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Pro Forma

Questions?

* Administrivia:
* Course/Instructor Survey :

* Projects going OK?

* Agenda
* Non-blocking Sync wrap-up
* Race Detection

* Acknowledgements:


https://utdirect.utexas.edu/ctl/ecis/
https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition-and.html
http://swtv.kaist.ac.kr/courses/cs492b-spring-16/lec6-data-race-bug.pptx
https://www.cs.cmu.edu/~clegoues/docs/static-analysis.pptx
http://www.cs.sfu.ca/~fedorova/Teaching/CMPT401/Summer2008/Lectures/Lecture8-GlobalClocks.pptx

Are linearizable objects composable? Why/why not? Is
serializable code composable?

What is a data race? What kinds of conditions make them
difficult to detect automatically?
What is a consistent cut in a distributed causality interaction
Race e
D ete Ct 1ON List some tradeoffs between static and dynamic race detection

_a U X QU | Z What are some pros and cons of happens-before analysis for
race detection? Same for lockset analysis?

Why might one use a vector clock instead of a logical clock?

What are some advantages and disadvantages of combined
lock-set and happens-before analysis?
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Allow overlapping invocations

insert(10)->true insert(20)->true

Thread 1:

time

Thread 2:

find(20)->false
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Linearizability:
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RGVIEW COHCU rrent hlStOry  Same results as the concurrent one

* Consistent with the timing of the
invocations/responses?

Allow overlapping invocations

Start/end impose ordering constraints

insert(10)->true insert(20)->true Why is this one OK?

Thread 1:

time

Thread 2:

find(20)->false



Linearizability:
* Isthere a correct sequential history:

Review: Concurrent hiStOry . sameresuitsasthe concurrent one

* Consistent with the timing of the
invocations/responses?

Allow overlapping invocations

Start/end impose ordering constraints

insert(10)->true insert(20)->true il s Ui @ne 014
Thread 1:
time
_ Total Order:
Thread 2. 1. Insert(10)
\ 2. Find(20)
find(20)->false 3. Insert(20)

* |s consistent with real-time order
* 2,3 overlap, but return order OK
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insert(10)->true

Thread 1:

insert(10)->false

time

Thread 2:

Assumptions:

* The setis initially empty

e Return values are meaningful:
* Insert returns true = item wasn’t present
* Insert returns false = item already present
* Delete returns true - item was present

delete(10)->true
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Why is this one NOT

Thread 1: linearizable?

time
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Thread 2:

delete(10)->true

Assumptions:

* The setis initially empty

e Return values are meaningful:
* Insert returns true = item wasn’t present
* Insert returns false = item already present
* Delete returns true - item was present




Review: not linearizable

insert(10)->true

\

Thread 1:

insert(10)->false

Why is this one NOT
linearizable?

time

Thread 2:

Assumptions:

 The setis initially empty

e Return values are meaningful:
* Insert returns true = item wasn’t present
* Insert returns false = item already present
* Delete returns true - item was present

\
delete(10)->true

7

Possible Total Orders

1.
2.
3.

Insert(10) 1. Delete(10)
Delete(10) 2. Insert(10)
Insert(10) 3. Insert(10)
Both consistent with real-time order
Neither is consistent w return values
1, 2 overlap, but 3 doesn’t
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Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

. local property:
* asystemis linearizable iff each individual object is linearizable.
* gives us composability.

* Why is it important?
* Serializability is not composable.

Huh? Composable?
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Composability

T * list::remove (Obj key) {
LOCK (this) ;
tmp = _ do remove (key) ;
UNLOCK (this) ;
return tmp;

}

void list::insert(Obj key, T * wval) {
LOCK (this) ;
__do_insert (key, val);
UNLOCK (this) ;



Composability

void move (list s, list d, Obj key) {

T * list::remove (Obj key) { tmp = s.remove (key) ;
LOCK (this) ; d.insert (key, tmp);
tmp = do remove (key) ; }

UNLOCK (this) ;
return tmp;

}

void list::insert(Obj key, T * wval) {
LOCK (this) ;
__do_insert (key, val);
UNLOCK (this) ;



Composability

Thread-safe?

void move (list s, list d, Obj key) {

T * list::remove (Obj key) { tmp = s.remove (key) ;
LOCK (this) ; d.insert (key, tmp);
tmp = do_ remove (key) ; }

UNLOCK (this) ;
return tmp;

}

void list::insert(Obj key, T * wval) {
LOCK (this) ;
__do_insert (key, val);
UNLOCK (this) ;

