I Programming at Scale:
Dataflow and Consistency

cs378h

IToday

Questions?

Administrivia
e Rust lab due today!

* Project Proposal Due Thursday!

Agenda:
e Dataflow Wrapup

* Concurrency & Consistency at Scale

I Review: K-Means

public void kmeans() {
while(..) {
for each point
find nearest center (point);
for each center

compute new center (center)

I Review: K-Means

public void kmeans() {
while(..) {
map for each point
-4: find nearest center (point);
for each center

compute new center (center)

I Review: K-Means

public void kmeans () {
while(..) {

map for each point

find nearest center (point);

|l

reduce for each center

compute new center (center)

- |

I Review: K-Means

public void kmeans () {
while(..) {

Input

==

|l

}

for each point
find nearest center (point);
for each center

compute new center (center)

— Output

I Review: K-Means

public void kmeans () {
while(..) {

Input

==

}

for each point

find nearest center (point);

[fol each center

ompute new center (center)

— Output

I Review: K-Means

public void kmeans () {
while(..) {

map[for each point
find nearest center (point);

reduce foy each center

ompute new center (center)

}
}
I

Input — Output

I Review: K-Means

public void kmeans () {

while(..) {

map[for each point

find nearest center (point);

reduce foy each center

ompute new center (center)

}
}

Input [Input - Output

I Review: K-Means

public void kmeans () {
while(..) {

===

map for each point

reduce foy each center

ompute new center (center)

}
}

Input [Input

find nearest center (point);

[Input

— Output

I Review: K-Means

public void kmeans () {
while(..) {

map for each point
reduce foy each center

}
}

Input [Input

/*

* Map: find minimum distance center
*/
@Override

public void map(LongWritable key,

String line = value.toString();
double point =

double minl, min2 =

for (double c mCenters) |
minl = ¢ = point;

Text value,
OutputCollector<DoubleWritable,
Reporter reporter) throws IOException {

Double.parseDouble (line) ;
Double.MAX VALUE,
// Find the minimum center from a point

emit to reducer

for point,

DoubleWritable> output,

nearest center = mCenters.get(0);

if (Math.abs(minl) < Math.abd
nearest center = c;
min2 = minl;
}
}
// Emit the nearest center and t
output.collect (new DoubleWritablg
new DoubleWritable (point)

find nearest center (point);

ompute new center (center)

/*
* Reduce: collect all points per center and calculate
* the next center for those points
*/
@Override
public void reduce(
DoubleWritable key, Iterator<DoubleWritable> wvalues,
OutputCollector<DoubleWritable,
throws IOException {
double newCenter;
double sum = 0;
int no_elements = 0;
String points = "";
while (values.hasNext()) {

double d = values.next () .get():
points = points + " " + Double.toString(d);
sum = sum + d;

++no_elements;

}

// We have a new center now
newCenter = sum / no_elements;

// Emit new center and point

output.collect (new DoubleWritable (newCenter), new Text (points));

[Input [~

-

Output

Text> output, Reporter reporter)

I Review: K-Means

public void kmeans () {

Input

while(..) {

===

for each point

flnd nearest cente

foyW each center

ompute new center (center) *

\

Input

/*

* Map: find minimum distance center for point, emit to reducer

“/

@Override
public void map(LongWritable key, Text value,

OutputCollector<DoubleWritable, DoubleWritable> output,
Reporter reporter) throws IOException {

String line = value.toString();

double point = Double.parseDouble(line);

double minl, min2 = Double.MAX VALUE, nearest center = mCenters.get(0);

// Find the minimum center from a point
for (double c¢ : mCenters) {
minl = ¢ = point;

*
if (Math.abs(minl) < MaLh.ab-/
nearest center = c;

min2 = minl;

* the next center for those points
+*

Key idea: adapt workload to parallel patterns
Questions:

* What kinds of computations can this express?
 What other patterns could we use?

while (values.hasNext()) {
double d = values.next () .get():
points = points + " " + Double.toString(d);
sum = sum + d;
++no_elements;

// We have a new center now
newCenter = sum / no elements;

// Emit new center and point

* Reduce: collect all points per center and calculate

bubleWritable> values,

’

Text> output, Reporter reporter)

output.collect (new DoubleWritable (newCenter), new Text (points));

[Input

-

— Output

How Does Parallelization Work?

User
Program
1)fork .- B
PERT ik ek
' — D
(20 assign
~_assign reduce .
map

(5) mmaote read
(4} local write /

(yoer)
split 0 o
split 1
split2 |mad 7 e
- worker

split 3 ~__
split 4

Gm‘k&D
Input Map

files phase

Intermediate files
(on local disks)

<>

Reduce
phase

() write
-

output
file 0

output
file 1

Output
files

I Execution

Input

oo

© © G

¢

© o

Intermediate | kl:v kl:v k2:v

k3:v kd:v

kd:v k3:v

kd:v

kl:v k3:v

Grouped

Output

kl:v,vv,v

k311

kd:v,v.v

k5:v

ééééé

[[Gmup by Keyjj . m

I Execution

Input
Intermediate | kl:v kl:v k2:v kl:v k3:v kd:v kd:v k3:v kd:v kl:v k3:v

[[Gmup by Keyjj . m

Grouped |kl:v,v,v,v k3 v,v [kdivv,v (kS

Key idea = shuffle == sort!

ITask Granularity And Pipelining

|map tasks| >> | machines| -- why?

ITask Granularity And Pipelining

Minimize fault recovery time
Pipeline map with other tasks
Easier to load balance dynamically

I MapReduce: not without Controversy

MapReduce: A major step backwards | The Database
Column

on Jan 17 in Database architecture, Database history, Database innovation posted by DeWitt

[Note: Although the system attributes this post to a single author, it was written by David J. DeWiitt
and Michael Stonebraker]

On January 8, a Database Column reader asked for our views on new distributed database
research efforts, and we'll begin here with our views on MapReduce. This is a good time to discuss
it, since the recent trade press has been filled with news of the revolution of so-called “cloud
computing.” This paradigm entails harnessing large numbers of (low-end) processors working in
parallel to solve a computing problem. In effect, this suggests constructing a data center by lining up
a large number of “jelly beans” rather than utilizing a much smaller number of high-end servers.

