
cs378h

Programming at Fast Scale:
Consistency + Lock Freedom

Today

Questions?

Administrivia

• Project Proposal Due Today!

Agenda:

• Consistency

• Lock Freedom

Review: Another Framework

3

Review: Another Framework

3

Consistency

Review: Another Framework

3

D
a

ta
M

o
d

el

Consistency

Review: Another Framework

3

D
a

ta
M

o
d

el

Consistency

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

• Atomicity
• Consistency
• Isolation
• Durability

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

• Basically Available
• Soft State
• Eventually Consistent

• Atomicity
• Consistency
• Isolation
• Durability

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Key Value Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Key Value Stores

Document Stores

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Key Value Stores

Document Stores

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Shared-Disk
• Range-Sharding
• Hash-Sharding
• Consistent Hashing

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Primary-Backup
• Commit-Consensus

Protocol
• Sync/Async

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Logging
• Update In Place
• Caching
• In-Memory Storage

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support
• Secondary Indexing
• Query Planning
• Materialized Views
• Analytics

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Review: Another Framework

3

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Still not a perfect framework

Cons:

● Many dimensions contain sub-dimensions

● Many concerns fundamentally coupled

● Dimensions are often un- or partially-ordered

Pros:

• Makes important concerns explicit

• Cleanly taxonomizes most modern systems

Consistency

Consistency

How to keep data in sync?

Consistency

How to keep data in sync?

• Partitioning → single row spread over multiple machines

Consistency

How to keep data in sync?

• Partitioning → single row spread over multiple machines

Consistency

Partitions

How to keep data in sync?

• Partitioning → single row spread over multiple machines

Consistency

Partitions

How to keep data in sync?

• Partitioning → single row spread over multiple machines

• Redundancy → single datum spread over multiple machines

Consistency

Partitions

How to keep data in sync?

• Partitioning → single row spread over multiple machines

• Redundancy → single datum spread over multiple machines

Consistency

Partitions

How to keep data in sync?

• Partitioning → single row spread over multiple machines

• Redundancy → single datum spread over multiple machines

Consistency: the core problem

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes
• Data is replicated among a set of servers

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes
• Data is replicated among a set of servers

• Writes must be performed at all servers

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes
• Data is replicated among a set of servers

• Writes must be performed at all servers

• Reads return the result of one or more past writes

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes
• Data is replicated among a set of servers

• Writes must be performed at all servers

• Reads return the result of one or more past writes

R1 R2
writer reader

Write(k,v) Read(k,v)

• How should we implement write?

Consistency: the core problem

• Clients perform reads and writes
• Data is replicated among a set of servers

• Writes must be performed at all servers

• Reads return the result of one or more past writes

R1 R2
writer reader

Write(k,v) Read(k,v)

• How should we implement write?
• How to implement read?

Consistency: CAP Theorem

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

if(partition) { keep going } → !consistent && available

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

if(partition) { keep going } → !consistent && available
if(partition) { stop } → consistent && !available

CAP Implications

• A distributed storage
system can achieve at
most two of C, A, and P.

• When partition-
tolerance is important,
you have to choose
between consistency and
availability

Consistency

Partition-tolerance Availability

RDBMSs

(non-replicated)

Cassandra, RIAK,

Dynamo, Voldemort

HBase, HyperTable,

BigTable, Spanner

CAP Implications

• A distributed storage
system can achieve at
most two of C, A, and P.

• When partition-
tolerance is important,
you have to choose
between consistency and
availability

Consistency

Partition-tolerance Availability

RDBMSs

(non-replicated)

Cassandra, RIAK,

Dynamo, Voldemort

HBase, HyperTable,

BigTable, Spanner

CAP is
flawed

CAP Implications

• A distributed storage
system can achieve at
most two of C, A, and P.