}



Composability

T * list::remove (Obj key) {

LOCK (this) ;
tmp = __d?_;emove(key); void move (list s, list d, Obj key) {
UNLOCK (this) ; LOCK (s) ;
return tmp; LOCK (d) ;
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do_insert (key, val); UNLOCK (s) ;

UNLOCK (this) ; }



Composability

T * list::remove (Obj key) {

LOCK (this) ;
tUEEOEKﬁgi;;:e.move(key); void move(list s, list d, Obj key) {
! LOCK (s) ;
return tmp; LOCK (d) ;
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do_insert (key, val); UNLOCK (s) ;
UNLOCK (this) ; }

}

* Lock-based code doesn’t compose



Composability

T * list::remove (Obj key) {

LOCK (this) ;
tUEEOzKﬁgz;;:e.move(key); void move(list s, list d, Obj key) {
! LOCK (s) ;
return tmp; LOCK (d) ;
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d.insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do_insert (key, val); UNLOCK (s) ;
UNLOCK (this) ; }

}

* Lock-based code doesn’t compose
* If list were a linearizable concurrent data structure, composition OK



Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

* local property:
* asystem is linearizable iff each individual object is linearizable.
e gives us composability.

* Why is it important?
* Serializability is not composable.

* Core hypotheses:
 structuring all as concurrent objects buys composability
e structuring all as concurrent objects is tractable/possible
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Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Solution: don’t use locks

non-blocking
Data-structure-centric
HTM

blah, blah, blah..
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Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Use locks!
But automate bug-finding!
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* |s there a race here?
* What is a race?
* Informally: accesses with missing/incorrect synchronization



Races

1 Lock(lock); 1
2 Read-Write (X) ; 2 Read-Write (X) ;
3 Unlock (lock) ; 3

* |s there a race here?
* What is a race?
* Informally: accesses with missing/incorrect synchronization

* Formally:
e >] threads access same item
* No intervening synchronization
* At least one access is a write



Races

* |s there a race here?

* Informally: accesses with missing/incorrect sy forall(X) {
* Formally: if(not_synchronized(X))
* >1 threads access same item declare_race()

* No intervening synchronization
e At least one access is a write
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Races

1 read-write(X); 1 thread-proc() {
2 fork(thread-proc); 2
3 do_stuff(); 3 read-write(X);
4 do_more_stuff(); 4

5 join(thread-proc); 5 }
6 read-Write(X);

Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join



Races
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read-write(X); 1 thread-proc() {
fork(thread-proc); 2
do_stuff(); 3 read-write(X);
do_more_stuff(); 4
join(thread-proc); 5 }
read-Write(X);
Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

* Benign due to view serializability
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Races

1 read-write(X); 1 thread-proc() {

2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);

4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);
Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

* Benign due to view serializability
e Benign due to application-level constraints

* E.g. approximate stats counters



Detecting Races

* Static
* Run a tool that analyses just code
* Maybe code is annotated to help
» Conservative: detect races that never occur

How to detect races:
forall(X) {

* Dynamic
* Instrument code
Check synchronization invariants on accesses
More precise
Difficult to make fast

Lockset vs happens-before e e S . |
2 Read-Write (X) ; 2 Read-Write (X);

if(not_synchronized(X))
declare_race()




Static Data Race Detection

* Type-based analysis

* Language type system augmented
e express common synchronization relationships”: correct typing—>no data races

* Difficultto do
* Restricts the type of synchronization primitives

* Language features
e e.g., use of monitors
* Only works for static data — not dynamic data

* Model Checking

* Path analysis
* Doesn’t scale well
* Too many false positives
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* Difficultto do
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Static Data Race Detection

* Type-based analysis

* Language type system augmented
e express common synchronization relationships”: correct typing—>no data races

* Difficultto do
* Restricts the type of synchronization primitives

* Language features
e e.g., use of monitors
* Only works for static data — not dynamic dati {1 i a2 = =0 = Abl

* Model Checking concurrently? (False Positive)
* Path analysis ' [ ock (1ock) ; 1

: ?;ff:atnsc?a:i: 2 Read-Write (X) ; 2 Read-Write (X) ;
y 3 Unlock (lock); 3
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Lockset Algorithm

* Locking discipline
* Every shared mutable variable is protected by some locks

* Core idea
* Track locks held by thread t
* On access to var v, check if t holds the proper locks
* Challenge: how to know what locks are required?

