I Fast Parallel Programming: Lock Freedom

cs378h

IToday

Questions?

Administrivia

* Project presentations?

Agenda:

e Lock Freedom

Review: Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a
P2 Wb P2. Wix)b
P3 R{x)b R(x)a P3: R(x)b R(x)a

Review: Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2: Wb P2. Wix)b

P3: R{x)b R(x)a P3: R(x)b R(x)a
P4; RX)b R(x)a P4. RixJa R(x)b

* Why is this weaker than strict/strong?) (b)

Review: Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2 Wb P2 Wb

P3: R{x)b R(x)a P3: R(x)b R(x)a

P4; RX)b R(x)a P4. RixJa R(x)b
* Why is this weaker than strict/strong?) ()

* Nothing is said about “most recent write”

Review: Causal consistency

Review: Causal consistency

e Causally related writes seen by all processes in same order.

Review: Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

Review: Causal consistencyv

Causal:

e Causally related writes seer If @ write produces a value that

* Causally? causes another write, they are causally related

X=1
if(X > 0) {
Y=1

}

Causal consistency =2 all see X=1, Y=1 in same order

Review: Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

Review: Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

* Concurrent writes may be seen in different orders on different
machines

Review: Causal consistency

e Causally related writes seen by all processes in same order.

* Causally?

* Concurrent writes may be seen in different orders on different
machines

P1: W(x)a

P2: R(x)a Wb

P3: R(x)b R{()a

P4: R(x)a R{()b
(@)

Review: Causal consistency

e Causally related writes seen by all processes in same order.

* Causally?
* Concurrent writes may be seen in different orders on different

machines
P1: W(x)a
P2: R(x)a Wb
P3: R(x)b R{()a
P4: R(x)a R()b

(@)

Not permitted

Review: Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

* Concurrent writes may be seen in different orders on different

machines
P1: W()a P1: W(x)a
P2: Rx)a Wi(x)b P2: W(x)b
P3: R)b RXa P3: RXb R(x)a
P4: R(x)a R{()b P4: R(x)a R({x)b

(@) (b)

Not permitted

Review: Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

* Concurrent writes may be seen in different orders on different

machines
P1: W()a P1: W(x)a
P2: Rx)a Wi(x)b P2: W(x)b
P3: R)b RXa P3: RXb R(x)a
P4: R(x)a R{()b P4: R(x)a R({x)b

(@) (b)

Not permitted Permitted

Review: Linearizability

Review: Linearizability

* Assumes sequential consistency and
e If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
e Stronger than sequential consistency
* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Review: Linearizability

* Assumes sequential consistency and
e If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
e Stronger than sequential consistency
* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

*Example:
*Stay tuned...relevant for lock free data structures
*Importantly: a property of concurrent objects

Non-Blocking Synchronization

Non-Blocking Synchronization

Locks: a litany of problems

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock
* Priority inversion

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

e Performance
Solution: don’t use locks

Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Lock-free programming

Lock-free programming

* Subset of a broader class: Non-blocking Synchronization

Lock-free programming

* Subset of a broader class: Non-blocking Synchronization
* Thread-safe access shared mutable state without mutual exclusion

Lock-free programming

* Subset of a broader class: Non-blocking Synchronization
* Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
* e.g. Lamport’s Concurrent Buffer
* ...but not really practical wo HW

Lock-free programming

* Subset of a broader class: Non-blocking Synchronization
* Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
* e.g. Lamport’s Concurrent Buffer
* ...but not really practical wo HW

* Built on atomic instructions like CAS + clever algorithmic tricks

Lock-free programming

* Subset of a broader class: Non-blocking Synchronization
* Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
* e.g. Lamport’s Concurrent Buffer
* ...but not really practical wo HW

* Built on atomic instructions like CAS + clever algorithmic tricks
* Lock-free algorithms are hard, so

Lock-free programming

* Subset of a broader class: Non-blocking Synchronization
* Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
* e.g. Lamport’s Concurrent Buffer
* ...but not really practical wo HW

* Built on atomic instructions like CAS + clever algorithmic tricks
* Lock-free algorithms are hard, so

