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Programming at Scale: 
Dataflow and Consistency



Today

Questions? 

Administrivia

• Rust lab due today!

• Project Proposal Due Thursday!

Agenda:

• Dataflow Wrapup

• Concurrency & Consistency at Scale
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Key idea: adapt workload to parallel patterns
Questions:
• What kinds of computations can this express?
• What other patterns could we use?



How Does Parallelization Work?

INPUT
FILE(s)



Execution

Group 
by?



Execution

Group 
by?

Key idea → shuffle == sort!
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Task Granularity And Pipelining

|map tasks| >> |machines| -- why?
Minimize fault recovery time
Pipeline map with other tasks
Easier to load balance dynamically
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MapReduce and Dataflow

• MR is a dataflow engine

• Lots of others
• Dryad

• DryadLINQ

• Dandelion

• CIEL

• GraphChi/Pregel

• Spark

Taxonomies:

• DAG instead of BSP

• Interface variety
• Memory FIFO
• Disk
• Network

• Flexible Modular Composition
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Dryad (2007): 2-D Piping
• Unix Pipes: 1-D

grep |  sed | sort | awk |  perl

• Dryad: 2-D

grep1000 |  sed500 | sort1000 | awk500 |  perl50



Dataflow Engines
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grep

sed

sort
awk

perl
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grep
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awk

Input
files

Vertices 
(processes)

Output
files

Channels

Stage

How to implement?
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Items

Finite streams of items

• distributed filesystem files
(persistent)

• SMB/NTFS files 
(temporary)

• TCP pipes
(inter-machine)

• memory FIFOs 
(intra-machine)



Channels

X

M

Items

Finite streams of items

• distributed filesystem files
(persistent)

• SMB/NTFS files 
(temporary)

• TCP pipes
(inter-machine)

• memory FIFOs 
(intra-machine)

Key idea:
Encapsulate data movement behind 

channel abstraction → gets 
programmer out of the picture
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Commodity clusters: important platform
In industry: search, machine translation, ad targeting, …
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Commodity clusters: important platform
In industry: search, machine translation, ad targeting, …

In research: bioinformatics, NLP, climate simulation, …

Cluster-scale models (e.g. MR) de facto standard
Fault tolerance through replicated durable storage

Dataflow is the common theme

Multi-core
Iteration
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Motivation

Programming models for clusters transform data 
flowing from stable storage to stable storage

E.g., MapReduce:

MapMap

MapMap

MapMap

ReduceReduce

ReduceReduce

Input Output

Benefits of data flow: runtime can decide 
where to run tasks and can automatically 

recover from failures
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Solution: augment data flow model with 
“resilient distributed datasets” (RDDs)
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Programming Model

• Resilient distributed datasets (RDDs)
• Immutable collections partitioned across cluster that can 

be rebuilt if a partition is lost

• Created by transforming data in stable storage using data 
flow operators (map, filter, group-by, …)

• Can be cached across parallel operations

• Parallel operations on RDDs
• Reduce, collect, count, save, …

• Restricted shared variables
• Accumulators, broadcast variables
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Example: Log Mining
• Load error messages from a log into memory, then 

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1Block 1

Block 2Block 2

Block 3Block 3

WorkerWorker

WorkerWorker

WorkerWorker

DriverDriver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1Cache 1
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Cache 3Cache 3

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)



RDD Fault Tolerance

• RDDs maintain lineage information that can be used 
to reconstruct lost partitions

• Ex:
cachedMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))

.persist()

HdfsRDD
path: hdfs://…

HdfsRDD
path: hdfs://…

FilteredRDD
func: contains(...)

FilteredRDD
func: contains(...)

MappedRDD
func: split(…)

MappedRDD
func: split(…)

CachedRDDCachedRDD
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Databases
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Cosmos, 
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Consistency

• Basically Available
• Soft State
• Eventually Consistent

• Atomicity
• Consistency
• Isolation
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Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Still not a perfect framework

Cons:

● Many dimensions contain sub-dimensions

● Many concerns fundamentally coupled

● Dimensions are often un- or partially-ordered

Pros: 

• Makes important concerns explicit

• Cleanly taxonomizes most modern systems
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• Clients perform reads and writes
• Data is replicated among a set of servers

• Writes must be performed at all servers

• Reads return the result of one or more past writes

R1 R2
writer reader

Write(k,v) Read(k,v)

• How should we implement write?
• How to implement read?
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• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency: 

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability: 
• system allows operations all the time, 

• and operations return quickly

3. Partition-tolerance: 
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency 
• all nodes see same data at any time, or reads return latest 

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

if(partition) { keep going } → !consistent && available
if(partition) { stop } → consistent && !available
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CAP Implications

• A distributed storage 
system can achieve at 
most two of C, A, and P.