• When partition-
tolerance is important,
you have to choose
between consistency and
availability

Consistency

Partition-tolerance Availability

RDBMSs

(non-replicated)

Cassandra, RIAK,

Dynamo, Voldemort

HBase, HyperTable,

BigTable, Spanner

PACELC:

if(partition) {
choose A or C

} else {
choose latency or consistency

}

CAP is
flawed

Consistency Spectrum

Strong

(e.g., Sequential)Eventual

More consistency

Faster reads and writes

Spectrum Ends: Eventual Consistency

• Eventual Consistency
• If writes to a key stop, all replicas of key will converge

• Originally from Amazon’s Dynamo and LinkedIn’s Voldemort systems

Strong

(e.g., Sequential)Eventual

More consistency

Faster reads and writes

Spectrum Ends: Strong Consistency

• Strict:
• Absolute time ordering of all shared accesses, reads always return last write

• Linearizability:
• Each operation is visible (or available) to all other clients in real-time order

• Sequential Consistency [Lamport]:
• "... the result of any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program.

• After the fact, find a “reasonable” ordering of the operations (can re-order operations)
that obeys sanity (consistency) at all clients, and across clients.

• ACID properties

Many Many Consistency Models

Eventual
Strong

(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Many Many Consistency Models

Eventual
Strong

(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

• Amazon S3 – eventual consistency

• Amazon Simple DB – eventual or strong

• Google App Engine – strong or eventual

• Yahoo! PNUTS – eventual or strong

• Windows Azure Storage – strong (or eventual)

• Cassandra – eventual or strong (if R+W > N)

• ...

Many Many Consistency Models

Eventual
Strong

(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Question: How to choose what
to use or support?

• Amazon S3 – eventual consistency

• Amazon Simple DB – eventual or strong

• Google App Engine – strong or eventual

• Yahoo! PNUTS – eventual or strong

• Windows Azure Storage – strong (or eventual)

• Cassandra – eventual or strong (if R+W > N)

• ...

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

Strong

RMWMonotonicBoundedPrefix

Eventual

metric =
set of
allowable
read
results

strength

The Game of Soccer

The Game of Soccer

The Game of Soccer

The Game of Soccer

The Game of Soccer
for half = 1 .. 2 {

The Game of Soccer
for half = 1 .. 2 {

while half not over {

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

score = Read (“visitors”);

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

score = Read (“visitors”);

Write (“visitors”, score + 1);

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

score = Read (“visitors”);

Write (“visitors”, score + 1);

} else {

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

score = Read (“visitors”);

Write (“visitors”, score + 1);

} else {

score = Read (“home”);

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

score = Read (“visitors”);

Write (“visitors”, score + 1);

} else {

score = Read (“home”);

Write (“home”, score + 1);

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

score = Read (“visitors”);

Write (“visitors”, score + 1);

} else {

score = Read (“home”);

Write (“home”, score + 1);

} } }

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

score = Read (“visitors”);

Write (“visitors”, score + 1);

} else {

score = Read (“home”);

Write (“home”, score + 1);

} } }

hScore = Read(“home”);

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

score = Read (“visitors”);

Write (“visitors”, score + 1);

} else {

score = Read (“home”);

Write (“home”, score + 1);

} } }

hScore = Read(“home”);

vScore = Read(“visit”);

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

score = Read (“visitors”);

Write (“visitors”, score + 1);

} else {

score = Read (“home”);

Write (“home”, score + 1);

} } }

hScore = Read(“home”);

vScore = Read(“visit”);

if (hScore == vScore)

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

score = Read (“visitors”);

Write (“visitors”, score + 1);

} else {

score = Read (“home”);

Write (“home”, score + 1);

} } }

hScore = Read(“home”);

vScore = Read(“visit”);

if (hScore == vScore)

play-overtime

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

score = Read (“visitors”);

Write (“visitors”, score + 1);

} else {

score = Read (“home”);

Write (“home”, score + 1);

} } }

hScore = Read(“home”);

vScore = Read(“visit”);

if (hScore == vScore)

play-overtime

Official Scorekeeper

14

score = Read (“visitors”);

Write (“visitors”, score + 1);

Official Scorekeeper

Desired consistency?

