
cs378h

Fast Parallel Programming: Lock Freedom

Today

Questions?

Administrivia

• Project presentations?

Agenda:

• Lock Freedom

Review: Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

Review: Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

Review: Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

• Nothing is said about “most recent write”

Review: Causal consistency

Review: Causal consistency

• Causally related writes seen by all processes in same order.

Review: Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

Review: Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

Causal:
If a write produces a value that
causes another write, they are causally related

X = 1
if(X > 0) {

Y = 1
}
Causal consistency → all see X=1, Y=1 in same order

Review: Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

Review: Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Review: Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Review: Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Not permitted

Review: Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Not permitted

Review: Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Not permitted
Permitted

Review: Linearizability

Review: Linearizability

• Assumes sequential consistency and
• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence

• Stronger than sequential consistency

• Difference between linearizability and serializability?

• Granularity: reads/writes versus transactions

Review: Linearizability

• Assumes sequential consistency and
• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence

• Stronger than sequential consistency

• Difference between linearizability and serializability?

• Granularity: reads/writes versus transactions

•Example:
•Stay tuned…relevant for lock free data structures

•Importantly: a property of concurrent objects

Non-Blocking Synchronization

Non-Blocking Synchronization

Locks: a litany of problems

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Solution: don’t use locks

Non-Blocking Synchronization

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Lock-free programming

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

• Thread-safe access shared mutable state without mutual exclusion

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

• Thread-safe access shared mutable state without mutual exclusion

• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

• Thread-safe access shared mutable state without mutual exclusion

• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

• Thread-safe access shared mutable state without mutual exclusion

• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks

• Lock-free algorithms are hard, so

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization

• Thread-safe access shared mutable state without mutual exclusion

• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks

• Lock-free algorithms are hard, so

• General approach: encapsulate lock-free algorithms in data structures
• Queue, list, hash-table, skip list, etc.
• New LF data structure → research result

Basic List Append

Basic List Append

Basic List Append

Basic List Append

• Is this thread safe?

Basic List Append

• Is this thread safe?

• What can go wrong?

Example: List Append

Example: List Append

Example: List Append

Example: List Append

• What property do the locks enforce?

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically

Example: SP-SC Queue

• Single-producer single-consumer

• Why/when does this work?

next(x):
if(x == Q_size-1) return 0;
else return x+1;

Q_get(data): Q_put(data):
t = Q_tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
; ;

data = Q_buf[t]; Q_buf[h] = data;
Q_tail = next(t); Q_head = next(h);

Example: SP-SC Queue

• Single-producer single-consumer

• Why/when does this work?

next(x):
if(x == Q_size-1) return 0;
else return x+1;

Q_get(data): Q_put(data):
t = Q_tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
; ;

data = Q_buf[t]; Q_buf[h] = data;
Q_tail = next(t); Q_head = next(h);

1. Q_head is last write in Q_put, so Q_get
never gets “ahead”.

2. *single* p,c only (as advertised)
3. Requires fence before setting Q head
4. Devil in the details of “wait”
5. No lock → “optimistic”

Optimistic Synchronization: MP-SC

• Where is the “optimism” here?

• Why/when does this work?

Optimistic Synchronization: MP-SC

• Where is the “optimism” here?

• Why/when does this work?

1. CAS used to reserve space
2. Q_flags is last write in Q_put, acting as

atomic commit
3. *single* c only
4. Requires fence between Q_buf and Q_flag

set
5. We don’t get to see Q_get code

Lock-Free Stack

Lock-Free Stack

• Why does is it work?

Lock-Free Stack

• Why does is it work?

Lock-Free Stack

• Why does is it work?

• Does it enforce all invariants?

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Lock-Free Stack: ABA Problem

Fixes?
• Keep update count → DCAS
• Avoid re-using memory
• Multi-CAS support → HTM

Correctness: Searching a sorted list

•

H 10 30 T

14

Correctness: Searching a sorted list

•

H 10 30 T

20?

14

Correctness: Searching a sorted list

•

H 10 30 T

20?