* General approach: encapsulate lock-free algorithms in data structures
* Queue, list, hash-table, skip list, etc.
* New LF data structure = research result

Basic List Append

struct Node
{

Basic List Append int data;

struct Node *next;

};

struct Node
{

Basic List Append int data;

struct Node *next;

};

vold append(Node** head ref, int new data) ({
Node* new node = mknode(new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
return;
}
while (last=->next !'= NULL)
last = last=>next;
last=>next = new node;

struct Node
{

Basic List Append int data;

struct Node *next;

};

vold append(Node** head ref, int new data) ({

Node* new node = mknode(new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
return;
}
while (last=->next !'= NULL)
last = last=>next;
last=>next = new node;

}

e |s this thread safe?

struct Node
{

Basic List Append int data;

struct Node *next;

};

vold append(Node** head ref, int new data) ({

Node* new node = mknode(new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
return;
}
while (last=->next !'= NULL)
last = last=>next;
last=>next = new node;

}

* |Is this thread safe?
 What can go wrong?

Example: List Append struct Node

{
int data;

struct Node *next;

};
vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
lock () ;
if (*head ref == NULL) {

*head ref = new node;
} else {

while (last=>next '!'= NULL)

last = last=>next;
last=>next = new node;

}
unlock () ;

Example: List Append struct Node

{
int data;

struct Node *next;

};
vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '!'= NULL)
last = last=>next;
last=>next = new node;

}

< >

Example: List Append struct Node

{
int data;

struct Node *next;

};
vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '!'= NULL)
last = last=>next;
last=>next = new node;

}

< >

Example: List Append struct Node

{
int data;

struct Node *next;

};
vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '!'= NULL)
last = last=>next;
last=>next = new node;

}

Q * What property do the locks enforce?

Example: List Append struct Node

{
int data;

struct Node *next;

};
vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '!'= NULL)
last = last=>next;
last=>next = new node;

}

Q * What property do the locks enforce?

 What does the mutual exclusion ensure?

Example: List Append struct Node

{
int data;

struct Node *next;

};

vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '!'= NULL)
last = last=>next;
last=>next = new node;
}
Q * What property do the locks enforce?
} * What does the mutual exclusion ensure?

e Can we ensure consistent view (invariants hold) sans mutual exclusion?

Example: List Append struct Node

{
int data;
struct Node *next;
};
vold append(Node** head ref, int new data) {
Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '!'= NULL)
last = last=>next;
last=>next = new node;

}

© * What property do the locks enforce?

What does the mutual exclusion ensure?

| —
([]

e Can we ensure consistent view (invariants hold) sans mutual exclusion?

Key insight: allow inconsistent view and fix it up algorithmically

. " st 't Nod
Vclfignmnl(ﬂmldlegjr Annpg}(:l | ruct Node

appen * head r int new data) {
Node* new node = mknode (new data); - data;
new node->next = NULL; uct Node *next;
while (TRUE) {
Node * last = *head ref;
if(last == NULL) {
if (cas(head ref, new node, NULL))
break;
}
while (last->next != NULL)

last = last->next;
if (cas(&last->next, new node, NULL))

break;
2?

} sure?
e Can we ensure consistent view (invariants hold) sans mutual exclusion?

* Key insight: allow inconsistent view and fix it up algorithmically

Example: SP-SC Queue

next(x):

if(x == Q_size-1) return O;

else return x+1;

Q_get(data):
t = Q_tail;
while(t == Q_head)

data = Q_buf[t]:
Q_tail = next(t);

* Single-producer single-consumer
* Why/when does this work?

Q_put(data):
h = Q_head;
while(nhext(h) == Q_tail)

Q_buf[h] = data:
Q_head = next(h);

Example: SP-SC Queue

next(x):

if(x == Q_size-1) return O;

else return x+1;

Q_get(data):
t = Q_tail;
while(t == Q_head)

data = Q_buf[t]:
Q_tail = next(t);

* Single-producer single-consumer
* Why/when does this work?