For example, BM and Google have announced plans to make a 1,000 processor cluster available
to a few select universities to teach students how to program such clusters using a software tool
called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to
program using the MapReduce framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents
have spread about how it represents a paradigm shift in the development of scalable, data-
intensive applications. MapReduce may be a good idea for writing certain types of general-purpose
computations, but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive
applications

I MapReduce: not without Controversy

abase

n by David J. DeWitt

ted database

good time to discuss
-called “cloud

:essors working in
ita center by lining up
gh-end servers.

sor cluster available
o 1g a software tool
called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to
program using the MapReduce framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents
have spread about how it represents a paradigm shift in the development of scalable, data-
intensive applications. MapReduce may be a good idea for writing certain types of general-purpose
computations, but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive
applications

I MapReduce: not without Controversy

abase

n by David J. DeWitt

ted database

good time to discuss
-called “cloud

:essors working in
ita center by lining up
gh-end servers.

sor cluster available
o 1g a software tool
called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to
program using the MapReduce framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents
have spread about how it represents a paradigm shift in the development of scalable, data-
intensive applications. MapReduce may be a good idea for writing certain types of general-purpose
computations, but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive
applications

I MapReduce: not without Controversy

Backwards step in programming paradigm abase

n by David J. DeWitt

ted database

good time to discuss
-called “cloud

:essors working in
ita center by lining up
gh-end servers.

sor cluster available
o 1g a software tool
called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to
program using the MapReduce framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents
have spread about how it represents a paradigm shift in the development of scalable, data-
intensive applications. MapReduce may be a good idea for writing certain types of general-purpose
computations, but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive
applications

I MapReduce: not without Controversy

Backwards step in programming paradigm abase
Sub-optimal: brute force, no indexing

n by David J. DeWitt

ted database

good time to discuss
-called “cloud

:essors working in
ita center by lining up
gh-end servers.

sor cluster available
o 1g a software tool
called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to
program using the MapReduce framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents
have spread about how it represents a paradigm shift in the development of scalable, data-
intensive applications. MapReduce may be a good idea for writing certain types of general-purpose
computations, but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive
applications

MapReduce: not without Controversy

Backwards step in programming paradigm abase
Sub-optimal: brute force, no indexing

Not novel: 25 year-old ideas from DBMS lit
It’s just a group-by aggregate engine n by David J. DeWitt

ted database

good time to discuss
-called “cloud

:essors working in

ita center by lining up
gh-end servers.

sor cluster available
o 1g a software tool
called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to
program using the MapReduce framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents
have spread about how it represents a paradigm shift in the development of scalable, data-
intensive applications. MapReduce may be a good idea for writing certain types of general-purpose
computations, but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive
applications

I MapReduce: not without Controversy

Backwards step in programming paradigm abase
Sub-optimal: brute force, no indexing
Not novel: 25 year-old ideas from DBMS lit

It’s just a group-by aggregate engine @,;Daww, DeWitt
Missing most DBMS features N

Schema, foreign keys, ... good time to discuss
-called “cloud

:essors working in
ita center by lining up
gh-end servers.

sor cluster available
o 1g a software tool
called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to
program using the MapReduce framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents
have spread about how it represents a paradigm shift in the development of scalable, data-
intensive applications. MapReduce may be a good idea for writing certain types of general-purpose
computations, but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive
applications

I MapReduce: not without Controversy

Backwards step in programming paradigm abase
Sub-optimal: brute force, no indexing
Not novel: 25 year-old ideas from DBMS lit

It’s just a group-by aggregate engine n by David J. DeWitt
Missing most DBMS features N

Schema, foreign keys, ... i‘;‘f@jﬂ;ﬁoﬁfisflﬁs
Incompatible with most DBMS tools o conior by ling up

gh-end servers.

sor cluster available
o 1g a software tool
called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to
program using the MapReduce framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents
have spread about how it represents a paradigm shift in the development of scalable, data-
intensive applications. MapReduce may be a good idea for writing certain types of general-purpose
computations, but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive
applications

I MapReduce: not without Controversy

Backwards step in programming paradigm abase
Sub-optimal: brute force, no indexing
Not novel: 25 year-old ideas from DBMS lit

It’s just a group-by aggregate engine n by David J. DeWitt
Missing most DBMS features N

Schema, foreign keys, ... i‘;‘fgc}itgmf"sftﬁs
Incompatible with most DBMS tools o conior by ling up

gh-end servers.

sor cluster available
1g a software tool
nn teaching their freshman how to

pe that the MapReduce proponents
development of scalable, data-
writing certain types of general-purpose

So why is it such a big success?

1. A giant step backward in the programming paradigm for large-scale data intensive
applications

IWhy Is MapReduce backwards?

IWhy Is MapReduce backwards?

Backwards step in programming paradigm

I Why is MapReduce backwards?

Backwards step in programming paradigm
Sub-optimal: brute force, no indexing

I Why is MapReduce backwards?

Backwards step in programming paradigm
Sub-optimal: brute force, no indexing

Not novel: 25 year-old ideas from DBMS lit
It’s just a group-by aggregate engine

I Why is MapReduce backwards?

Backwards step in programming paradigm
Sub-optimal: brute force, no indexing
Not novel: 25 year-old ideas from DBMS lit
It’s just a group-by aggregate engine
Missing most DBMS features
Schema, foreign keys, ...

I Why is MapReduce backwards?

Backwards step in programming paradigm
Sub-optimal: brute force, no indexing
Not novel: 25 year-old ideas from DBMS lit
It’s just a group-by aggregate engine
Missing most DBMS features
Schema, foreign keys, ...
Incompatible with most DBMS tools

IWhy Is MapReduce backwards?