14

Correctness: Searching a sorted list

•

H 10 30 T

20?

14

Inserting an item with CAS

•

H 10 30 T

15

Inserting an item with CAS

•

H 10 30 T

20

15

Inserting an item with CAS

•

H 10 30 T

20

30 → 20

15

Inserting an item with CAS

•

H 10 30 T

20

30 → 20
✓

15

Inserting an item with CAS

H 10 30 T

16

Inserting an item with CAS

•

H 10 30 T

20

16

Inserting an item with CAS

•

H 10 30 T

20

30 → 20

16

Inserting an item with CAS

•

H 10 30 T

20

30 → 20

25

•

16

Inserting an item with CAS

•

H 10 30 T

20

30 → 20

25

30 → 25

•

16

Inserting an item with CAS

•

H 10 30 T

20

30 → 20

25

30 → 25

✓

•

16

Inserting an item with CAS

•

H 10 30 T

20

30 → 20

25

30 → 25

✓



•

16

Searching and finding together
•

H 10 30 T

17

Searching and finding together
•

H 10 30 T

20?

17

Searching and finding together
•

H 10 30 T

20?

17

Searching and finding together
•

H 10 30 T

20?

17

Searching and finding together
•

H 10 30 T

20

20?

•

17

Searching and finding together
•

H 10 30 T

20

20?

•

17

Searching and finding together
• •

This thread saw 20
was not in the set...

...but this thread
succeeded in putting

it in!

• Is this a correct implementation?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of operations?

17

Correctness criteria

18

Informally:

Look at the behaviour of the data structure

• what operations are called on it

• what their results are

If behaviour is indistinguishable from atomic calls to a
sequential implementation then the concurrent
implementation is correct.

Sequential history

time

• No overlapping invocations

19

Sequential history

time

• No overlapping invocations

19

Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

• No overlapping invocations

10

19

Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

T2
: in

sert(2
0

)

->
 t

ru
e

• No overlapping invocations

10 10, 20

19

Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

T2
: in

sert(2
0

)

->
 t

ru
e

T1
: fin

d
(1

5
)

->
 f

al
se

• No overlapping invocations

10 10, 20 10, 20

19

Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

T2
: in

sert(2
0

)

->
 t

ru
e

T1
: fin

d
(1

5
)

->
 f

al
se

• No overlapping invocations

10 10, 20 10, 20

19

Linearizability: concurrent behaviour should be similar

• even when threads can see intermediate state

• Recall: mutual exclusion precludes overlap

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

20

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

20

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the
invocations/responses?

• Start/end impose ordering constraints

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

20

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the
invocations/responses?

• Start/end impose ordering constraints

Why is this one OK?

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

20

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the
invocations/responses?

• Start/end impose ordering constraints

Total Order:
1. Insert(10)
2. Find(20)
3. Insert(20)
• Is consistent with real-time order
• 2, 3 overlap, but return order OK

Why is this one OK?

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

21

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false
A valid sequential history:
this concurrent execution

is OK
Note: linearization point

21

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

22

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

22

Why is this one NOT OK?

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

22

Why is this one NOT OK?

Note: return values are meaningful!
Linearizable → consistent with return values

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

22

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)

Note: return values are meaningful!
Linearizable → consistent with return values

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

22

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)

How can things like this happen?

Note: return values are meaningful!
Linearizable → consistent with return values

Example Revisited

•

H 10 30 T

Thread 2:

Thread 1:

23

Example Revisited

•

H 10 30 T

20?

Thread 2:

Thread 1:

23

Example Revisited

•

H 10 30 T

20?

Thread 2:

Thread 1:

23

Example Revisited

•

H 10 30 T

20?

Thread 2:

Thread 1:

23

Example Revisited

•

H 10 30 T

20

20?

•

Thread 2:

Thread 1:

insert(20)->true

23

Example Revisited

•

H 10 30 T

20

20?

•

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

23

Example Revisited

•

H 10 30 T

20

20?

•

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history:
this concurrent execution

is OK because a
linearization point exists

23

Example Revisited

•

H 10 30 T

20

20?