* Infer protection relation
* Infer which locks protect which variable from execution history.
* Assume every lock protects every variable
* On each access, use locks held by thread to narrow that assumption



Lockset Algorithm

* Locking discipline
* Every shared mutable variable is protected by some locks

e Coreidea
* Track locks held by thread t

Let locks held(t) be the set of locks held by thread ¢.

For each v, initialize C(v) to the set of all locks.
. On each access to v by thread ¢,
set C(v) := C(v) N locks _held(t);

if C(v) = { }, then issue a warning. [ ———

T ADJUITIT TVCIY IULN PlIULCULLDS TVl Yy vadl lavic

Narrow down set of

protecting v
* On each access, use locks held by thread to narrow that assumption



Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}

lock(lockA);
V++;
unlock(lockA);

lock(lockB);
V++;
unlock(lockB);



Lockset Algorithm Example

=)

lock(lockA);
V++;
unlock(lockA);

lock(lockB);
V++;
unlock(lockB);

locks held(t)
{}

C(v)
{lockA, lockB}

16



Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
m=) lock(lockA); {1lockA}
V++;
unlock(lockA);
lock(lockB);
V++;

unlock(lockB);



Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
) Vi 11ockA} ) N'tocks hetdt)
unlock(lockA);
lock(lockB);
V++;

unlock(lockB);



Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}

lock(lockA); {lockA}
V++; {lockA}

mm)  unlock(lockA); {J

lock(lockB);
V++;
unlock(lockB);



Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}

lock(lockA); {lockA}
V++; {lockA}

unlock(lockA); {J

lockB
=) lock(lockB); {lockB}

V++;
unlock(lockB);



Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}

lock(lockA); {lockA}
V++; {lockA}

unlock(lockA); {J

lockB
lock(lockB); { J

EZZ$> V++; {J

unlock(lockB);



Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}

lock(lockA); {lockA}
V++; {lockA}

unlock(lockA); {7

lockB
lock(lockB); { J

|:> V++; {} {} C(v) ﬁ_dlocks_heléi(t_)
unlock(lockB);



Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}

lock(lockA); {lockA}
V++; {lockA}

unlock(lockA); {J

lockB
lock(lockB); { J

EZZ$> V++; 0

|
unlock(lockB); ACKl race



Lockset Algorithm Example

lock(lockA);
V++;
unlock(lockA);

lock(lockB);

) Vi

unlock(lockB);

locks held(t)

1}
{lockA}

1}

{lockB}

{1}

C(v)

{lockA}

ACK! race

{lockA, lockB}

-

A\

Pretty clever!

Why isn’t this

a complete
solution?

4
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thread A
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Improving over lockset

thread A

Lockset detects a race

There is no race: why not?

* A-1 happens before B-3

 B-3 happens before A-6

* Insight: races occur when “happens-before” cannot be known



Happens-before

* Happens-before relation
* Within single thread
* Between threads

e Accessing variables not ordered
by “happens-before” is a race

e Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc
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* Between threads

e Accessing variables not ordered
by “happens-before” is a race

e Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc

Thread 1

/
Lock (mu);
v:=vtl;

!

Unlock(mu);

.

~

Thread 2

/
Lock (mu);
v:=vtl;

!

Unlock(mu);

/

.
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Happens-before

* Happens-before relation
* Within single thread
* Between threads

e Accessing variables not ordered
by “happens-before” is a race

e Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc

Thread 1

/
Lock (mu);
v:=vtl;

!

Unlock(mu);

.

~

T1 accessto V
“Happens-before”
T2 access toV

Thread 2

-

S~
Lock (mu);

v =vtl;

!

Unlock(mu);

.

~

/
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Ordering and Causality

Time
— A, B, C have local orders
A - - a] "
* Want total order
e But only for causality
B B ] = - - / i
Different types of clocks
e Physical
C—= . . - * Logical
* TS(A) later than others A knows about
* Vector
* TS(A): what A knows about other TS’s
* Matrix

e TS(A) is N2 showing pairwise
knowledge
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A Naive Approach

* Each system records each event it performed and its timestamp

e Suppose events in the this system happened in this real order:

* Time Tc0: System C sent data to System B (before C stopped
responding)

* Time Ta0: System A asked for work from System B
* Time TbO0: System B asked for data from System C

TcO Ta0 TbO




A Naive Approach (cont)

 |deally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A

System B

System C




A Naive Approach (cont)

 |deally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A

System B
"
System C
sent data

System C

Tc



A Naive Approach (cont)
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System A
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A Naive Approach (cont)

 |deally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A Ta
>
System A
asked for Th
System B S work
System B
System C asked for
sent data data
System C
9

Tc



A Naive Approach (cont)

e But in reality, we do not know if Tc occurred before Ta and Tb, because
in an asynchronous distributed system clocks are not synchronized!

