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Review: Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2 Wb P2 Wb

P3: R{x)b R(x)a P3: R(x)b R(x)a

P4; RX)b R(x)a P4. RixJa R(x)b
* Why is this weaker than strict/strong? ) ()

* Nothing is said about “most recent write”
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Review: Causal consistencyv

Causal:

e Causally related writes seer If @ write produces a value that

* Causally? causes another write, they are causally related

X=1
if(X > 0) {
Y=1

}

Causal consistency =2 all see X=1, Y=1 in same order
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Review: Linearizability

* Assumes sequential consistency and
e If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
e Stronger than sequential consistency
* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

*Example:
*Stay tuned...relevant for lock free data structures
*Importantly: a property of concurrent objects
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Lock-free programming

* Subset of a broader class: Non-blocking Synchronization
* Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
* e.g. Lamport’s Concurrent Buffer
* ...but not really practical wo HW

* Built on atomic instructions like CAS + clever algorithmic tricks
* Lock-free algorithms are hard, so

* General approach: encapsulate lock-free algorithms in data structures
* Queue, list, hash-table, skip list, etc.
* New LF data structure = research result
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struct Node
{

Basic List Append int data;

struct Node *next;

};

vold append(Node** head ref, int new data) ({

Node* new node = mknode(new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
return;
}
while (last=->next !'= NULL)
last = last=>next;
last=>next = new node;

}

* |Is this thread safe?
 What can go wrong?



Example: List Append struct Node

{
int data;

struct Node *next;

};
vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
lock () ;
if (*head ref == NULL) {

*head ref = new node;
} else {

while (last=>next '!'= NULL)

last = last=>next;
last=>next = new node;

}
unlock () ;
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Example: List Append struct Node

{
int data;
struct Node *next;
};
vold append(Node** head ref, int new data) {
Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next '!'= NULL)
last = last=>next;
last=>next = new node;

}

© * What property do the locks enforce?

What does the mutual exclusion ensure?

| —
([ ]

e Can we ensure consistent view (invariants hold) sans mutual exclusion?

Key insight: allow inconsistent view and fix it up algorithmically



. " st 't Nod
Vclfignmnl(ﬂmldlegjr Annpg}(:l | ruct Node

appen * head r int new data) {
Node* new node = mknode (new data); - data;
new node->next = NULL; uct Node *next;
while (TRUE) {
Node * last = *head ref;
if(last == NULL) {
if (cas(head ref, new node, NULL))
break;
}
while (last->next != NULL)

last = last->next;
if (cas(&last->next, new node, NULL))

break;
2?

} sure?
e Can we ensure consistent view (invariants hold) sans mutual exclusion?

* Key insight: allow inconsistent view and fix it up algorithmically



Example: SP-SC Queue

next(x):

if(x == Q_size-1) return O;

else return x+1;

Q_get(data):
t = Q_tail;
while(t == Q_head)

data = Q_buf[t]:
Q_tail = next(t);

* Single-producer single-consumer
* Why/when does this work?

Q_put(data):
h = Q_head;
while(nhext(h) == Q_tail)

Q_buf[h] = data:
Q_head = next(h);



Example: SP-SC Queue

next(x):

if(x == Q_size-1) return O;

else return x+1;

Q_get(data):
t = Q_tail;
while(t == Q_head)

data = Q_buf[t]:
Q_tail = next(t);

* Single-producer single-consumer
* Why/when does this work?

Q_put(data):
h = Q_head;
while(nhext(h) == Q_tail)

Q_Buf[h] = data;
Q_head = next(h);




Optimistic Synchronization: MP-SC

AddWrap(x,n):
X += n;
if(x >= Qsize) x -= Qsize
return Xx;

SpaceLeft(h):
t = J_tail;
if(h >= t) return t-h-1+Q_size;
else return t-h-1;

Q_put(data,N):
do {
h = Q_head;
hl = AddWrap(h,N);
} while(Spaceleft(h) >= N
&& cas{(Q_head,h,hl) == FAIL);
for(i=0; i<N; i++) {
Q_buf[ AddWrap(h,i) ] = data[il; . o
Q_flagl[ AddWrap(h,i) ] = 1; * Where is the “optimism” here?

* Why/when does this work?



Optimistic Synchronization: MP-SC

AddWrap(x,n):
X 4= n;
if(x >= Qsize) x -= (size
return Xx;

SpaceLeft(h):
t = (Q_tail;
if(h >= t) return t-h-1+Q_size;
else return t-h-1;

Q_put (data,N):
do {
h = Q_head;
hi = AddWrap(h,N);
} while(Spaceleft(h) >= N
&& cas(Q_head,h,hl) == FAIL);
for(i=0; i<N; i++) {
Q_buf[ AddWrap(h,i) ] = datal[i]; . o
Q_flagl AddWrap(h,i) 1 = 1; * Where is the “optimism” here?