Backwards step in programming paradigm
Sub-optimal: brute force, no indexing
Not novel: 25 year-old ideas from DBMS lit
It’s just a group-by aggregate engine
Missing most DBMS features
Schema, foreign keys, ...
Incompatible with most DBMS tools

So why is it such a big success?

IMapReduce and Dataflow

IMapReduce and Dataflow

* MR is a dataflow engine

IMapReduce and Dataflow

* MR is a dataflow engine

IMapReduce and Dataflow

* MR is a dataflow engine

* Lots of others

* Dryad
DryadLINQ
Dandelion
CIEL
GraphChi/Pregel
Spark

IMapReduce and Dataflow

* MR is a dataflow engine

e Lots of others

Dryad
DryadLINQ
Dandelion

CIEL
GraphChi/Pregel
Spark

Map Shuffle Reduce

OQutputs
>

. sw‘”’ L
Processing” /<\\ T\ b \
vertices\ /@ \\ /o / ™~cChannels

WA AN,

(
i Wi

(file, pipe,

<
\

Tl A Shared
N ® ' &’ memory)

IMapReduce and Dataflow

Map Shuffle Reduce

* MR is a dataflow engine

* Lots of others
* Dryad
e DryadLINQ
e Dandelion

(LT CERRATEY AT

. Q@ o e o
. CIEL L9 " e L \Outputs
Taxonomies: Processing/,i"\?l:\ /(’ T‘I\ @ Y
- X‘K\;__ # \ o / \
_ vertices / B \\ e/ =~
 DAG instead of BSP N OO\ /o) [Channeis
| o | \ (file, pipe,
. F N el A ghared
* Interface variety /\ & ;‘\ﬁg " e
() LA R 4
* Memory FIFO mE 4
° Dis k / £ LN
. ® & ™~ Inputs — ®

e Network

* Flexible Modular Composition

| Dryad (2007): 2-D Piping

/" * Unix Pipes: 1-D
grep | sed | sort | awk | perl

| Dryad (2007): 2-D Piping
/~ * Unix Pipes: 1-D I
grep | sed | sort | awk | perl

- - - - - —u

"

AN

o Dryad: 2-D

greplOOO | SedSOO | SorthOO | aWkSOO | per|50

I Dataflow Engines

data plane
Files, TCP, FIFO

e o — — — — — — — — — — — — — — — —

control plane

Job manager

|Dataﬂow Job Structure

Input
files

_.

-
-

Channels

)

grep
fﬁ& sed

grep
sed

Vertices
(processes)

|Dataﬂow Job Structure

How to implement?

Input Channels
files /\ Output

files

-

)

grep
—

grep
-

Vertices
(processes)

IChanneB

Iltems

Finite streams of items

e distributed filesystem files
(persistent)

 SMB/NTFS files
(temporary)

* TCP pipes
(inter-machine)

* memory FIFOs
(intra-machine)

IChanneB

Iltems

Key idea:
Encapsulate data movement behind

channel abstraction - gets
programmer out of the picture

Finite streams of items

e distributed filesystem files
(persistent)

 SMB/NTFS files
(temporary)

* TCP pipes
(inter-machine)

* memory FIFOs
(intra-machine)

ISpark (2012) Background

Commodity clusters: important platform

In industry: search, machine translation, ad targeting, ...
In research: bioinformatics, NLP, climate simulation, ...

Cluster-scale models (e.g. MR) de facto standard
Fault tolerance through replicated durable storage
Dataflow is the common theme

ISpark (2012) Background

Commodity clusters: important platform

In industry: search, machine translation, ad targeting, ...
In research: bioinformatics, NLP, climate simulation, ...

Cluster-scale models (e.g. MR) de facto standard

Fault tolerance through replicated durable storage
Dataflow is the common theme

Multi-core
Ilteration

I Motivation

Programming models for clusters transform data
flowing from stable storage to stable storage

E.g., MapReduce:

Input — Output

I Motivation

Programming models for clusters transform data
flowing from stable storage to stable storage

E.g., MapReduce:

Input %— Qutput
N

-

Benefits of data flow: runtime can decide
where to run tasks and can automatically
recover from failures

I Iterative Computations: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to

ziEneic_:]hI::ﬁc:ars ranki / IﬂEigthl"Sil

Tinks
ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmap {
(url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)

}

Input 7 Output

I Iterative Computations: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to
ziEneic_:]hI::ﬁc:ars ranki/ IﬂEigthl"Sil

Tinks
ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmap {
(url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)

Input [Output 1 Output [Outpt

I Iterative Computations: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to

ZiEneighl::ﬁc:ars ranki / IﬂEigthl"Sil

Tinks
ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmap {
(url, (links, rank)) =>

Tinks.map(dest => (dest, rank/links.size))
Y rodiiceRvkovl ol A

Solution: augment data flow model with
“resilient distributed datasets” (RDDs)

<> " Output SR> " output <> [
II'...."NQ\~ I BN | AN
S _ _ T i _ _ i -

Outpt

I Programming Model

 Resilient distributed datasets (RDDs)

* Immutable collections partitioned across cluster that can
be rebuilt if a partition is lost

* Created by transforming data in stable storage using data
flow operators (map, filter, group-by, ...)

e Can be cached across parallel operations

I Programming Model

 Resilient distributed datasets (RDDs)

* Immutable collections partitioned across cluster that can
be rebuilt if a partition is lost

* Created by transforming data in stable storage using data
flow operators (map, filter, group-by, ...)

e Can be cached across parallel operations

 Parallel operations on RDDs
 Reduce, collect, count, save, ...