System A Ta
>
System A
asked for Th
System B work
@ >
System B
System C asked for
sent data data
System C
o >

Tc



A Naive Approach (cont)

e But in reality, we do not know if Tc occurred before Ta and Tb, because
in an asynchronous distributed system clocks are not synchronized!

System A Ta
>
System A
asked for Th
System B work
@ o >
System B
asked for
data
System C
o >

Tc

Tc



Rules for Ordering of Events

* |ocal events precede one another = precede one another globally:
* If e} ,e/" € h; and k < m, then ef—e"

* Sending a message always precedes receipt of that message:
* If e;=send(m) and e= receive(m), then e,—e;

* Event ordering is transitive:
e Ife—e’ande’— e”, then e — e”
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Space-time Diagram for Distributed Computation

p e’ e,? e’ e’ e’ e,’
1
9 >
821 ezz \3
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p e’ e’ e e e, 6
3
9 9 O o o \?/ >
e, ef
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Sending a message always precedes receipt of that message:
If ;= send(m) and e= receive(m), then e,—e;
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Cuts of a Distributed Computation

e Suppose there is an external monitor process

* External monitor constructs a global state:
* Asks processes to send it local history

* Global state constructed from these local histories is:
a cut of a distributed computation
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Consistent vs. Inconsistent Cuts

* A cut is consistent if
* for any event e included in the cut
* any event e’ that causally precedes e is also included in that cut

* For cut C:
(e€C)A(e’—>e)=>e’€C
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Are These Cuts Consistent?

causally ]
precedes e,®

=
...but not
included
e’ ey in C
J " >
e;! e? e e;?
> > > > » >
- inconsistent
included

in C c’

A consistent cut corresponds to a consistent global state




What Do We Need to Know to
Construct a Consistent Cut?

causally ]
6
precedes e;

>
...but not
We must know the causal included
ordering of events. If we € in C
>

do we can detect an
inconsistent cut

included
in C

>
inconsistent

CI




Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(ey) — the logical clock value at process p; at event e;

Suppose we had a distributed system with only a single process
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Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(ey) — the logical clock value at process p; at event e;

Suppose we had a distributed system with only a single process

1 2 3 4 5 6
€, €, €, €, €, €,
9 O 9 9 O O >

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6



Logical Clocks (cont.)

* In a system with more than one process logical clocks are updated as
follows:

e Each message m that is sent contains a timestamp TS(m)

* TS(m) is the logical clock value associated with sending event at the
sending process
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Logical Clocks (cont.)

* In a system with more than one process logical clocks are updated as
follows:

e Each message m that is sent contains a timestamp TS(m)

* TS(m) is the logical clock value associated with sending event at the
sending process
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Logical Clocks (cont.)

* In a system with more than one process logical clocks are updated as
follows:

e Each message m that is sent contains a timestamp TS(m)

* TS(m) is the logical clock value associated with sending event at the
sending process

LC=1



Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1
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Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

send(m)  TS(m) = 1




Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

send(m)  TS(m) = 1

What is the LC
value of e,??
2
0 =




Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

send(m)  TS(m) = 1

What is the LC
value of e,??
ezl 2
> =

LC=1 LC=2
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Illustration of a Logical Clock

P,

. // \

Any drawbacks?
[ Total vs Partial Order ]

Awesome right? }
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Vector Clock

Replace Single Logical value with Vector!
V[i] : #events occurred at i
V[j] : #events i knows occurred at j
Update
* On local-event: increment V|[1]
* On send-message: increment,
piggyback entire local vector V
* On recv-message: V/[k] = max(
Vi[KV[K])
* V[i] = V[i]+1 (increment local clock)
* Receiver learns about number of

events sender knows occurred
elsewhere
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Vector Clock

Replace Single Logical value with Vector!
Vector Clock prace Singie tog .
Vi[i] : #events occurred at |
V[j] : #events i knows occurred at j
Update
* On local-event: increment V|[1]
* On send-message: increment,
piggyback entire local vector V
* On recv-message: V/[k] = max(
Vi[K,V[K])
* V[i] = V[i]+1 (increment local clock)
* Receiver learns about number of

events sender knows occurred
elsewhere




Vector Clock

y

Time

Vector Clock

Mot ordered!