Q_put(data):
h = Q_head;
while(nhext(h) == Q_tail)

Q_Buf[h] = data;
Q_head = next(h);

Optimistic Synchronization: MP-SC

AddWrap(x,n):
X += n;
if(x >= Qsize) x -= Qsize
return Xx;

SpaceLeft(h):
t = J_tail;
if(h >= t) return t-h-1+Q_size;
else return t-h-1;

Q_put(data,N):
do {
h = Q_head;
hl = AddWrap(h,N);
} while(Spaceleft(h) >= N
&& cas{(Q_head,h,hl) == FAIL);
for(i=0; i<N; i++) {
Q_buf[AddWrap(h,i)] = data[il; . o
Q_flagl[AddWrap(h,i)] = 1; * Where is the “optimism” here?

* Why/when does this work?

Optimistic Synchronization: MP-SC

AddWrap(x,n):
X 4= n;
if(x >= Qsize) x -= (size
return Xx;

SpaceLeft(h):
t = (Q_tail;
if(h >= t) return t-h-1+Q_size;
else return t-h-1;

Q_put (data,N):
do {
h = Q_head;
hi = AddWrap(h,N);
} while(Spaceleft(h) >= N
&& cas(Q_head,h,hl) == FAIL);
for(i=0; i<N; i++) {
Q_buf[AddWrap(h,i)] = datal[i]; . o
Q_flagl AddWrap(h,i) 1 = 1; * Where is the “optimism” here?

* Why/when does this work?

struct Node
{

Lock-Free Stack int data;

struct Node *next;

void push(int t) { };
Node* node = new Node(t);
do {
node=>next = head;

} while ('cas(&head, node, node-=->next)) ;

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current=>data;
return true;

}

current = head;

}

return false;

struct Node
{

Lock-Free Stack int data;

struct Node *next;

void push(int t) { };
Node* node = new Node(t);
do {
node=>next = head;

} while ('cas(&head, node, node-=->next)) ;

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current=>data;
return true;

}

furfent = head; * Why does is it work?

return false;

struct Node
{

Lock-Free Stack int data;

struct Node *next;

void push(int t) { };
Node* node = new Node(t);
do {
node=>next = head;

} while ('cas(&head, node, node-=->next)) ;

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current->data; // problem?
return true;

}

furfent = head; * Why does is it work?

return false;

struct Node
{

Lock-Free Stack int data;

struct Node *next;

void push(int t) { };
Node* node = new Node(t);
do {
node=>next = head;

} while ('cas(&head, node, node-=->next)) ;

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current->data; // problem?
return true;

}

TUHEHt = head; Why does is it work?

return false: * Does it enforce all invariants?

Lock-Free Stack: ABA Problem

read A

from head

store A.next ~somewhere’

cas

with

Thread 2:

pop ()
pops A, discards it
First element becomes B

memory ma

ger recycles
‘A" into new variable

Pop(): pops B

Push (head, A)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem ““aaacmrme e

current = head;

}

return false;

Thread 1: pop() Thread 2:

read A from head

store A.next ~somewhere’ ,\\\‘

pop {}
pops A, discards it
First element becomes B

memory manager recycles
‘A" into new variable

Pop(): pops B

cas with A suceeds dem——Push(head, A)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem ““aaacmrme e

current = head;
}

return false;

Thread 1: pop() Thread 2:

read A from head

store A.next ‘somewhere’ \

pop ()
pops A, discards it
First element becomes B

memory manager recycles
‘A" into new variable

Pop(): pops B

cas with A suceeds dem——Push(head, A)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem ““aaacmrme e

current = head;
}

return false;

Node* pop() {
Node* current = head;
while (current) {

Thread 1: pop() Thread 2

read A from head

store A.next ‘somewhere’ \‘

pop ()
pops A, discards it
First element becomes B

memory manager recycles
‘A" into new variable

Pop(): pops B

cas with A suceeds ‘___——Push(head. A)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem ““aaacmrme e

current = head;
}

return false;

Node* pop() {
Node* current = head;
while (current) {

Node * node = pop();
delete node;

node = new Node (blah blah);
push (node) ;

Thread 2:

pop ()
pops A, discards i
First element becomes

memory manager recycles
At

Pop(): pops B

as Wwith A suceeds fems——=Push (head, A)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem ““aaacmrme e

current = head;
}

return false;