I Programming Model

 Resilient distributed datasets (RDDs)

* Immutable collections partitioned across cluster that can
be rebuilt if a partition is lost

* Created by transforming data in stable storage using data
flow operators (map, filter, group-by, ...)

e Can be cached across parallel operations

 Parallel operations on RDDs
 Reduce, collect, count, save, ...

e Restricted shared variables
 Accumulators, broadcast variables

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)

|Example: Lo

o Minin;

O

O

* Load error messages from a log into memory, then
interactively search for various patterns

lTines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))

|Example: Lo

o Minin;

O

O

* Load error messages from a log into memory, then
interactively search for various patterns

lTines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))

|Example: Lo

o Minin;

O

O

* Load error messages from a log into memory, then
interactively search for various patterns

lTines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMmsgs.filter(_.contains(“foo”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMmsgs.filter(_.contains(“foo”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMmsgs.filter(_.contains(“foo”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(\t’)(2))
cachedMsgs = messages.cache()

cachedMmsgs.filter(_.contains(“foo”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMmsgs.filter(_.contains(“foo”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMmsgs.filter(_.contains(“foo”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMmsgs.filter(_.contains(“foo”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count
cachedmsgs.filter(_.contains(“bar”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count
cachedmsgs.filter(_.contains(“bar”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count
cachedmsgs.filter(_.contains(“bar”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count
cachedmsgs.filter(_.contains(“bar”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count
cachedmsgs.filter(_.contains(“bar”)).count

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(\t’)(2))
cachedMsgs = messages.cache()

cachedMmsgs.filter(_.contains(“foo”)).count
cachedmsgs.filter(_.contains(“bar”)).count

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)

|RDD Fault Tolerance

* RDDs maintain lineage information that can be used
to reconstruct lost partitions

* Ex:
cachedMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))
.persist()

HdfsRDD FilteredRDD MappedRDD
[path: hdfs://... func: contains(...) func: split(...) H CachedRDD }

IData-ParaIIeI Computation Systems

Application

Language

Execution

Storage

IData-ParaIIeI Computation Systems

Application
Ve SQL ™~
Language
Execution Parallel
Databases
Storage

I Data-Parallel Computation Systems

Application
Ve SQL ™

Language s ™
i Map-

Execution Parallel Reduce

Databases |

& 4
_/ N\

Storage GFS

BigTable

I Data-Parallel Computation Systems

Application
P SQL Sawzall §
7C Sawzall)
Language C N
| Map-
Execution Parallel Reduce
Databases |
& 4
_/ N\
Storage GFS
| BigTable
N AN J

I Data-Parallel Computation Systems

Application
P SQL Sawzall _
7C Sawzall)
Language be <
: |\4;3F)_
Execution Parallel Reduce
Databases |
. J
_/ N
Storage .GFS
—count: table sum of int; BIgTabIe y

total: table sum of float;

sum_of squares: table sum of float;
x: float = input;

emit count <- 1;

emit total <- x;

emit sum of squares <- x * x;

I Data-Parallel Computation Systems

Application
P SQL Sawzall §
7C Sawzall)
Language C N
| Map-
Execution Parallel Reduce
Databases |
& 4
_/ N\
Storage GFS
| BigTable
N AN J

I Data-Parallel Computation Systems

Application
_ SQL Sawzall
\i Sawzall)
Language > J §
| Map- |
H
Execution Parallel eRliaE adoop
Databases | I
> J\)
7 N7 <
Storage GFS HDES
BigTable | S3

N AL VAN y

I Data-Parallel Computation Systems

Application
P SQL Sawzall =SQL }
_(Sawzall X Pig, Hive)
Language > N J
| Map- |
H
Execution Parallel eRliaE adoop
Databases | I
> J\)
7 N7 <
Storage GFS HDES
BigTable | S3

N AL VAN y

lines

words

grouped

/\F)F DUMP wor

LOAD '/user/hadoop/HDFS File.txt' AS (line:chararray);

FOREACH lines GENERATE FLATTEN(TOKENIZE(line)) as word; SySte S

= GROUP words BY word;

wordcount = FOREACH grouped GENERATE group, COUNT(words);

dcount;

SQL

Sawzall =SQL

Language

Execution

Paralle
Databas

Storage

T(sawzall) Pig, Hive)

CREATE EXTERNAL TABLE lines(line string)
LOAD DATA INPATH ‘books’ OVERWRITE INTO TABLE lines;

SELECT word, count(*) FROM lines
LATERAL VIEW explode(split(text, ' ')) 1lTable as word
GROUP BY word;

J{ BigTable }L S3 JJ

I Data-Parallel Computation Systems

Application
P SQL Sawzall =SQL }
_(Sawzall X Pig, Hive)
Language > N J
| Map- |
H
Execution Parallel eRliaE adoop
Databases | I
> J\)
7 N7 <
Storage GFS HDES
BigTable | S3

N AL VAN y

I Data-Parallel Computation Systems

Application
SQL Sawzall =SQL) _
\—C Sawzall D_(Pig, Hive j DryadLINQ |
Language > J N /
I I | Scope |
Map-
H Dryad
Execution Parallel Reduce adoop y
Databases | I
l e { Cosmos
Stora GFS HDFS
> isTabl 53 Azure
I\ Slene J\ J\SQL Server

I Data-Parallel Computation Systems

Application
sQL Sawzall =SQL __LNQ,saL
_(Sawzall X Pig, Hive j DryadLINQ |
Language 4 N (h
I | Scope
i Map-
Hadoo Dryad
Execution Parallel Reduce P Cosmos,
Databases \ JU_HPC, Azure |
ctor GFS HDFS COSmos
g€ o Tabl - Azure
| B I I
A% glable J\SQL Server/

I Data-Parallel Computation Systems

Application
saL Sawzall =SQL __LINQ, saL
_(Sawzall X Pig, Hive j DryadUNQT
Language C N (Nz
I I [~
Map- i
H Spark
Execution Parallel Reduce adoop 1L °P
Databases \ A <;>|5C ')
S GFS HDFS Domos
i BigTabl 53 Azure
N_BEE J\SQL Server

