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Programming at Fast Scale: 
Consistency + Lock Freedom



Today

Questions? 

Administrivia

• Project Proposal Due Today!

Agenda:

• Consistency

• Lock Freedom
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• Basically Available
• Soft State
• Eventually Consistent

• Atomicity
• Consistency
• Isolation
• Durability
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• Shared-Disk
• Range-Sharding
• Hash-Sharding
• Consistent Hashing
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• Commit-Consensus 

Protocol
• Sync/Async
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• Update In Place
• Caching
• In-Memory Storage
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Review: Another Framework
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Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Still not a perfect framework

Cons:

● Many dimensions contain sub-dimensions

● Many concerns fundamentally coupled

● Dimensions are often un- or partially-ordered

Pros: 

• Makes important concerns explicit

• Cleanly taxonomizes most modern systems
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Consistency: the core problem

• Clients perform reads and writes
• Data is replicated among a set of servers

• Writes must be performed at all servers

• Reads return the result of one or more past writes

R1 R2
writer reader

Write(k,v) Read(k,v)

• How should we implement write?
• How to implement read?
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• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency: 

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability: 
• system allows operations all the time, 

• and operations return quickly

3. Partition-tolerance: 
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency 
• all nodes see same data at any time, or reads return latest 

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

if(partition) { keep going } → !consistent && available
if(partition) { stop } → consistent && !available
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CAP Implications

• A distributed storage 
system can achieve at 
most two of C, A, and P.

• When partition-
tolerance is important, 
you have to choose 
between consistency and 
availability

Consistency

Partition-tolerance Availability

RDBMSs 

(non-replicated)

Cassandra, RIAK, 

Dynamo, Voldemort

HBase, HyperTable,

BigTable, Spanner

PACELC: 

if(partition) {
choose A or C

} else {
choose latency or consistency

}

CAP is 
flawed
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Spectrum Ends: Eventual Consistency

• Eventual Consistency
• If writes to a key stop, all replicas of key will converge

• Originally from Amazon’s Dynamo and LinkedIn’s Voldemort systems
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Spectrum Ends: Strong Consistency

• Strict:
• Absolute time ordering of all shared accesses, reads always return last write

• Linearizability: 
• Each operation is visible (or available) to all other clients in real-time order

• Sequential Consistency [Lamport]:
• "... the result of any execution is the same as if the operations of all the processors 

were executed in some sequential order, and the operations of each individual 
processor appear in this sequence in the order specified by its program.

• After the fact, find a “reasonable” ordering of the operations (can re-order operations) 
that obeys sanity (consistency) at all clients, and across clients.

• ACID properties
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Many Many Consistency Models

Eventual
Strong 

(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Question: How to choose what 
to use or support?

• Amazon S3 – eventual consistency

• Amazon Simple DB – eventual or strong

• Google App Engine – strong or eventual

• Yahoo! PNUTS – eventual or strong

• Windows Azure Storage – strong (or eventual)

• Cassandra – eventual or strong (if R+W > N)

• ...
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Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.
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Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

Strong

RMWMonotonicBoundedPrefix

Eventual

metric =
set of 
allowable 
read 
results

strength
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Desired consistency?

Consistent Prefix

Monotonic Reads
or Bounded Staleness

16

do {
BeginTx();

vScore = Read (“visitors”);
hScore = Read (“home”);

EndTx();
report vScore and hScore;
sleep (30 minutes);    

}
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Desired consistency?

Eventual

Bounded Staleness
17

While not end of game {

drink beer;

smoke cigar;

}

go out to dinner;

vScore = Read (“visitors”);

hScore = Read (“home”);

write article;
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Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);
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Desired consistency?
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18

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);



Statistician

Desired consistency?

Strong Consistency (1st read)

Read My Writes (2nd read)

18

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);



Stat Watcher

19

do {
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discuss stats with friends;

sleep (1 day);

}
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Stat Watcher

Desired consistency?

Eventual Consistency

19

do {

stat = Read (“season-goals”);

discuss stats with friends;

sleep (1 day);

}



Official scorekeeper:
score = Read (“visitors”);

Write (“visitors”, score + 1);

Statistician:

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Referee:

Radio reporter:
do {

vScore = Read (“visitors”);

hScore = Read (“home”);

report vScore and hScore;

sleep (30 minutes);    

}

Sportswriter:

While not end of game {

drink beer;

smoke cigar;

}

go out to dinner;

vScore = Read (“visitors”);

hScore = Read (“home”);

write article;

Stat watcher:

stat = Read (“season-runs”);

discuss stats with friends;
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Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order 

• each process issues operations in program order

• Any valid interleaving is allowed

• All  agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

• Nothing is said about “most recent write”
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• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
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• Difference between linearizability and serializability?
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Linearizability

• Assumes sequential consistency and
• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence

• Stronger than sequential consistency

• Difference between linearizability and serializability?

• Granularity: reads/writes versus transactions

•Example:
•Stay tuned…relevant for lock free data structures

•Importantly: a property of concurrent objects
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Causal consistency

• Causally related writes seen by all processes in same order. 
• Causally?

Causal:
If a write produces a value that
causes another write, they are causally related

X = 1
if(X > 0) {

Y = 1
}
Causal consistency → all see X=1, Y=1 in same order
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Causal consistency

• Causally related writes seen by all processes in same order. 
• Causally?