Node* pop() {
Node* current = head;
while (current) {

Node * node = pop();

delete node;

node = new Node (blah blah);
push (node) ;

1f (cas (&head, current->next, current))
return current;
current = head;

Thread 1: pop() Thread 2:
read A from h

} store A.next "~ somewhere’ \‘

pop ()
L]

re urn a Se 4 pops A, discards it

First element becomes
} memory manager recycles

‘A" into 1
Pop(): pops B

as Wwith A suceeds fems——=Push (head, A)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem ““aaacmrme e

current = head;

}

return false;

Node* pop() {
Node* current = head;

Node * node = pop();
delete node;

de (blah blah);

1f (cas (&head, current->next, current))
return current;
current = head;

Thread 1: pop() Thread 2:

read A from head

store A.next ‘somewhere’ \

pop ()

}

return false;

pops A, discards it
First element becomes B

memory manager recycles
‘A" into new variable

Pop(): pops B

cas with A suceeds dem——Push(head, A)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem ““aaacmrme e

current = head;

}

return false;

Node* pop() {
Node* current = head;

whileT

Node * node = pop();
delete node;

de (blah blah);

1f (cas(&head, current->next
return current;
current = head;

Thread 1: pop() Thread 2:
read A from head

store A.next ‘somewhere’ ‘\\\‘

pop ()

}

return false;

pops A, discards it

First element becomes B

memory manager recycles
‘A" into new variable

Pop(): pops B

cas with A suceeds dem——Push(head, A)

Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem ““aaacmrme e

current = head;
}

return false;

Node* pop() {
Node* current = head;

Node * node = pop();
delete node;

de (blah blah);

1f (cas(&head, current->next
return current;

current = head; Fixes? ST R
} * Keep update count > DCAS e e
} return false; * Avoid re-using memory
e Multi-CAS support = HTM

Correctness: Searching a sorted list

« find(20):

14

Correctness: Searching a sorted list

« find(20):

> 10 > 30

14

Correctness: Searching a sorted list
- find(20):

\E (2ol (]
-

Ej T g

14

Correctness: Searching a sorted list

« find(20):

WG

find(20) -> false

Inserting an item with CAS

* insert(20):

15

Inserting an item with CAS

* insert(20):

15

Inserting an item with CAS

* insert(20):

s

F

Inserting an item with CAS

* insert(20):

s

-

=

i

insert(20) —-> true

F

Inserting an item with CAS

16

Inserting an item with CAS

* insert(20):

16

Inserting an item with CAS

* insert(20):

Inserting an item with CAS

s insert(20): e insert(25):

T

H > 10 > 30 > T

-,

Inserting an item with CAS

* insert(20):

-~

- _
-

N
"

* insert(25):

o

Inserting an item with CAS

* insert(20): * insert(25):

s

i

Tl

-

-

Inserting an item with CAS

* insert(20): e insert(25):

s

i

Tl

-

-

Searching and finding together
- find(20)

Searching and finding together
* find(20)

s
N
8
N

F

Searching and finding together
* find(20)

F

Searching and finding together
* find(20)

Searching and finding together
* find(20) * insert(20) -> true

-

s @i ol ——n
20

-

Searching and finding together

« find(20) -> false e insert(20) -> true

-

s @i ol ——n
20

-

Searching and finding together

e find(20) -> false e insert(20) -> true

This thread saw 20 ...but this thread

succeeded in putting

was not in the set... "
itin!

* Is this a correct implementation?

* Should the programmer be surprised if this happens?

* What about more complicated mixes of operations?

17

Correctness criteria

Informally:

Look at the behaviour of the data structure
* what operations are called on it
 whattheirresults are

If behaviour is indistinguishable from atomic calls to a
sequential implementation then the concurrent
implementation is correct.