(Yet) Another Framework

(Yet) Another Framework

Consistency

(Yet) Another Framework

Consistency

Data Model

(Yet) Another Framework

Data Model

Consistency

(Yet) Another Framework

Data Model

Strong: ACID Consistency Eventual: BASE

< Q4

(Yet) Another Framework

* Atomicity

* Consistency
Isolation
Durability

Data Model

< Strong/ACID Consistency

Eventual: BASE
»V

22

(Yet) Another Framework

9
o
o
<
Atomicity _E e Basically Available
Consistency d° Soft State
Isolation [°© Eventually Consistent
Durability
Strong/ACID Consistency Eventual: BASE

>y

S
2
&

<

22

(Yet) Another Framework

Data Model

Strong: ACID Consistency Eventual: BASE

< Q4

(Yet) Another Framework

Data Model

Strong: ACID Consistency Eventual: BASE>v

22

(Yet) Another Framework

Data Model

Strong: ACID Consistency Eventual: BASE>v

22

(Yet) Another Framework

Data Model

Strong: ACID Consistency Eventual: BASE>v

22

(Yet) Another Framework

Strong: ACID

Data Model

22

(Yet) Another Framework

Strong: ACID

Data Model

22

(Yet) Another Framework

Eventual: BASE

Strong: ACID

Data Model

22

(Yet) Another Framework

Eventual: BASE

Strong: ACID

Data Model

22

(Yet) Another Framework

Eventual: BASE

Strong: ACID

Query Support

Data Model

22

(Yet) Another Framework

Data Model

Eventual: BASE

Strong: ACID

* Shared-Disk

* Range-Sharding

* Hash-Sharding

* Consistent Hashing

Query Support

& .

(Yet) Another Framework

Eventual: BASE

Strong: ACID

Query Support

Data Model

22

(Yet) Another Framework

Data Model

Strong: ACID

_____________________ . * Primary-Backup
Commit-Consensus
Protocol
Sync/Async

Query Support

& .

(Yet) Another Framework

Eventual: BASE

Strong: ACID

Query Support

Data Model

22

(Yet) Another Framework

Data Model

Eventual: BASE

Rz
_____________________ O
Logging
Update In Place
_____________________ Caching
Query Support \ * In-Memory Storage

& =

(Yet) Another Framework

Eventual: BASE

Strong: ACID

Query Support

Data Model

22

(Yet) Another Framework

Data Model

Query Support

Secondary Indexing
Query Planning
Materialized Views
Analytics

22

(Yet) Another Framework

Eventual: BASE

Strong: ACID

Query Support

Data Model

22

(Yet) Another Framework

———————————————————— _‘
Still not a perfect framework Key Value Stores
Cons: L e e e e E
o
Many dimensions contain sub-dimensions §
Many concerns fundamentally coupled Document Stores S
-
Dimensions are often un- or partially-ordered _ _ _ _ _ _ _ _| @)
Q
Pros:
Makes important concerns explicit Vide-Column Stores
_ Eventual: BASE
Cleanly taxonomizes most modern systems v
O
N

Query Support

£

:

g

g
Data Model

Consistency

Consistency

Replication

o
B Storage ‘o“
&
’ &
7 Query Support é{\
’ ¥

Consistency

g

3

P

g
Data Model

‘(“\\0
Y Replication /i
b &
% Storage &
% &

. &

Query Support \@6\
14 3
_____________________ LS

How to keep data in sync?

Consistency

How to keep data in sync?

* Partitioning = single row spread over multiple machines

Consistency

How to keep data in sync?

* Partitioning = single row spread over multiple machines

Consistency

How to keep data in sync?

* Partitioning = single row spread over multiple machines

Consistency

How to keep data in sync?
* Partitioning = single row spread over multiple machines

e Redundancy =2 single datum spread over multiple machines

Consistency

SN S

Partitions

How to keep data in sync?
* Partitioning = single row spread over multiple machines

e Redundancy =2 single datum spread over multiple machines

Consistency

Partitions

How to keep data in sync?
* Partitioning = single row spread over multiple machines

e Redundancy =2 single datum spread over multiple machines

Consistency: the core problem

Write(k,v) Read(k,v)
| writer I > : reader ’

Consistency: the core problem

Write(k,v) Read(k,v)
| writer I > : reader ’

* Clients perform reads and writes

Consistency: the core problem

Write(k,v) Read(k,v)
| writer I > : reader ’

* Clients perform reads and writes
* Data is replicated among a set of servers

Consistency: the core problem

e reaer

Write(k,v)
| writer I >

 Clients perform reads and writes
* Data is replicated among a set of servers
* Writes must be performed at all servers

Consistency: the core problem

Write(k,v) Read(k,v)
| writer I > — { reader |

Clients perform reads and writes

Data is replicated among a set of servers

Writes must be performed at all servers

Reads return the result of one or more past writes

Consistency: the core problem

Write(k,v) Read(k,v)
| writer I > — { reader |

* How should we implement write?

Clients perform reads and writes

Data is replicated among a set of servers

Writes must be performed at all servers

Reads return the result of one or more past writes

Consistency: the core problem

Write(k,v) Read(k,v)
| writer I > — { reader |

, . * How should we implement write?
Clients perform reads and writes « How to implement read?

Data is replicated among a set of servers
Writes must be performed at all servers
Reads return the result of one or more past writes

Consistency: CAP Theorem

Data Model

Strong Consistency

2 Replication
o e e e e e e e &
s ¥
Lo e o
’
’ Query Suppart
A —————

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:

* all nodes see same data at any time

e orreads return latest written value by any client
2. Availability:

e system allows operations all the time,

* and operations return quickly

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:

* all nodes see same data at any time

e orreads return latest written value by any client
2. Availability:

e system allows operations all the time,

* and operations return quickly

3. Partition-tolerance:

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:
e system allows operations all the time,
* and operations return quickly
3. Partition-tolerance:
e system continues to work in spite of network partitions

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:
e system allows operations all the time,
* and operations return quickly
3. Partition-tolerance:
e system continues to work in spite of netwoi

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

. . iag?
 system allows operations all the time, Why care about CAP Properties?