14

score = Read (“visitors”);

Write (“visitors”, score + 1);

Official Scorekeeper

Desired consistency?

Strong

14

score = Read (“visitors”);

Write (“visitors”, score + 1);

Official Scorekeeper

Desired consistency?

Strong

= Read My Writes!

14

score = Read (“visitors”);

Write (“visitors”, score + 1);

Official Scorekeeper

Desired consistency?

Strong

= Read My Writes!

14

score = Read (“visitors”);

Write (“visitors”, score + 1);

Referee

15

vScore = Read (“visitors”);

hScore = Read (“home”);

if vScore == hScore

play-overtime

Referee

Desired consistency?

15

vScore = Read (“visitors”);

hScore = Read (“home”);

if vScore == hScore

play-overtime

Referee

Desired consistency?

Strong consistency

15

vScore = Read (“visitors”);

hScore = Read (“home”);

if vScore == hScore

play-overtime

Radio Reporter

16

do {
BeginTx();

vScore = Read (“visitors”);
hScore = Read (“home”);

EndTx();
report vScore and hScore;
sleep (30 minutes);

}

Radio Reporter

Desired consistency?

16

do {
BeginTx();

vScore = Read (“visitors”);
hScore = Read (“home”);

EndTx();
report vScore and hScore;
sleep (30 minutes);

}

Radio Reporter

Desired consistency?

Consistent Prefix

16

do {
BeginTx();

vScore = Read (“visitors”);
hScore = Read (“home”);

EndTx();
report vScore and hScore;
sleep (30 minutes);

}

Radio Reporter

Desired consistency?

Consistent Prefix

Monotonic Reads

16

do {
BeginTx();

vScore = Read (“visitors”);
hScore = Read (“home”);

EndTx();
report vScore and hScore;
sleep (30 minutes);

}

Radio Reporter

Desired consistency?

Consistent Prefix

Monotonic Reads
or Bounded Staleness

16

do {
BeginTx();

vScore = Read (“visitors”);
hScore = Read (“home”);

EndTx();
report vScore and hScore;
sleep (30 minutes);

}

Sportswriter

17

While not end of game {

drink beer;

smoke cigar;

}

go out to dinner;

vScore = Read (“visitors”);

hScore = Read (“home”);

write article;

Sportswriter

Desired consistency?

17

While not end of game {

drink beer;

smoke cigar;

}

go out to dinner;

vScore = Read (“visitors”);

hScore = Read (“home”);

write article;

Sportswriter

Desired consistency?

Eventual

17

While not end of game {

drink beer;

smoke cigar;

}

go out to dinner;

vScore = Read (“visitors”);

hScore = Read (“home”);

write article;

Sportswriter

Desired consistency?

Eventual

Bounded Staleness
17

While not end of game {

drink beer;

smoke cigar;

}

go out to dinner;

vScore = Read (“visitors”);

hScore = Read (“home”);

write article;

Statistician

18

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Statistician

Desired consistency?

18

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Statistician

Desired consistency?

Strong Consistency (1st read)

18

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Statistician

Desired consistency?

Strong Consistency (1st read)

Read My Writes (2nd read)

18

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Stat Watcher

19

do {

stat = Read (“season-goals”);

discuss stats with friends;

sleep (1 day);

}

Stat Watcher

Desired consistency?

19

do {

stat = Read (“season-goals”);

discuss stats with friends;

sleep (1 day);

}

Stat Watcher

Desired consistency?

