan 17 in Database architecture, Database history, Database innovation posted by DeWitt

[Note: Although the system attributes this post to a single author, it was written by David J. DeWiitt
and Michael Stonebraker]

On January 8, a Database Column reader asked for our views on new distributed database
research efforts, and we'll begin here with our views on MapReduce. This is a good time to discuss
it, since the recent trade press has been filled with news of the revolution of so-called “cloud
computing.” This paradigm entails harnessing large numbers of (low-end) processors working in
parallel to solve a computing problem. In effect, this suggests constructing a data center by lining up
a large number of “jelly beans” rather than utilizing a much smaller number of high-end servers.

For example, BM and Google have announced plans to make a 1,000 processor cluster available
to a few select universities to teach students how to program such clusters using a software tool
called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to
program using the MapReduce framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents
have spread about how it represents a paradigm shift in the development of scalable, data-
intensive applications. MapReduce may be a good idea for writing certain types of general-purpose
computations, but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive
applications
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e Lots of others
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IMapReduce and Dataflow

Map Shuffle Reduce

* MR is a dataflow engine

* Lots of others
* Dryad
e DryadLINQ
e Dandelion
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| Dryad (2007): 2-D Piping
/~ * Unix Pipes: 1-D I
grep | sed | sort | awk | perl

- - - - - —u

"

AN

o Dryad: 2-D

greplOOO | SedSOO | SorthOO | aWkSOO | per|50




I Dataflow Engines

data plane
Files, TCP, FIFO

e o — — — — — — — — — — — — — — — —

control plane

Job manager
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|Dataﬂow Job Structure

How to implement?

Input Channels
files /\ Output

files
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Finite streams of items

e distributed filesystem files
(persistent)

 SMB/NTFS files
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(intra-machine)



IChanneB

Iltems

Key idea:
Encapsulate data movement behind

channel abstraction - gets
programmer out of the picture

Finite streams of items

e distributed filesystem files
(persistent)

 SMB/NTFS files
(temporary)

* TCP pipes
(inter-machine)

* memory FIFOs
(intra-machine)
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Commodity clusters: important platform

In industry: search, machine translation, ad targeting, ...
In research: bioinformatics, NLP, climate simulation, ...

Cluster-scale models (e.g. MR) de facto standard

Fault tolerance through replicated durable storage
Dataflow is the common theme

Multi-core
Ilteration
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I Motivation

Programming models for clusters transform data
flowing from stable storage to stable storage

E.g., MapReduce:

Input %— Qutput
N

-

Benefits of data flow: runtime can decide
where to run tasks and can automatically
recover from failures




I Iterative Computations: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to

ziEneic_:]hI::ﬁc:ars ranki / IﬂEigthl"Sil

Tinks
ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmap {
(url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)

}

Input 7 Output
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2. On each iteration, update each page’s rank to
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I Iterative Computations: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to

ZiEneighl::ﬁc:ars ranki / IﬂEigthl"Sil

Tinks
ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmap {
(url, (links, rank)) =>

Tinks.map(dest => (dest, rank/links.size))
Y rodiiceRvkovl ol A

Solution: augment data flow model with
“resilient distributed datasets” (RDDs)
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 Resilient distributed datasets (RDDs)

* Immutable collections partitioned across cluster that can
be rebuilt if a partition is lost

* Created by transforming data in stable storage using data
flow operators (map, filter, group-by, ...)

e Can be cached across parallel operations
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I Programming Model

 Resilient distributed datasets (RDDs)

* Immutable collections partitioned across cluster that can
be rebuilt if a partition is lost

* Created by transforming data in stable storage using data
flow operators (map, filter, group-by, ...)

e Can be cached across parallel operations

 Parallel operations on RDDs
 Reduce, collect, count, save, ...

e Restricted shared variables
 Accumulators, broadcast variables
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|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(\t’)(2))
cachedMsgs = messages.cache()

cachedMmsgs.filter(_.contains(“foo”)).count
cachedmsgs.filter(_.contains(“bar”)).count

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)




|RDD Fault Tolerance

* RDDs maintain lineage information that can be used
to reconstruct lost partitions

* Ex:
cachedMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))
.persist()

HdfsRDD FilteredRDD MappedRDD
[ path: hdfs://... func: contains(...) func: split(...) H CachedRDD }
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sum_of squares: table sum of float;
x: float = input;

emit count <- 1;

emit total <- x;

emit sum of squares <- x * x;
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lines

words

grouped

/\F)F DUMP wor

LOAD '/user/hadoop/HDFS File.txt' AS (line:chararray);