Availability
* and operations return quickly *Reads/writes complete reliably and quickly.
oy *E.g. Amazon, each ms latency = S6M vyearly loss.
3. Partition-tolerance: Partitions V> >6M yearly
* system continues to work in spite of netwol * Internet router outages
. Under-sea cables cut
. rack switch outage

. system should continue functioning normally!
Consistency

. all nodes see same data at any time, or reads return latest
written value by any client.
. This basically means correctness!

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:
e system allows operations all the time,
* and operations return quickly
3. Partition-tolerance:
e system continues to work in spite of netwoi

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

« system allows operations all the time, Why is this “theorem” true?
* and operations return quickly

3. Partition-tolerance:
e system continues to work in spite of netwoi

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

« system allows operations all the time, Why is this “theorem” true?
* and operations return quickly e

3. Partition-tolerance:
e system continues to work in spite of netwoi

-
-~

Write(k,v)

Read(k,v)

‘ writer i ‘ reader ‘

e — —
e e e =

L

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

« system allows operations all the time, Why is this “theorem” true?
* and operations return quickly e L

3. Partition-tolerance:
e system continues to work in spite of netwoi

Write(k,v)

Read(k,v)

‘ writer i ‘ reader ‘

1
I
I
I
I
I
I
I
I

e — —

e e -

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

« system allows operations all the time, Why is this “theorem” true?
* and operations return quickly e L

3. Partition-tolerance:
e system continues to work in spite of netwoi

Write(k,v)

Read(k,v)

‘ writer i ‘ reader ‘

1
I
I
I
I
I
I
I
I

e — —

e e -

if(partition) { keep going } = !consistent && available

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

« system allows operations all the time, Why is this “theorem” true?
* and operations return quickly e L

3. Partition-tolerance:
e system continues to work in spite of netwoi

Write(k,v)

Read(k,v)

‘ writer i ‘ reader ‘

1
I
I
I
I
I
I
I
I

e — —

e e -

if(partition) { keep going } = !consistent && available
if(partition) { stop } =2 consistent && !available

CAP Implications

» Adistributed storage Consistency

system can achieve at
most two of C, A, and P.

* When partition-
tolerance is important,
you have to choose

between consistency and HBase, HyperTable,
availability BigTable, Spanner

RDBMSs
(non-replicated)

Partition-tolerance Availability

Cassandra, RIAK,
Dynamo, Voldemort

CAP Implications

* Adistributed storage Consistency

system can achieve at
most two of C, A, and P.

* When partition-
tolerance is important,
you have to choose

between consistency and HBase, HyperTable,
availability BigTable, Spanner

RDBMSs
(non-replicated)

CAP is
flawed

Partition-tolerance Availability

Cassandra, RIAK,
Dynamo, Voldemort

CAP Implications

PACELC:

if(partition) {

e Adistributed storage .
system can achieve at gOnSIStenGy choose A or C
} else {

most two of C, A, and P.
choose latency or consistency

}

* When partition-
tolerance is important,
you have to choose

between consistency and HBase, HyperTable,
availability BigTable, Spanner

RDBMSs
(non-replicated)

CAP is
flawed

Partition-tolerance Availability

Cassandra, RIAK,
Dynamo, Voldemort

Consistency Spectrum

&
~

Faster reads and writes

More consistency Strong
Eventual - (e.g., Sequential)

Spectrum Ends: Eventual Consistency

e Eventual Consistency
* If writes to a key stop, all replicas of key will converge
* Originally from Amazon’s Dynamo and LinkedIn’s Voldemort systems

Faster reads and writes

More consistency Strong
Eventual (e.g., Sequential)

Spectrum Ends: Strong Consistency

* Strict:
« Absolute time ordering of all shared accesses, reads always return last write

* Linearizability:
* Each operation is visible (or available) to all other clients in real-time order

* Sequential Consistency [Lamport]:

» "... the result of any execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program.

» After the fact, find a “reasonable” ordering of the operations (can re-order operations)
that obeys sanity (consistency) at all clients, and across clients.

* ACID properties

Many Many Consistency Models

Red-Blue
Causal Probabilistic
Eventual Per-key sequential Strong

CRDTs (e.g., Sequential, Strict)

Many Many Consistency Models

Red-Blue
Causal Probabilistic
Eventual Per-key sequential Strong

CRDTs (e.g., Sequential, Strict)

* Amazon S3 — eventual consistency

* Amazon Simple DB — eventual or strong

* Google App Engine — strong or eventual

* Yahoo! PNUTS — eventual or strong

* Windows Azure Storage — strong (or eventual)

e Cassandra — eventual or strong (if R+W > N)

Many Many Consistency Models

Red-Blue
Causal Probabilistic
Eventual Per-key sequential Strong

CRDTs (e.g., Sequential, Strict)

* Amazon S3 — eventual consistency
* Amazon Simple DB — eventual or strong
* Google App Engine — strong or eventual
* Yahoo! PNUTS — eventual or strong

* Windows Azure Storage — strong (or eventual)

e Cassandra — eventual or strong (if R+W > N) QueStlon: HOW to Choose What
- to use or support?

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.
Bounded Staleness See all “old” writes.
Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Some Consistency Guarantees

Strong Consistency
Eventual Consistency
Consistent Prefix
Bounded Staleness
Monotonic Reads

Read My Writes

See all previous writes.

See subset of previous writes.
See initial sequence of writes.
See all “old” writes.

See increasing subset of writes.

See all writes performed by reader.

NS
& 8§ §

&y & 9
5§ & 3

S & 98

S Q 9§

A D F

D A A

C B A

B C D

C B B

C C C

Some Consistency Guarantees

s
et || sounes || oot || e

[Eventual }

Qyy,
Qb V7
{9

O W O » » T g .