18

Sequential history

* No overlapping invocations

time

19

Sequential history

* No overlapping invocations

time

19

Sequential history

* No overlapping invocations

(OT)mosul :T|1
-> true

time

10

19

Sequential history

* No overlapping invocations

-> true
-> true

(OT)mosul :T|1

(4 ENVA]

time

10 10, 20

19

Sequential history

* No overlapping invocations

— —
_|

= N =)

> 5 > 5 = “

% = % 5 5| | @

= A =3 A = A

5 > al |

= = time

\ \
10 10, 20 10, 20

19

Sequential history

* No overlapping invocations

-> true
-> true
(ST)puly:TL
-> false

(OT)mosul :T1
(0g)mMasul izl

time

10 10, 20 10, 20

Linearizability: concurrent behaviour should be similar
* even when threads can see intermediate state

* Recall: mutual exclusion precludes overlap 19

Concurrent history

Allow overlapping invocations

insert(10)->true insert(20)->true

Thread 1:

time

Thread 2:

find(20)->false

20

Linearizability:
* Isthere a correct sequential history:

CO ﬂ C U rre ﬂt h IStO ry Same results as the concurrent one

* Consistent with the timing of the
invocations/responses?

Allow overlapping invocations

Start/end impose ordering constraints

insert(10)->true insert(20)->true

Thread 1:

time

Thread 2:

find(20)->false

20

Linearizability:
* Isthere a correct sequential history:

CO ﬂ C U rre ﬂt h IStO ry Same results as the concurrent one

* Consistent with the timing of the
invocations/responses?

Allow overlapping invocations

Start/end impose ordering constraints

insert(10)->true insert(20)->true Why is this one OK?

Thread 1:

time

Thread 2:

find(20)->false

20

Linearizability:
* Isthere a correct sequential history:

CO ﬂ C U r re ﬂt h IStO ry * Same results as the concurrent one

* Consistent with the timing of the
invocations/responses?

Allow overlapping invocations

Start/end impose ordering constraints

. _> 1 -S>
insert(10)->true insert(20)->true Why is this one OK?
P
Thread 1:
time

. Total Order:

Thread 2. 1. Insert(10)
\ 2. Find(20)

find(20)->false 3. Insert(20)

* |s consistent with real-time order
e 2,3 overlap, but return order OK

20

Example: linearizable

insert(10)->true insert(20)->true

N

Thread 1:

time

Thread 2:

find(20)->false

21

Example: linearizable

Thread 1:

insert(10)->true insert(20)->true

time

Thread 2:

find(22))->false

N

A valid sequential history:

this concurrent execution
is OK
Note: linearization point

21

Example: not linearizable

insert(10)->true insert(10)->false

N

Thread 1:

time

Thread 2:

delete(10)->true

22

Example: not linearizable

insert(10)->true insert(10)->false

Thread 1:

Why is this one NOT OK?
time

g

Thread 2:

delete(10)->true

22

Example: not linearizable

insert(10)->true insert(10)->false
|
Thread 1: o
Why is this one NOT OK?
time
Note: return values are meaningful!
Thread 2: Linearizable = consistent with return values

delete(10)->true

22

Example: not linearizable

insert(10)->true insert(10)->false

Thread 1: o
Why is this one NOT OK?
time

y y -

7

Note: return values are meaningful!
Thread 2: Linearizable = consistent with return values

4

Possible Total Orders
delete(10)->true 1. Insert(10) 1. Delete(10)

2. Delete(10) 2. Insert(10)

3. Insert(10) 3. Insert(10)
* Both consistent with real-time order
1,2 overlap, but 3 doesn’t

22

Example: not linearizable

Thread 1:

insert(10)->true

insert(10)->false

Why is this one NOT OK?
time

N
e

Thread 2:

delete(10)->true

Note: return values are meaningful!
Linearizable = consistent with return values

Possible Total Orders

1. Insert(10) 1. Delete(10)

2. Delete(10) 2. Insert(10)

3. Insert(10) 3. Insert(10)

* Both consistent with real-time order
1,2 overlap, but 3 doesn’t

How can things like this happen?