Eventual Consistency

19

do {

stat = Read (“season-goals”);

discuss stats with friends;

sleep (1 day);

}

Official scorekeeper:
score = Read (“visitors”);

Write (“visitors”, score + 1);

Statistician:

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Referee:

Radio reporter:
do {

vScore = Read (“visitors”);

hScore = Read (“home”);

report vScore and hScore;

sleep (30 minutes);

}

Sportswriter:

While not end of game {

drink beer;

smoke cigar;

}

go out to dinner;

vScore = Read (“visitors”);

hScore = Read (“home”);

write article;

Stat watcher:

stat = Read (“season-runs”);

discuss stats with friends;

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

• Nothing is said about “most recent write”

Linearizability

Linearizability

• Assumes sequential consistency and
• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence

• Stronger than sequential consistency

• Difference between linearizability and serializability?

• Granularity: reads/writes versus transactions

Linearizability

• Assumes sequential consistency and
• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence

• Stronger than sequential consistency

• Difference between linearizability and serializability?

• Granularity: reads/writes versus transactions

•Example:
•Stay tuned…relevant for lock free data structures

•Importantly: a property of concurrent objects

Causal consistency

Causal consistency

• Causally related writes seen by all processes in same order.

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

Causal:
If a write produces a value that
causes another write, they are causally related

X = 1
if(X > 0) {

Y = 1
}
Causal consistency → all see X=1, Y=1 in same order

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Not permitted

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Not permitted

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Not permitted
Permitted

Consistency models summary

Consistency models summary

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability
All processes must see all shared accesses in the same order. Accesses are furthermore ordered

according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order. Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO
All processes see writes from each other in the order they were used. Writes from different processes

may not always be seen in that order

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)

Non-Blocking Synchronization

Non-Blocking Synchronization

Locks: a litany of problems

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Solution: don’t use locks

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Lock-free programming

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

• Thread-safe access shared mutable state without mutual exclusion

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

• Thread-safe access shared mutable state without mutual exclusion

• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

• Thread-safe access shared mutable state without mutual exclusion

• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

• Thread-safe access shared mutable state without mutual exclusion

• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks

• Lock-free algorithms are hard, so

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

• Thread-safe access shared mutable state without mutual exclusion

• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks

• Lock-free algorithms are hard, so

• General approach: encapsulate lock-free algorithms in data structures
• Queue, list, hash-table, skip list, etc.
• New LF data structure → research result

Basic List Append

Basic List Append

Basic List Append

Basic List Append

• Is this thread safe?

Basic List Append

• Is this thread safe?

• What can go wrong?

Example: List Append

Example: List Append

Example: List Append

Example: List Append

• What property do the locks enforce?

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically

Example: SP-SC Queue

• Single-producer single-consumer

• Why/when does this work?

next(x):
if(x == Q_size-1) return 0;
else return x+1;

Q_get(data): Q_put(data):
t = Q_tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
; ;

data = Q_buf[t]; Q_buf[h] = data;
Q_tail = next(t); Q_head = next(h);

Example: SP-SC Queue

• Single-producer single-consumer

• Why/when does this work?

next(x):
if(x == Q_size-1) return 0;
else return x+1;

Q_get(data): Q_put(data):
t = Q_tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
; ;

data = Q_buf[t]; Q_buf[h] = data;
Q_tail = next(t); Q_head = next(h);

1. Q_head is last write in Q_put, so Q_get
never gets “ahead”.

2. *single* p,c only (as advertised)
3. Requires fence before setting Q head
4. Devil in the details of “wait”
5. No lock → “optimistic”

Lock-Free Stack

Lock-Free Stack

• Why does is it work?

Lock-Free Stack

• Why does is it work?

Lock-Free Stack

• Why does is it work?

• Does it enforce all invariants?

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

ABA Problem

• Thread 1 observes shared variable → ‘A’

• Thread 1 calculates using that value

• Thread 2 changes variable to B
• if Thread 1 wakes up now and tries to CAS, CAS fails and Thread 1 retries

• Instead, Thread 2 changes variable back to A!
• Very bad if the variables are pointers

• Anyone see a work-around?
• Keep update count → DCAS
• Avoid re-using memory
• Multi-CAS support → HTM

Correctness: Searching a sorted list

• find(20):

H 10 30 T

34

Correctness: Searching a sorted list

• find(20):

H 10 30 T

20?