•

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history:
this concurrent execution

is OK because a
linearization point exists

23

Recurring Techniques:

• For updates
• Perform an essential step of an

operation by a single atomic
instruction

• E.g. CAS to insert an item into a list
• This forms a “linearization point”

• For reads
• Identify a point during the operation’s

execution when the result is valid
• Not always a specific instruction

Formal Properties

Formal Properties

• Wait-free

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Very weak. Means if you remove contention, someone finishes

Wait-free

• A thread finishes its own operation if it continues executing steps

29

Wait-free

• A thread finishes its own operation if it continues executing steps

29

time

Start

Fin
ish

Fin
ish

Start

Fin
ish

Start

Lock-free

• Some thread finishes its operation if threads continue taking steps

30

Lock-free

• Some thread finishes its operation if threads continue taking steps

time

Start

Start

Fin
ish

Fin
ish

Start

Start

Fin
ish

30

Lock-free

• Some thread finishes its operation if threads continue taking steps

time

Start

Start

Fin
ish

Fin
ish

Start

Start

Fin
ish

30

• Red never finishes
• Orange does
• Still lock-free

Obstruction-free

31

Obstruction-free
• A thread finishes its own operation if it runs in isolation

31

Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Meaning, if you de-schedule contenders

31

Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Meaning, if you de-schedule contenders

time

Start

Start

Fin
ishInterference here can prevent

any operation finishing

31

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Very weak. Means if you remove contention, someone finishes

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Very weak. Means if you remove contention, someone finishes

Blocking

1. Blocking
2. Starvation-Free

Obstruction-Free

3. Obstruction-Free

Lock-Free

4. Lock-Free (LF)

Wait-Free

5. Wait-Free (WF)
6. Wait-Free Bounded (WFB)

7. Wait-Free Population Oblivious (WFPO)

s
t
r
o
n
g
e
r

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps

• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps

• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation

• Very weak. Means if you remove contention, someone finishes

Blocking

1. Blocking
2. Starvation-Free

Obstruction-Free

3. Obstruction-Free

Lock-Free

4. Lock-Free (LF)

Wait-Free

5. Wait-Free (WF)
6. Wait-Free Bounded (WFB)

7. Wait-Free Population Oblivious (WFPO)

s
t
r
o
n
g
e
r

Linearizability Properties

33

• non-blocking
• one method is never forced to wait to sync with another.

Linearizability Properties

33

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.

• gives us composability.

•

Linearizability Properties

33

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.

• gives us composability.

• Why is it important?
• Serializability is not composable.

Linearizability Properties

33

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.

• gives us composability.

• Why is it important?
• Serializability is not composable.

Linearizability Properties

33

Huh? Composable?

Composability

Composability

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

Composability

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

Composability

void move(list s, list d, Obj key){

tmp = s.remove(key);

d.insert(key, tmp);

}

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

Composability

void move(list s, list d, Obj key){

tmp = s.remove(key);

d.insert(key, tmp);

}

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

Thread-safe?

Composability

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

void move(list s, list d, Obj key){

LOCK(s);

LOCK(d);

tmp = s.remove(key);

d.insert(key, tmp);

UNLOCK(d);

UNLOCK(s);

}

Composability

• Lock-based code doesn’t compose

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

void move(list s, list d, Obj key){

LOCK(s);

LOCK(d);

tmp = s.remove(key);

d.insert(key, tmp);

UNLOCK(d);

UNLOCK(s);

}

Composability

• Lock-based code doesn’t compose

• If list were a linearizable concurrent data structure, composition OK

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

void move(list s, list d, Obj key){

LOCK(s);

LOCK(d);

tmp = s.remove(key);

d.insert(key, tmp);

UNLOCK(d);

UNLOCK(s);

}

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.

• gives us composability.

• Why is it important?
• Serializability is not composable.

• Core hypotheses:
• structuring all as concurrent objects buys composability

• structuring all as concurrent objects is tractable/possible

Linearizability Properties

35

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

36

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

36

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

36

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

36

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

36

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

36