FOREACH lines GENERATE FLATTEN(TOKENIZE(line)) as word; SySte S

= GROUP words BY word;

wordcount = FOREACH grouped GENERATE group, COUNT(words);

dcount;

SQL

Sawzall =SQL

Language

Execution

Paralle
Databas

Storage

T( sawzall ) Pig, Hive )

CREATE EXTERNAL TABLE lines(line string)
LOAD DATA INPATH ‘books’ OVERWRITE INTO TABLE lines;

SELECT word, count(*) FROM lines
LATERAL VIEW explode(split(text, ' ' )) 1lTable as word
GROUP BY word;

J{ BigTable }L S3 JJ
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Still not a perfect framework Key Value Stores
Cons: L e e e e E
o
Many dimensions contain sub-dimensions §
Many concerns fundamentally coupled Document Stores S
-
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Q
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Makes important concerns explicit Vide-Column Stores
_ Eventual: BASE
Cleanly taxonomizes most modern systems v
O
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Consistency: the core problem

Write(k,v) Read(k,v)
| writer I > — { reader |

, . * How should we implement write?
Clients perform reads and writes « How to implement read?

Data is replicated among a set of servers
Writes must be performed at all servers
Reads return the result of one or more past writes
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Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

. . iag?
 system allows operations all the time, Why care about CAP Properties?

Availability
* and operations return quickly *Reads/writes complete reliably and quickly.
oy *E.g. Amazon, each ms latency = S6M vyearly loss.
3. Partition-tolerance: Partitions V> >6M yearly
* system continues to work in spite of netwol *  Internet router outages
. Under-sea cables cut
. rack switch outage

. system should continue functioning normally!
Consistency

. all nodes see same data at any time, or reads return latest
written value by any client.
. This basically means correctness!
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Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

« system allows operations all the time, Why is this “theorem” true?
* and operations return quickly e L

3. Partition-tolerance:
e system continues to work in spite of netwoi

Write(k,v)

Read(k,v)

‘ writer i ‘ reader ‘

1
I
I
I
I
I
I
I
I

e — —

e e -

if(partition) { keep going } = !consistent && available
if(partition) { stop } =2 consistent && !available
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CAP Implications

PACELC:

if(partition) {

e Adistributed storage .
system can achieve at gOnSIStenGy choose A or C
} else {

most two of C, A, and P.
choose latency or consistency

}

* When partition-
tolerance is important,
you have to choose

between consistency and  HBase, HyperTable,
availability BigTable, Spanner

RDBMSs
(non-replicated)

CAP is
flawed

Partition-tolerance Availability

Cassandra, RIAK,
Dynamo, Voldemort
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Spectrum Ends: Eventual Consistency

e Eventual Consistency
* If writes to a key stop, all replicas of key will converge
* Originally from Amazon’s Dynamo and LinkedIn’s Voldemort systems

Faster reads and writes

More consistency Strong
Eventual (e.g., Sequential)




Spectrum Ends: Strong Consistency

* Strict:
« Absolute time ordering of all shared accesses, reads always return last write

* Linearizability:
* Each operation is visible (or available) to all other clients in real-time order

* Sequential Consistency [Lamport]:

» "... the result of any execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program.

» After the fact, find a “reasonable” ordering of the operations (can re-order operations)
that obeys sanity (consistency) at all clients, and across clients.

* ACID properties
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Red-Blue
Causal Probabilistic
Eventual Per-key sequential Strong

CRDTs (e.g., Sequential, Strict)

* Amazon S3 — eventual consistency
* Amazon Simple DB — eventual or strong
* Google App Engine — strong or eventual
* Yahoo! PNUTS — eventual or strong

* Windows Azure Storage — strong (or eventual)

e Cassandra — eventual or strong (if R+W > N) QueStlon: HOW to Choose What
- to use or support?
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Read My Writes See all writes performed by reader.
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Strong Consistency
Eventual Consistency
Consistent Prefix
Bounded Staleness
Monotonic Reads

Read My Writes

See all previous writes.

See subset of previous writes.
See initial sequence of writes.
See all “old” writes.

See increasing subset of writes.