Example Revisited
- find(20)

Thread 1:

> 30

Thread 2:

23

Example Revisited
- find(20)

> 10

Thread 1: l

Thread 2:

23

Example Revisited
- find(20)

AR

Thread 1: l

Thread 2:

23

Example Revisited

* find(20)
s >10 =
Thread 1: l

Thread 2:

23

Example Revisited

* find(20) e insert(20) -> true
" - C{ 0 - i@j
i
Thread 1: l
Thread 2: 1

! insert(20)->true

23

Example Revisited

 find(20) _s false insert(20) -> true

A

find(20)->false

e

Thread 1:
Thread 2: T l insert(20)->true

23

Example Revisited

 find(20) _s false insert(20) -> true

T I o @

L ’Tj

A valid sequential history:

20 this concurrent execution
is OK because a

linearization point exists

Thread 1: T | find(20)->false

Thread 2: ! i$sert(20)—>true

23

Example Revisited

« find(20) _s f3lse insert(20) -> true

Thread 1: T l
Thread 2:

Formal Properties

Formal Properties

 Wait-free

Formal Properties

 Wait-free

* A thread finishes its own operation if it continues executing steps

Formal Properties

* Wait-free
* A thread finishes its own operation if it continues executing steps
e Strong: everyone eventually finishes

Formal Properties

* Wait-free
* A thread finishes its own operation if it continues executing steps
e Strong: everyone eventually finishes

e Lock-free

Formal Properties

* Wait-free
* A thread finishes its own operation if it continues executing steps
e Strong: everyone eventually finishes

* Lock-free
 Some thread finishes its operation if threads continue taking steps

Formal Properties

* Wait-free
* A thread finishes its own operation if it continues executing steps
e Strong: everyone eventually finishes

e Lock-free

 Some thread finishes its operation if threads continue taking steps
 Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

Formal Properties

* Wait-free
* A thread finishes its own operation if it continues executing steps
e Strong: everyone eventually finishes

e Lock-free

 Some thread finishes its operation if threads continue taking steps
 Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

e Obstruction-free

Formal Properties

* Wait-free
* A thread finishes its own operation if it continues executing steps
e Strong: everyone eventually finishes

e Lock-free

 Some thread finishes its operation if threads continue taking steps
 Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

* Obstruction-free
* A thread finishes its own operation if it runs in isolation

Formal Properties

* Wait-free
* A thread finishes its own operation if it continues executing steps
e Strong: everyone eventually finishes

e Lock-free

 Some thread finishes its operation if threads continue taking steps
 Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

e Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes

Wait-free

* A thread finishes its own operation if it continues executing steps

29

Wait-free

* A thread finishes its own operation if it continues executing steps

1ElS
1elS

time

ystui4

ysiui4

ysiuid
VRIS

29

Lock-free

* Some thread finishes its operation if threads continue taking steps

30

Lock-free

* Some thread finishes its operation if threads continue taking steps

1elS
1elS
1ElS
1elS

time

ysiui4
ysiui4
ysiui4

30

Lock-free

* Some thread finishes its operation if threads continue taking steps

1elS
1elS
1ElS
1elS

time

ysiui4
ysiui4
ysiui4

 Red never finishes

* Orange does
 Still lock-free .

Obstruction-free

Obstruction-free

* A thread finishes its own operation if it runs in isolation

31

Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Meaning, if you de-schedule contenders

31

Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Meaning, if you de-schedule contenders

Mels
1elS

time

ystui4

Interference here can prevent

any operation finishing v

31

Formal Properties

* Wait-free
* A thread finishes its own operation if it continues executing steps
e Strong: everyone eventually finishes

e Lock-free

 Some thread finishes its operation if threads continue taking steps
 Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

e Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes

Blocking
1. Blocking

. S
Formal Properties 2 G B :
Obstruction-Free r
3. Obstruction-Free o
- Lock-Free n
* Wait-free 4. Lock-Free (LF) o
* Athread finishes its own operation if it continue Wait-Free e
* Strong: everyone eventually finishes 5. Wait-Free (WF) r
6. Wait-Free Bounded (WFB)
e Lock-free 7. Wait-Free Population Oblivious (WFPO)

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

e Obstruction-free

* Athread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes

Blocking
1. Blocking

. S
Formal Properties O e ;
Obstruction-Free r
3. Obstruction-Free o
. Lock-Free n
* Wait-free 4. Lock-Free (LF) o
* Athread finishes its own operation if it continue Wait-Free e
* Strong: everyone eventually finishes 5. Wait-Free (WF) r
6. Wait-Free Bounded (WFB)
e Lock-free 7. Wait-Free Population Oblivious (WFPO)

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, li\

e Obstruction-free

* Athread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes

Wait-Free

‘ Population '
Oblivious

Linearizability Properties

33

Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

. local property:
* a system is linearizable iff each individual object is linearizable.
* gives us composability.

Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

. local property:
* asystemis linearizable iff each individual object is linearizable.
* gives us composability.

* Why is it important?
* Serializability is not composable.

Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

. local property:
* asystemis linearizable iff each individual object is linearizable.
* gives us composability.

* Why is it important?
* Serializability is not composable.

Huh? Composable?

Composability

Composability

T * list::remove (Obj key) {
LOCK (this) ;
tmp = do remove (key) ;
UNLOCK (this) ;
return tmp;

Composability

T * list::remove (Obj key) {
LOCK (this) ;
tmp = _ do remove (key) ;
UNLOCK (this) ;
return tmp;

}

void list::insert(Obj key, T * wval) {
LOCK (this) ;
__do_insert (key, val);
UNLOCK (this) ;

Composability

void move (list s, list d, Obj key) {

T * list::remove (Obj key) { tmp = s.remove (key) ;
LOCK (this) ; d.insert (key, tmp);
tmp = do remove (key) ; }

UNLOCK (this) ;
return tmp;

}

void list::insert(Obj key, T * wval) {
LOCK (this) ;
__do_insert (key, val);
UNLOCK (this) ;

Composability

Thread-safe?

void move (list s, list d, Obj key) {

T * list::remove (Obj key) { tmp = s.remove (key) ;
LOCK (this) ; d.insert (key, tmp);
tmp = do_ remove (key) ; }

UNLOCK (this) ;
return tmp;

}

void list::insert(Obj key, T * wval) {
LOCK (this) ;
__do_insert (key, val);
UNLOCK (this) ;

}

Composability

T * list::remove (Obj key) {

LOCK (this) ;
tmp = __d?_;emove(key); void move (list s, list d, Obj key) {
UNLOCK (this) ; LOCK (s) ;
return tmp; LOCK (d) ;
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do_insert (key, val); UNLOCK (s) ;

UNLOCK (this) ; }

Composability

T * list::remove (Obj key) {

LOCK (this) ;
tUEEOEKﬁgi;;:e.move(key); void move(list s, list d, Obj key) {
! LOCK (s) ;
return tmp; LOCK (d) ;
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do_insert (key, val); UNLOCK (s) ;
UNLOCK (this) ; }

}

* Lock-based code doesn’t compose

Composability

T * list::remove (Obj key) {

LOCK (this) ;
tUEEOzKﬁgz;;:e.move(key); void move(list s, list d, Obj key) {
! LOCK (s) ;
return tmp; LOCK (d) ;
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do_insert (key, val); UNLOCK (s) ;
UNLOCK (this) ; }

}

* Lock-based code doesn’t compose
* If list were a linearizable concurrent data structure, composition OK

Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

* local property:
* asystem is linearizable iff each individual object is linearizable.
e gives us composability.

* Why is it important?
* Serializability is not composable.

* Core hypotheses:
 structuring all as concurrent objects buys composability
e structuring all as concurrent objects is tractable/possible

Practical difficulties:

* Key-value mapping

* Population count

* |teration

* Resizing the bucket array

36

Practical difficulties:

* Key-value m
* Population ¢
* |teration

* Resizing the

36

Practical difficulties:

* Key-value mz

. PopUIatlon)
e |teration (e.g., non-exact count, or non-linearizable count)

* Resizing the |

36

Practical difficulties:

* Key-value mz
* Population cc
* |teration
* Resizing the |

Relax the semantics

(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

36

Practical difficulties:

e Key-value mz
* Population cc
* |teration

* Resizing the |

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

36

Practical difficulties:

e Key-value mz
* Population cc
* |teration

* Resizing the |

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

36