* Why/when does this work?



struct Node
{

Lock-Free Stack int data;

struct Node *next;

void push(int t) { };
Node* node = new Node(t);
do {
node=>next = head;

} while ('cas(&head, node, node-=->next)) ;

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current=>data;
return true;

}

current = head;

}

return false;
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struct Node
{

Lock-Free Stack int data;

struct Node *next;

void push(int t) { };
Node* node = new Node(t);
do {
node=>next = head;

} while ('cas(&head, node, node-=->next)) ;

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current->data; // problem?
return true;

}

TUHEHt = head;  Why does is it work?

return false: * Does it enforce all invariants?



Lock-Free Stack: ABA Problem
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Thread 2:
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First element becomes B
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Push (head, A)
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while (current) {
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}

return false;
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Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem  ““aaacmrme e

current = head;
}

return false;

Node* pop() {
Node* current = head;
while (current) {

Node * node = pop();

delete node;

node = new Node (blah blah);
push (node) ;

1f (cas (&head, current->next, current))
return current;
current = head;

Thread 1: pop() Thread 2:
read A from h

} store A.next "~ somewhere’ \‘

pop ()
L]
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current = head;

}

return false;

Node* pop() {
Node* current = head;

Node * node = pop();
delete node;

de (blah blah);

1f (cas (&head, current->next, current))
return current;
current = head;

Thread 1: pop() Thread 2:
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store A.next ‘somewhere’ \

pop ()

}
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Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem  ““aaacmrme e

current = head;

}

return false;

Node* pop() {
Node* current = head;

whileT

Node * node = pop();
delete node;

de (blah blah);

1f (cas(&head, current->next
return current;
current = head;

Thread 1: pop() Thread 2:
read A from head

store A.next ‘somewhere’ ‘\\\‘

pop ()

}

return false;

pops A, discards it

First element becomes B

memory manager recycles
‘A" into new variable

Pop(): pops B

cas with A suceeds dem——Push(head, A)



Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem  ““aaacmrme e

current = head;
}

return false;

Node* pop() {
Node* current = head;

Node * node = pop();
delete node;

de (blah blah);

1f (cas(&head, current->next
return current;

current = head; Fixes? ST R
} * Keep update count > DCAS e e
} return false; * Avoid re-using memory
e Multi-CAS support = HTM
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Correctness: Searching a sorted list

« find(20):

WG

find(20) -> false
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Inserting an item with CAS

* insert(20):

s

-

=

i

insert(20) —-> true
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Searching and finding together
* find(20) * insert(20) -> true
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Searching and finding together

« find(20) -> false e insert(20) -> true

-

s @i ol ——n
20

-




Searching and finding together

e find(20) -> false e insert(20) -> true

This thread saw 20 ...but this thread

succeeded in putting

was not in the set... "
itin!

* Is this a correct implementation?

* Should the programmer be surprised if this happens?

* What about more complicated mixes of operations?

17



Correctness criteria

Informally:

Look at the behaviour of the data structure
* what operations are called on it
 whattheirresults are

If behaviour is indistinguishable from atomic calls to a
sequential implementation then the concurrent
implementation is correct.

18
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Sequential history

* No overlapping invocations

— —
_|

= N = )

> 5 > 5 = “

% = % 5 5| | @

= A =3 A = A

5 > al |

= = time

\ \
10 10, 20 10, 20
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Sequential history

* No overlapping invocations

-> true
-> true
(ST)puly:TL
-> false

(OT)mosul :T1
(0g)mMasul izl

time

10 10, 20 10, 20

Linearizability: concurrent behaviour should be similar
* even when threads can see intermediate state

* Recall: mutual exclusion precludes overlap 19



Concurrent history

Allow overlapping invocations

insert(10)->true insert(20)->true

Thread 1:

time

Thread 2:

find(20)->false

20



Linearizability:
* Isthere a correct sequential history:

CO ﬂ C U rre ﬂt h IStO ry  Same results as the concurrent one

* Consistent with the timing of the
invocations/responses?

Allow overlapping invocations

Start/end impose ordering constraints
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Thread 1:

time

Thread 2:
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Linearizability:
* Isthere a correct sequential history:

CO ﬂ C U r re ﬂt h IStO ry * Same results as the concurrent one

* Consistent with the timing of the
invocations/responses?

Allow overlapping invocations

Start/end impose ordering constraints

. _> 1 -S>
insert(10)->true insert(20)->true Why is this one OK?
P
Thread 1:
time

. Total Order:

Thread 2. 1. Insert(10)
\ 2. Find(20)

find(20)->false 3. Insert(20)

* |s consistent with real-time order
e 2,3 overlap, but return order OK

20



Example: linearizable

insert(10)->true insert(20)->true

N

Thread 1:

time

Thread 2:

find(20)->false

21



Example: linearizable

Thread 1:

insert(10)->true insert(20)->true

time

Thread 2:

find(22))->false

N

A valid sequential history:

this concurrent execution
is OK
Note: linearization point

21



Example: not linearizable

insert(10)->true insert(10)->false

N

Thread 1:

time

Thread 2:

delete(10)->true
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insert(10)->true insert(10)->false

Thread 1:

Why is this one NOT OK?
time

g

Thread 2:

delete(10)->true
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Example: not linearizable

insert(10)->true insert(10)->false
|
Thread 1: o
Why is this one NOT OK?
time
Note: return values are meaningful!
Thread 2: Linearizable = consistent with return values

delete(10)->true
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Example: not linearizable

insert(10)->true insert(10)->false

Thread 1: o
Why is this one NOT OK?
time

y y -

7

Note: return values are meaningful!
Thread 2: Linearizable = consistent with return values

4

Possible Total Orders
delete(10)->true 1. Insert(10) 1. Delete(10)

2. Delete(10) 2. Insert(10)

3. Insert(10) 3. Insert(10)
* Both consistent with real-time order
1,2 overlap, but 3 doesn’t
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Example: not linearizable

Thread 1:

insert(10)->true

insert(10)->false

Why is this one NOT OK?
time

N
e

Thread 2:

delete(10)->true

Note: return values are meaningful!
Linearizable = consistent with return values

Possible Total Orders

1. Insert(10) 1. Delete(10)

2. Delete(10) 2. Insert(10)

3. Insert(10) 3. Insert(10)

* Both consistent with real-time order
1,2 overlap, but 3 doesn’t

How can things like this happen?
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* find(20) e insert(20) -> true
" - C{ 0 - i@j
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Example Revisited

 find(20) _s false  insert(20) -> true

A

find(20)->false

e

Thread 1:
Thread 2: T l insert(20)->true
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Example Revisited

 find(20) _s false  insert(20) -> true

T I o @

L ’Tj

A valid sequential history:

20 this concurrent execution
is OK because a

linearization point exists

Thread 1: T | find(20)->false

Thread 2: ! i$sert(20)—>true

23



Example Revisited

« find(20) _s f3lse  insert(20) -> true

Thread 1: T l
Thread 2:
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Wait-free

* A thread finishes its own operation if it continues executing steps

1ElS
1elS

time

ystui4

ysiui4

ysiuid
VRIS
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Lock-free

* Some thread finishes its operation if threads continue taking steps

1elS
1elS
1ElS
1elS

time

ysiui4
ysiui4
ysiui4

 Red never finishes

* Orange does
 Still lock-free .
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Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Meaning, if you de-schedule contenders

Mels
1elS

time

ystui4

Interference here can prevent

any operation finishing v
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Blocking
1. Blocking

. S
Formal Properties O e ;
Obstruction-Free r
3. Obstruction-Free o
. Lock-Free n
* Wait-free 4. Lock-Free (LF) o
* Athread finishes its own operation if it continue Wait-Free e
* Strong: everyone eventually finishes 5. Wait-Free (WF) r
6. Wait-Free Bounded (WFB)
e Lock-free 7. Wait-Free Population Oblivious (WFPO)

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, li\

e Obstruction-free

* Athread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes

Wait-Free

‘ Population '
Oblivious
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Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

. local property:
* asystemis linearizable iff each individual object is linearizable.
* gives us composability.

* Why is it important?
* Serializability is not composable.

Huh? Composable?
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Composability

void move (list s, list d, Obj key) {

T * list::remove (Obj key) { tmp = s.remove (key) ;
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tmp = do remove (key) ; }

UNLOCK (this) ;
return tmp;

}

void list::insert(Obj key, T * wval) {
LOCK (this) ;
__do_insert (key, val);
UNLOCK (this) ;



Composability

Thread-safe?

void move (list s, list d, Obj key) {

T * list::remove (Obj key) { tmp = s.remove (key) ;
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tmp = do_ remove (key) ; }

UNLOCK (this) ;
return tmp;

}

void list::insert(Obj key, T * wval) {
LOCK (this) ;
__do_insert (key, val);
UNLOCK (this) ;
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Composability

T * list::remove (Obj key) {

LOCK (this) ;
tmp = __d?_;emove(key); void move (list s, list d, Obj key) {
UNLOCK (this) ; LOCK (s) ;
return tmp; LOCK (d) ;
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
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__do_insert (key, val); UNLOCK (s) ;

UNLOCK (this) ; }
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T * list::remove (Obj key) {

LOCK (this) ;
tUEEOEKﬁgi;;:e.move(key); void move(list s, list d, Obj key) {
! LOCK (s) ;
return tmp; LOCK (d) ;
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
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UNLOCK (this) ; }

}
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Composability

T * list::remove (Obj key) {

LOCK (this) ;
tUEEOzKﬁgz;;:e.move(key); void move(list s, list d, Obj key) {
! LOCK (s) ;
return tmp; LOCK (d) ;
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do_insert (key, val); UNLOCK (s) ;
UNLOCK (this) ; }

}

* Lock-based code doesn’t compose
* If list were a linearizable concurrent data structure, composition OK



Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

* local property:
* asystem is linearizable iff each individual object is linearizable.
e gives us composability.

* Why is it important?
* Serializability is not composable.

* Core hypotheses:
 structuring all as concurrent objects buys composability
e structuring all as concurrent objects is tractable/possible
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* Key-value mapping

* Population count

* |teration

* Resizing the bucket array
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Practical difficulties:

e Key-value mz
* Population cc
* |teration

* Resizing the |

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

36