The Game of Soccer

The Game of Soccer

The Game of Soccer

The Game of Soccer

The Game of Soccer

The Game of Soccer

The Game of Soccer

The Game of Soccer

The Game of Soccer

The Game of Soccer

The Game of Soccer

forhalf=1..2 {
while half not over {
kick-the-ball-at-the-goal
for each goal {
if visiting-team-scored {
score = Read (“visitors”);

Write (“visitors”, score + 1);

The Game of Soccer

forhalf=1..2 {
while half not over {
kick-the-ball-at-the-goal
for each goal {
if visiting-team-scored {
score = Read (“visitors”);
Write (“visitors”, score + 1);

} else {

The Game of Soccer

forhalf=1..2 {
while half not over {
kick-the-ball-at-the-goal
for each goal {
if visiting-team-scored {
score = Read (“visitors”);
Write (“visitors”, score + 1);
} else {

score = Read (“home”);

The Game of Soccer

forhalf=1..2 {
while half not over {
kick-the-ball-at-the-goal
for each goal {
if visiting-team-scored {
score = Read (“visitors”);
Write (“visitors”, score + 1);
} else {
score = Read (“home”);

Write (“home”, score + 1);

The Game of Soccer

forhalf=1..2 {
while half not over {
kick-the-ball-at-the-goal
for each goal {
if visiting-team-scored {
score = Read (“visitors”);
Write (“visitors”, score + 1);
} else {
score = Read (“home”);

Write (“home”, score + 1);

b}

The Game of Soccer

forhalf=1..2 {
while half not over {
kick-the-ball-at-the-goal
for each goal {
if visiting-team-scored {
score = Read (“visitors”);
Write (“visitors”, score + 1);
} else {
score = Read (“home”);
Write (“home”, score + 1);

b}

hScore = Read(“home”);

The Game of Soccer

forhalf=1..2 {
while half not over {
kick-the-ball-at-the-goal
for each goal {
if visiting-team-scored {
score = Read (“visitors”);
Write (“visitors”, score + 1);
} else {
score = Read (“home”);
Write (“home”, score + 1);
183
hScore = Read(“home”);

vScore = Read(“visit”);

The Game of Soccer

forhalf=1..2 {
while half not over {
kick-the-ball-at-the-goal
for each goal {
if visiting-team-scored {
score = Read (“visitors”);
Write (“visitors”, score + 1);
} else {
score = Read (“home”);
Write (“home”, score + 1);
183
hScore = Read(“home”);
vScore = Read(“visit”);

if (hScore == vScore)

The Game of Soccer

forhalf=1..2 {
while half not over {
kick-the-ball-at-the-goal
for each goal {
if visiting-team-scored {
score = Read (“visitors”);
Write (“visitors”, score + 1);
} else {
score = Read (“home”);
Write (“home”, score + 1);
183
hScore = Read(“home”);
vScore = Read(“visit”);
if (hScore == vScore)

play-overtime

The Game of Soccer

forhalf=1..2 {
while half not over {

kick-the-ball-at-the-goal

Visitors’ score Home score

if visiting-team-scored {
score = Read (“visitors”);

Write (“visitors”, score + 1);

} else {
score = Read (“home”);

Write (“home”, score + 1);

1) N -/
hScore = Read(“home”); v;f;i::r \
vScore = Read(“visit”); reads)

if (hScore == vScore)

play-overtime

Official Scorekeeper

score = Read (“visitors”);
Write (“visitors”, score + 1);

Visitors’ score Home score

s1

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _S3 _-s4 s5 6

Writer
Reader (also Reader
= —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Official Scorekeeper

score = Read (“visitors”);
Write (“visitors”, score + 1);

Desired consistency?

Visitors’ score Home score

st

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

S2— e S4 S5 S6

Writer

Reader (also Reader
— = —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Official Scorekeeper

score = Read (“visitors”);
Write (“visitors”, score + 1);

Desired consistency?
Strong

Visitors’ score Home score

st

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _-s3 s4 s5 6

Writer

Reader (also Reader
— s —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Official Scorekeeper

score = Read (“visitors”);
Write (“visitors”, score + 1);

Desired consistency?
Strong
= Read My Writes!

Visitors’ score Home score

s1

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _S3 _-s4 s5 6

Writer
Reader (also Reader
= —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Visitors’ score Home score
St 52— —S53— A —S5— 56—

Official Scorekeeper

Write (“home”, 1);
Write (“wvisitors”, 1);
score = Read (“visitors”); Write (“home”, 2);
Write (“visitors”, score + 1); Write (“home”, 3);
Write (“wvisitors”, 2);
Write (“home”, 4);
Write (“home”, 5);
Visitors = 2
Desired consistency? Home = 5
Strong | .
Strong Consistency ~ See all previous writes.
= Read My Writes! EYSRE [cena e [y s e
Consistent Prefix See initial sequence of writes.
Monotonic Reads See increasing subset of writes.
Read My Writes See all writes performed by reader.

Bounded Staleness See all “old” writes.

Referee

vScore = Read (“visitors”);

hScore = Read (“home”);

if vScore == hScore
play-overtime

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

Visitors’ score Home score
ST

S22 _S3— _S4 S5 _S6

Writer
Reader (also Reader
reads)

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Referee

vScore = Read (“visitors”);
hScore = Read (“home”);
if vScore == hScore

play-overtime

Desired consistency?

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

Visitors’ score Home score
L —

s _s3 sa S5 6

Writer
Reader (also Reader
rece) —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Referee

vScore = Read (“visitors”);

hScore = Read (“home”);

if vScore == hScore
play-overtime

Desired consistency?
Strong consistency

Visitors’ score Home score
ST

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _-s3 4 s5 6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

Desired consistency?