See all writes performed by reader.
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The Game of Soccer

forhalf=1..2 {
while half not over {
kick-the-ball-at-the-goal
for each goal {
if visiting-team-scored {
score = Read (“visitors”);
Write (“visitors”, score + 1);
} else {
score = Read (“home”);
Write (“home”, score + 1);
183
hScore = Read(“home”);
vScore = Read(“visit”);
if (hScore == vScore)

play-overtime




The Game of Soccer

forhalf=1..2 {
while half not over {

kick-the-ball-at-the-goal

Visitors’ score Home score

if visiting-team-scored {
score = Read (“visitors”);

Write (“visitors”, score + 1);

} else {
score = Read (“home”);

Write (“home”, score + 1);

1) N -/
hScore = Read(“home”); v;f;i::r \
vScore = Read(“visit”); reads)

if (hScore == vScore)

play-overtime
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score = Read (“visitors”);
Write (“visitors”, score + 1);

Visitors’ score Home score

s1
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Monotonic Reads
Read My Writes

Bounded Staleness
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Writer
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Official Scorekeeper

score = Read (“visitors”);
Write (“visitors”, score + 1);

Desired consistency?
Strong
= Read My Writes!

Visitors’ score Home score

s1

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _S3  _-s4 s5 6

Writer
Reader (also Reader
= —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Visitors’ score Home score
St 52— —S53— A —S5— 56—

Official Scorekeeper

Write (“home”, 1);
Write (“wvisitors”, 1);
score = Read (“visitors”); Write (“home”, 2);
Write (“visitors”, score + 1); Write (“home”, 3);
Write (“wvisitors”, 2);
Write (“home”, 4);
Write (“home”, 5);
Visitors = 2
Desired consistency? Home = 5
Strong | .
Strong Consistency ~ See all previous writes.
= Read My Writes! EYSRE [cena e [y s e
Consistent Prefix See initial sequence of writes.
Monotonic Reads See increasing subset of writes.
Read My Writes See all writes performed by reader.

Bounded Staleness See all “old” writes.



Referee

vScore = Read (“visitors”);

hScore = Read (“home”);

if vScore == hScore
play-overtime

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

Visitors’ score Home score
ST

S22 _S3—  _S4 S5 _S6

Writer
Reader (also Reader
reads)

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Referee

vScore = Read (“visitors”);
hScore = Read (“home”);
if vScore == hScore

play-overtime

Desired consistency?

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

Visitors’ score Home score
L —

s _s3 sa S5 6

Writer
Reader (also Reader
rece) —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Referee

vScore = Read (“visitors”);

hScore = Read (“home”);

if vScore == hScore
play-overtime

Desired consistency?
Strong consistency

Visitors’ score Home score
ST

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _-s3 4 s5 6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

Desired consistency?

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

Desired consistency?
Consistent Prefix

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

Desired consistency?
Consistent Prefix
Monotonic Reads

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

}

Desired consistency?
Consistent Prefix

Monotonic Reads
or Bounded Staleness

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

Desired consistency?
Consistent Prefix

Monotonic Reads
or Bounded Staleness

Visitors’ score Home score
ST

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _-s3 4 s5 6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Sportswriter

While not end of game {
drink beer;
smoke cigar;
}
go out to dinner;
vScore = Read (“visitors”);
hScore = Read (“home”);
write article;

Visitors’ score Home score

st

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

S2 S3 S4 S5 S6

Reader (also Reader

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Sportswriter

While not end of game {
drink beer;
smoke cigar;
}
go out to dinner;
vScore = Read (“visitors”);
hScore = Read (“home”);
write article;

Desired consistency?

Visitors’ score Home score

St

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

S2 S3 S4 S5 S6

rite
Reader (also Reader

[E— L) [S—

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Sportswriter

While not end of game {
drink beer;
smoke cigar;
}
go out to dinner;
vScore = Read (“visitors”);
hScore = Read (“home”);
write article;

Desired consistency?
Eventual

Visitors’ score Home score

51

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

§2 53 54 55 56

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Sportswriter

While not end of game {
drink beer;
smoke cigar;
}
go out to dinner;
vScore = Read (“visitors”);
hScore = Read (“home”);
write article;

Desired consistency?
Eventual
Bounded Staleness

Visitors’ score Home score
L —

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

S2— e S4 S5 S6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Statisticlian

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Visitors’ score Home score

st

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _-s3 s4 s5 6

Writer

Reader (also Reader
— s —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Statisticlian

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Desired consistency?

Visitors’ score Home score

51

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

§2 53 54 55 56

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Visitors’ score Home score

H

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Desired consistency?