• When partition-
tolerance is important, 
you have to choose 
between consistency and 
availability

Consistency

Partition-tolerance Availability

RDBMSs 

(non-replicated)

Cassandra, RIAK, 

Dynamo, Voldemort

HBase, HyperTable,

BigTable, Spanner

PACELC: 

if(partition) {
choose A or C

} else {
choose latency or consistency

}

CAP is 
flawed
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Spectrum Ends: Eventual Consistency

• Eventual Consistency
• If writes to a key stop, all replicas of key will converge

• Originally from Amazon’s Dynamo and LinkedIn’s Voldemort systems
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Spectrum Ends: Strong Consistency

• Strict:
• Absolute time ordering of all shared accesses, reads always return last write

• Linearizability: 
• Each operation is visible (or available) to all other clients in real-time order

• Sequential Consistency [Lamport]:
• "... the result of any execution is the same as if the operations of all the processors 

were executed in some sequential order, and the operations of each individual 
processor appear in this sequence in the order specified by its program.

• After the fact, find a “reasonable” ordering of the operations (can re-order operations) 
that obeys sanity (consistency) at all clients, and across clients.

• ACID properties
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Many Many Consistency Models

Eventual
Strong 

(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Question: How to choose what 
to use or support?

• Amazon S3 – eventual consistency

• Amazon Simple DB – eventual or strong

• Google App Engine – strong or eventual

• Yahoo! PNUTS – eventual or strong

• Windows Azure Storage – strong (or eventual)

• Cassandra – eventual or strong (if R+W > N)

• ...
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Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

Strong

RMWMonotonicBoundedPrefix

Eventual

metric =
set of 
allowable 
read 
results

strength
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score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);
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37
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Statistician

Desired consistency?

Strong Consistency (1st read)

37

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);



Statistician

Desired consistency?

Strong Consistency (1st read)

Read My Writes (2nd read)

37

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);



Stat Watcher

38

do {

stat = Read (“season-goals”);

discuss stats with friends;

sleep (1 day);

}



Stat Watcher

Desired consistency?

38

do {

stat = Read (“season-goals”);

discuss stats with friends;

sleep (1 day);

}



Stat Watcher

Desired consistency?

Eventual Consistency

38

do {

stat = Read (“season-goals”);

discuss stats with friends;

sleep (1 day);

}



Official scorekeeper:
score = Read (“visitors”);

Write (“visitors”, score + 1);

Statistician:

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Referee:

Radio reporter:
do {

vScore = Read (“visitors”);

hScore = Read (“home”);

report vScore and hScore;

sleep (30 minutes);    

}

Sportswriter:

While not end of game {

drink beer;

smoke cigar;

}

go out to dinner;

vScore = Read (“visitors”);

hScore = Read (“home”);

write article;

Stat watcher:

stat = Read (“season-runs”);

discuss stats with friends;



Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order 

• each process issues operations in program order

• Any valid interleaving is allowed

• All  agree on the same interleaving

• Each process preserves its program order
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Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order 

• each process issues operations in program order

• Any valid interleaving is allowed

• All  agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

• Nothing is said about “most recent write”



Linearizability



Linearizability

• Assumes sequential consistency and
• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence

• Stronger than sequential consistency

• Difference between linearizability and serializability?

• Granularity: reads/writes versus transactions



Linearizability

• Assumes sequential consistency and
• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence

• Stronger than sequential consistency

• Difference between linearizability and serializability?

• Granularity: reads/writes versus transactions

•Example:
•Stay tuned…relevant for lock free data structures

•Importantly: a property of concurrent objects
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Causal consistency

• Causally related writes seen by all processes in same order. 
• Causally?

Causal:
If a write produces a value that
causes another write, they are causally related

X = 1
if(X > 0) {

Y = 1
}
Causal consistency → all see X=1, Y=1 in same order
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Causal consistency

• Causally related writes seen by all processes in same order. 
• Causally?

• Concurrent writes may be seen in different orders on different 
machines

Not permitted
Permitted
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Consistency models summary

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability
All processes must see all shared accesses in the same order.  Accesses are furthermore ordered 

according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order.  Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO
All processes see writes from each other in the order they were used.  Writes from different processes 

may not always be seen in that order

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)