34

Correctness: Searching a sorted list

• find(20):

H 10 30 T

20?

34

Correctness: Searching a sorted list

• find(20):

H 10 30 T

20?

find(20) -> false

34

Inserting an item with CAS

• insert(20):

H 10 30 T

35

Inserting an item with CAS

• insert(20):

H 10 30 T

20

35

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

35

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20
✓

insert(20) -> true

35

Inserting an item with CAS

H 10 30 T

36

Inserting an item with CAS

• insert(20):

H 10 30 T

20

36

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

36

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

25

• insert(25):

36

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

25

30 → 25

• insert(25):

36

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

25

30 → 25

✓

• insert(25):

36

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

25

30 → 25

✓

• insert(25):

36

Searching and finding together
• find(20)

H 10 30 T

37

Searching and finding together
• find(20)

H 10 30 T

20?

37

Searching and finding together
• find(20)

H 10 30 T

20?

37

Searching and finding together
• find(20)

H 10 30 T

20?

37

Searching and finding together
• find(20)

H 10 30 T

20

20?

• insert(20) -> true

37

Searching and finding together
• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

37

Searching and finding together
• find(20) -> false • insert(20) -> true

This thread saw 20
was not in the set...

...but this thread
succeeded in putting

it in!

• Is this a correct implementation?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of operations?

37

Correctness criteria

38

Informally:

Look at the behaviour of the data structure

• what operations are called on it

• what their results are

If behaviour is indistinguishable from atomic calls to a
sequential implementation then the concurrent
implementation is correct.

Sequential history

time

• No overlapping invocations

39

Sequential history

time

• No overlapping invocations

39

Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

• No overlapping invocations

10

39

Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

T2
: in

sert(2
0

)

->
 t

ru
e

• No overlapping invocations

10 10, 20

39

Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

T2
: in

sert(2
0

)

->
 t

ru
e

T1
: fin

d
(1

5
)

->
 f

al
se

• No overlapping invocations

10 10, 20 10, 20

39

Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

T2
: in

sert(2
0

)

->
 t

ru
e

T1
: fin

d
(1

5
)

->
 f

al
se

• No overlapping invocations

10 10, 20 10, 20

39

Linearizability: concurrent behaviour should be similar

• even when threads can see intermediate state

• Recall: mutual exclusion precludes overlap

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

40

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

40

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the
invocations/responses?

• Start/end impose ordering constraints

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

40

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the
invocations/responses?

• Start/end impose ordering constraints

Why is this one OK?

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

40

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the
invocations/responses?

• Start/end impose ordering constraints

Total Order:
1. Insert(10)
2. Find(20)
3. Insert(20)
• Is consistent with real-time order
• 2, 3 overlap, but return order OK

Why is this one OK?

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

41

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false
A valid sequential history:
this concurrent execution

is OK
Note: linearization point

41

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

42

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

42

Why is this one NOT OK?

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

42

Why is this one NOT OK?

Note: return values are meaningful!
Linearizable → consistent with return values

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

42

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)

Note: return values are meaningful!
Linearizable → consistent with return values

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

42

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)

How can things like this happen?

Note: return values are meaningful!
Linearizable → consistent with return values

Example Revisited

• find(20)

H 10 30 T

Thread 2:

Thread 1:

43

Example Revisited

• find(20)

H 10 30 T

20?

Thread 2:

Thread 1:

43

Example Revisited

• find(20)

H 10 30 T

20?

Thread 2:

Thread 1:

43

Example Revisited

• find(20)

H 10 30 T

20?