Strong Consistency (1st read)
Strong Consistency See all previous writes.
Eventual Consistency  See subset of previous writes.
Consistent Prefix See initial sequence of writes.
Monotonic Reads See increasing subset of writes.
Read My Writes See all writes performed by reader.

Bounded Staleness See all “old” writes.



Statisticlian

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Desired consistency?

Strong Consistency (1st read)

Read My Writes (2 read)

Visitors’ score Home score
L —

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _-s3 s4 s5 6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Stat Watcher

do {
stat = Read (“season-goals”);
discuss stats with friends;
sleep (1 day);

Visitors’ score Home score

s1

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _S3  _-s4 s5 6

Writer
Reader (also Reader
= —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Stat Watcher

do {
stat = Read (“season-goals”);
discuss stats with friends;
sleep (1 day);

Desired consistency?

Visitors’ score Home score

st

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

S2— e S4 S5 S6

Writer

Reader (also Reader
— = —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Stat Watcher

do {
stat = Read (“season-goals”);
discuss stats with friends;
sleep (1 day);

Desired consistency?
Eventual Consistency

Visitors’ score Home score
ST

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _-s3 4 s5 6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.



Official scorekeeper: Sportswriter:

score = Read (“visitors”); While not end of game {

Write (“visitor drink beer;

smoke cigar;

Referee: }

go out to dinner;

Statisticigis:article;

i Wait for end of game;
Radio reporter:

do {

vScore = Read (“visitors”);

score = Read (“home”);

hScore = Read (“home”);




Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a
P2 Wb P2. Wix)b
P3 R{x)b R(x)a P3: R(x)b R(x)a




Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2: Wb P2. Wix)b

P3: R{x)b R(x)a P3: R(x)b R(x)a
P4; RX)b R(x)a P4. RixJa R(x)b

* Why is this weaker than strict/strong? ) (b)



Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2 Wb P2. Wix)b

P3 R{x)b R(x)a P3: R(x)b R(x)a

P4 Rixb R(x)a P4. R(x)a R(x)b
* Why is this weaker than strict/strong? ) (0

* Nothing is said about “most recent write”



Linearizability



Linearizability

* Assumes sequential consistency and
e If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
e Stronger than sequential consistency
* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions



Linearizability

* Assumes sequential consistency and
e If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
e Stronger than sequential consistency
* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

*Example:
*Stay tuned...relevant for lock free data structures
*Importantly: a property of concurrent objects



Causal consistency



Causal consistency

e Causally related writes seen by all processes in same order.



Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?



Causal consistency

Causal:

e Causally related writes seer If @ write produces a value that
causes another write, they are causally related

* Causally?
X=1
if(X > 0) {
Y=1
}

Causal consistency =2 all see X=1, Y=1 in same order



Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?



Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

* Concurrent writes may be seen in different orders on different
machines



Causal consistency

e Causally related writes seen by all processes in same order.

* Causally?

* Concurrent writes may be seen in different orders on different
machines

P1: W(x)a

P2: R(x)a Wb

P3: R(x)b R{()a

P4: R(x)a R{()b
(@)




Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

* Concurrent writes may be seen in different orders on different

machines
P1: W(x)a
P2: R(x)a Wb
P3: R(x)b R{()a
P4: R(x)a R()b

(@)

Not permitted



Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

* Concurrent writes may be seen in different orders on different

machines
P1: W()a P1: W(x)a
P2: Rx)a  Wi(x)b P2: W(x)b
P3: R)b RXa P3: RXb R(x)a
P4: R(x)a R{()b P4: R(x)a R({x)b

(@) (b)

Not permitted



Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

* Concurrent writes may be seen in different orders on different

machines
P1: Wi(x)a P1: W(x)a
P2: Rx)a  Wi(x)b P2: W(x)b
P3: Re)b Rx)a P3 RX)b RXa
P4: R(x)a R@)b P4: R(x)a R{x)b
(a) (b)
Permitted

Not permitted



Consistency models summary



Consistency models summary

Consistency

Description

Strict

Absolute time ordering of all shared accesses matters.

Linearizability

All processes must see all shared accesses in the same order. Accesses are furthermore ordered
according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order. Accesses are not ordered in time
Causal All processes see causally-related shared accesses in the same order.
EIEO All processes see writes from each other in the order they were used. Writes from different processes

may not always be seen in that order

(a)

Consistency

Description

Weak Shared data can be counted on to be consistent only after a synchronization is done
Release Shared data are made consistent when a critical region is exited
Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)