• Concurrent writes may be seen in different orders on different 
machines

Not permitted
Permitted



Consistency models summary



Consistency models summary

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability
All processes must see all shared accesses in the same order.  Accesses are furthermore ordered 

according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order.  Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO
All processes see writes from each other in the order they were used.  Writes from different processes 

may not always be seen in that order

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)
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• Fault Isolation

• Preemption Tolerance

• Performance

Solution: don’t use locks



Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance
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Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

• Thread-safe access shared mutable state without mutual exclusion

• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks

• Lock-free algorithms are hard, so

• General approach: encapsulate lock-free algorithms in data structures
• Queue, list, hash-table, skip list, etc.
• New LF data structure → research result
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Basic List Append
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Basic List Append

• Is this thread safe?

• What can go wrong?
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Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically



Example: SP-SC Queue

• Single-producer single-consumer

• Why/when does this work?

next(x): 
if(x == Q_size-1) return 0;
else return x+1;

Q_get(data): Q_put(data):
t = Q_tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
; ;

data = Q_buf[t]; Q_buf[h] = data;
Q_tail = next(t); Q_head = next(h);



Example: SP-SC Queue

• Single-producer single-consumer

• Why/when does this work?

next(x): 
if(x == Q_size-1) return 0;
else return x+1;

Q_get(data): Q_put(data):
t = Q_tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
; ;

data = Q_buf[t]; Q_buf[h] = data;
Q_tail = next(t); Q_head = next(h);

1. Q_head is last write in Q_put, so Q_get
never gets “ahead”.

2. *single* p,c only (as advertised)
3. Requires fence before setting Q head
4. Devil in the details of “wait”
5. No lock → “optimistic”
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• Why does is it work?



Lock-Free Stack

• Why does is it work?

• Does it enforce all invariants?
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ABA Problem

• Thread 1 observes shared variable → ‘A’ 

• Thread 1 calculates using that value

• Thread 2 changes variable to B 
• if Thread 1 wakes up now and tries to CAS, CAS fails and Thread 1 retries

• Instead, Thread 2 changes variable back to A! 
• Very bad if the variables are pointers

• Anyone see a work-around?
• Keep update count → DCAS
• Avoid re-using memory
• Multi-CAS support → HTM
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Correctness: Searching a sorted list

• find(20):

H 10 30 T

20?

find(20) -> false

34
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Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20
✓

insert(20) -> true

35
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Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

25

30 → 25

✓



• insert(25):

36
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Searching and finding together
• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

37



Searching and finding together
• find(20) -> false • insert(20) -> true

This thread saw 20 
was not in the set...

...but this thread 
succeeded in putting 

it in!

• Is this a correct implementation?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of operations?

37



Correctness criteria

38

Informally: 

Look at the behaviour of the data structure 

• what operations are called on it 

• what their results are

If behaviour is indistinguishable from atomic calls to a 
sequential implementation then the concurrent 
implementation is correct.
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• No overlapping invocations

10 10, 20 10, 20

39

Linearizability: concurrent behaviour should be similar 

• even when threads can see intermediate state

• Recall: mutual exclusion precludes overlap
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Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

40

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the 
invocations/responses?

• Start/end impose ordering constraints

Total Order: 
1. Insert(10)
2. Find(20)
3. Insert(20)
• Is consistent with real-time order
• 2, 3 overlap, but return order OK

Why is this one OK?



Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false
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Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false
A valid sequential history: 
this concurrent execution 

is OK
Note: linearization point

41
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Note: return values are meaningful!
Linearizable → consistent with return values
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time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

42

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)

Note: return values are meaningful!
Linearizable → consistent with return values



Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

42

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)

How can things like this happen?

Note: return values are meaningful!
Linearizable → consistent with return values
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Example Revisited

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false
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Example Revisited

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history: 
this concurrent execution 

is OK because a 
linearization point exists

43



Example Revisited

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history: 
this concurrent execution 

is OK because a 
linearization point exists

43

Recurring Techniques:

• For updates
• Perform an essential step of an 

operation by a single atomic 
instruction

• E.g. CAS to insert an item into a list
• This forms a “linearization point”

• For reads
• Identify a point during the operation’s 

execution when the result is valid 
• Not always a specific instruction
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Lock-free

• Some thread finishes its operation if threads continue taking steps

time
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• Red never finishes
• Orange does
• Still lock-free
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Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Meaning, if you de-schedule contenders

time

Start

Start

Fin
ishInterference here can prevent 

any operation finishing
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• non-blocking
• one method is never forced to wait to sync with another.

• local property: 
• a system is linearizable iff each individual object is linearizable. 

• gives us composability.

• Why is it important? 
• Serializability is not composable. 
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Composability

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}
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void move(list s, list d, Obj key){
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Composability

• Lock-based code doesn’t compose

• If list were a linearizable concurrent data structure, composition OK

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

void move(list s, list d, Obj key){

LOCK(s);

LOCK(d);

tmp = s.remove(key);

d.insert(key, tmp);

UNLOCK(d);

UNLOCK(s);

}



• non-blocking
• one method is never forced to wait to sync with another.

• local property: 
• a system is linearizable iff each individual object is linearizable. 

• gives us composability.

• Why is it important? 
• Serializability is not composable. 

• Core hypotheses: 
• structuring all as concurrent objects buys composability

• structuring all as concurrent objects is tractable/possible
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Options to consider when 
implementing a “difficult” operation:

Relax the semantics 
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)
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