Thread 2:

Thread 1:

43

Example Revisited

• find(20)

H 10 30 T

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

43

Example Revisited

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

43

Example Revisited

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history:
this concurrent execution

is OK because a
linearization point exists

43

Example Revisited

• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history:
this concurrent execution

is OK because a
linearization point exists

43

Recurring Techniques:

• For updates
• Perform an essential step of an

operation by a single atomic
instruction

• E.g. CAS to insert an item into a list
• This forms a “linearization point”

• For reads
• Identify a point during the operation’s

execution when the result is valid
• Not always a specific instruction

Formal Properties

Formal Properties

• Wait-free

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Very weak. Means if you remove contention, someone finishes

Wait-free

• A thread finishes its own operation if it continues executing steps

49

Wait-free

• A thread finishes its own operation if it continues executing steps

49

time

Start

Fin
ish

Fin
ish

Start

Fin
ish

Start

Lock-free

• Some thread finishes its operation if threads continue taking steps

50

Lock-free

• Some thread finishes its operation if threads continue taking steps

time

Start

Start

Fin
ish

Fin
ish

Start

Start

Fin
ish

50

Lock-free

• Some thread finishes its operation if threads continue taking steps

time

Start

Start

Fin
ish

Fin
ish

Start

Start

Fin
ish

50

• Red never finishes
• Orange does
• Still lock-free

Obstruction-free

51

Obstruction-free
• A thread finishes its own operation if it runs in isolation

51

Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Meaning, if you de-schedule contenders

51

Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Meaning, if you de-schedule contenders

time

Start

Start

Fin
ishInterference here can prevent

any operation finishing

51

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Very weak. Means if you remove contention, someone finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Very weak. Means if you remove contention, someone finishes

Blocking

1. Blocking
2. Starvation-Free

Obstruction-Free

3. Obstruction-Free

Lock-Free

4. Lock-Free (LF)

Wait-Free

5. Wait-Free (WF)
6. Wait-Free Bounded (WFB)

7. Wait-Free Population Oblivious (WFPO)

s
t
r
o
n
g
e
r

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Very weak. Means if you remove contention, someone finishes

Blocking

1. Blocking
2. Starvation-Free

Obstruction-Free

3. Obstruction-Free

Lock-Free

4. Lock-Free (LF)

Wait-Free

5. Wait-Free (WF)
6. Wait-Free Bounded (WFB)

7. Wait-Free Population Oblivious (WFPO)

s
t
r
o
n
g
e
r

Linearizability Properties

53

• non-blocking
• one method is never forced to wait to sync with another.

Linearizability Properties

53

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.

• gives us composability.

•

Linearizability Properties

53

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.

• gives us composability.

• Why is it important?
• Serializability is not composable.

Linearizability Properties

53

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.

• gives us composability.

• Why is it important?
• Serializability is not composable.

Linearizability Properties

53

Huh? Composable?

Composability

Composability

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

Composability

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

Composability

void move(list s, list d, Obj key){

tmp = s.remove(key);

d.insert(key, tmp);

}

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

Composability

void move(list s, list d, Obj key){

tmp = s.remove(key);

d.insert(key, tmp);

}

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

Thread-safe?

Composability

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

void move(list s, list d, Obj key){

LOCK(s);

LOCK(d);

tmp = s.remove(key);

d.insert(key, tmp);

UNLOCK(d);

UNLOCK(s);

}

Composability

• Lock-based code doesn’t compose

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

void move(list s, list d, Obj key){

LOCK(s);

LOCK(d);

tmp = s.remove(key);

d.insert(key, tmp);

UNLOCK(d);

UNLOCK(s);

}

Composability

• Lock-based code doesn’t compose

• If list were a linearizable concurrent data structure, composition OK

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

void move(list s, list d, Obj key){

LOCK(s);

LOCK(d);

tmp = s.remove(key);

d.insert(key, tmp);

UNLOCK(d);

UNLOCK(s);

}

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.

• gives us composability.

• Why is it important?
• Serializability is not composable.

• Core hypotheses:
• structuring all as concurrent objects buys composability

• structuring all as concurrent objects is tractable/possible

Linearizability Properties

55

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

56

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

56

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

56

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

56

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

56

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

56