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

Desired consistency?
Consistent Prefix

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

Desired consistency?
Consistent Prefix
Monotonic Reads

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

}

Desired consistency?
Consistent Prefix

Monotonic Reads
or Bounded Staleness

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

Desired consistency?
Consistent Prefix

Monotonic Reads
or Bounded Staleness

Visitors’ score Home score
ST

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _-s3 4 s5 6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Sportswriter

While not end of game {
drink beer;
smoke cigar;
}
go out to dinner;
vScore = Read (“visitors”);
hScore = Read (“home”);
write article;

Visitors’ score Home score

st

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

S2 S3 S4 S5 S6

Reader (also Reader

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Sportswriter

While not end of game {
drink beer;
smoke cigar;
}
go out to dinner;
vScore = Read (“visitors”);
hScore = Read (“home”);
write article;

Desired consistency?

Visitors’ score Home score

St

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

S2 S3 S4 S5 S6

rite
Reader (also Reader

[E— L) [S—

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Sportswriter

While not end of game {
drink beer;
smoke cigar;
}
go out to dinner;
vScore = Read (“visitors”);
hScore = Read (“home”);
write article;

Desired consistency?
Eventual

Visitors’ score Home score

51

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

§2 53 54 55 56

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Sportswriter

While not end of game {
drink beer;
smoke cigar;
}
go out to dinner;
vScore = Read (“visitors”);
hScore = Read (“home”);
write article;

Desired consistency?
Eventual
Bounded Staleness

Visitors’ score Home score
L —

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

S2— e S4 S5 S6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Statisticlian

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Visitors’ score Home score

st

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _-s3 s4 s5 6

Writer

Reader (also Reader
— s —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Statisticlian

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Desired consistency?

Visitors’ score Home score

51

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

§2 53 54 55 56

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Visitors’ score Home score

H

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Desired consistency?

Strong Consistency (1st read)
Strong Consistency See all previous writes.
Eventual Consistency See subset of previous writes.
Consistent Prefix See initial sequence of writes.
Monotonic Reads See increasing subset of writes.
Read My Writes See all writes performed by reader.

Bounded Staleness See all “old” writes.

Statisticlian

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Desired consistency?

Strong Consistency (1st read)

Read My Writes (2 read)

Visitors’ score Home score
L —

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _-s3 s4 s5 6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Stat Watcher

do {
stat = Read (“season-goals”);
discuss stats with friends;
sleep (1 day);

Visitors’ score Home score

s1

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _S3 _-s4 s5 6

Writer
Reader (also Reader
= —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Stat Watcher

do {
stat = Read (“season-goals”);
discuss stats with friends;
sleep (1 day);

Desired consistency?

Visitors’ score Home score

st

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

S2— e S4 S5 S6

Writer

Reader (also Reader
— = —

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Stat Watcher

do {
stat = Read (“season-goals”);
discuss stats with friends;
sleep (1 day);

Desired consistency?
Eventual Consistency

Visitors’ score Home score
ST

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _-s3 4 s5 6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Official scorekeeper: Sportswriter:

score = Read (“visitors”); While not end of game {

Write (“visitor drink beer;

smoke cigar;

Referee: }

go out to dinner;

Statisticigis:article;

i Wait for end of game;
Radio reporter:

do {

vScore = Read (“visitors”);

score = Read (“home”);

hScore = Read (“home”);

Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a
P2 Wb P2. Wix)b
P3 R{x)b R(x)a P3: R(x)b R(x)a

Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2: Wb P2. Wix)b

P3: R{x)b R(x)a P3: R(x)b R(x)a
P4; RX)b R(x)a P4. RixJa R(x)b

* Why is this weaker than strict/strong?) (b)

Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2 Wb P2. Wix)b

P3 R{x)b R(x)a P3: R(x)b R(x)a

P4 Rixb R(x)a P4. R(x)a R(x)b
* Why is this weaker than strict/strong?) (0

* Nothing is said about “most recent write”

Linearizability

Linearizability

* Assumes sequential consistency and
e If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
e Stronger than sequential consistency
* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Linearizability

* Assumes sequential consistency and
e If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
e Stronger than sequential consistency
* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

*Example:
*Stay tuned...relevant for lock free data structures
*Importantly: a property of concurrent objects

Causal consistency

Causal consistency

e Causally related writes seen by all processes in same order.

Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

Causal consistency

Causal:

e Causally related writes seer If @ write produces a value that
causes another write, they are causally related

* Causally?
X=1
if(X > 0) {
Y=1
}

Causal consistency =2 all see X=1, Y=1 in same order

Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

* Concurrent writes may be seen in different orders on different
machines

Causal consistency

e Causally related writes seen by all processes in same order.

* Causally?

* Concurrent writes may be seen in different orders on different
machines

P1: W(x)a

P2: R(x)a Wb

P3: R(x)b R{()a

P4: R(x)a R{()b
(@)

Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

* Concurrent writes may be seen in different orders on different

machines
P1: W(x)a
P2: R(x)a Wb
P3: R(x)b R{()a
P4: R(x)a R()b

(@)

Not permitted

Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

* Concurrent writes may be seen in different orders on different

machines
P1: W()a P1: W(x)a
P2: Rx)a Wi(x)b P2: W(x)b
P3: R)b RXa P3: RXb R(x)a
P4: R(x)a R{()b P4: R(x)a R({x)b

(@) (b)

Not permitted

Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

* Concurrent writes may be seen in different orders on different

machines
P1: Wi(x)a P1: W(x)a
P2: Rx)a Wi(x)b P2: W(x)b
P3: Re)b Rx)a P3 RX)b RXa
P4: R(x)a R@)b P4: R(x)a R{x)b
(a) (b)
Permitted

Not permitted

Consistency models summary

Consistency models summary

Consistency

Description

Strict

Absolute time ordering of all shared accesses matters.

Linearizability

All processes must see all shared accesses in the same order. Accesses are furthermore ordered
according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order. Accesses are not ordered in time
Causal All processes see causally-related shared accesses in the same order.
EIEO All processes see writes from each other in the order they were used. Writes from different processes

may not always be seen in that order

(a)

Consistency

Description

Weak Shared data can be counted on to be consistent only after a synchronization is done
Release Shared data are made consistent when a critical region is exited
Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)