A:3>2
B:3<4

A2 Azl
B:4 B:5
C:1 c:1

B:3 B:3
C:2 C:3

Replace Single Logical value with Vector!
V[i] : #events occurred at i
V[j] : #events i knows occurred at j
Update
* On local-event: increment V|[1]
* On send-message: increment,
piggyback entire local vector V
* On recv-message: V/[k] = max(
VIKLVi(K] )
* V[i] = V[i]+1 (increment local clock)
* Receiver learns about number of

events sender knows occurred
elsewhere



Vector Clock Example

Time

Each process i maintains a vector V,

* V/[i] : number of events that have occurred at i

* V[j] : number of events | knows have occurred at

process j
Update

A2 * Local event: increment V,[I]
(E:;il * Send a message :piggyback entire vector V

' * Receipt of a message: V/[k] = max( V/[k],V,[k] )

* Receiver is told about how many events the
sender knows occurred at another process k
A2 | A2 : .
B:3| [B:3 B:5|[B:5 " AlsoVilif=Vifi+1
c:2| C:3 C:4|C:5




Vector Clock Example

Each process i maintains a vector V,
; * V/[i] : number of events that have occurred at i

* VJ[j] : number of events | knows have occurred at
process j

Update
* Local event: increment V,[I]

A2
B.:4
- * Need to order operations
 Can’trely on real-time
53 * Vector clock: timestamping algorithm s.t.
C:2 e TS(A) < TS(B) = A happens before B

* Independent ops remain unordered

See any drawbacks?



Happens-before

* Happens-before relation
* Within single thread
* Between threads

e Accessing variables not ordered
by “happens-before” is a race

e Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc
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Happens-before

* Happens-before relation
* Within single thread
* Between threads

e Accessing variables not ordered
by “happens-before” is a race

e Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc

Thread 1

/
Lock (mu);
v:=vtl;

!

Unlock(mu);

.

~

T1 accessto V
“Happens-before”
T2 access toV

Thread 2

-

S~
Lock (mu);

v =vtl;

!

Unlock(mu);

.

~

/




Flaws of Happens-before

e Difficult to implement
* Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example
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* Example

Thread 1

y =ytl;
'

Lock(mu);

}

v =v+l;

|

Unlock(mu);

Thread 2

Lock(mu);

}

v =v+tl;

|

Unlock(mu);

}

y =ytl;



Flaws of Happens-before

e Difficult to implement
* Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example

e T1-acc(v) happens before T2-acc(v)
T1-acc(y) happens before T1-acc(v)
T2-acc(v) happens before T2-acc(y)
Conclusion: no raceonY!

Finding doesn’t generalize

Thread 1

y =ytl;
'

Lock(mu);

}

v =v+l;

|

Unlock(mu);

Thread 2

Lock(mu);

}

v =v+tl;

|

Unlock(mu);

}

y =ytl;
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Flaws of Happens-before

e Difficult to implement
* Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example

e T1-acc(v) happens before T2-acc(v)
e T1-acc(y) happens before T1-acc(v)
e T2-acc(v) happens before T2-acc(y)
* Conclusion:noraceon!

* Finding doesn’t generalize

Thread 2

Lock(mu);
v =v+l;

Unlock(mu);

Thread 1 / —"
y =ytl; /
.

Lock(mu);
v =v+l;

Unlock(mu);



Dynamic Race Detection Summary

o Lockset: verify locking discipline for shared memory
v" Detect race regardless of thread scheduling
x False positives because other synchronization primitives
(fork/join, signal/wait) not supported
o Happens-before: track partial order of program events
v’ Supports general synchronization primitives
x Higher overhead compared to lockset
x False negatives due to sensitivity to thread scheduling




False positive using Lockset

L
1 .
S Fur];{u} LL Tracking accesses to X
2 Lo 5 wlockia) Inst State Lockset
3 t:Wrix) 6 u:Wr(x) 1 Virgin {}
2| 41t ['ﬂluckl,’a]l 7 w:Unlockia) 3 Exclusive:t {}

6 Shared Modified | {a}

‘8 i‘ Jmﬂ(u}
9 t:Wrix)
vl 0 t:Fork(v) D 9 Report race {}
11 t:Lockia) > 14 v:Lock(a)
12 t:Wrix) 15 v:Wr(x)
3| 13 t:Unlock(a) 16 v:Unlock(a)

17 t:Join(v)

N




RaceTrack Notations
Notation | Meaning | §

Al -
= [{teT:V(t)>0
L Lockset of thread t VIS e T: V) > 0 ,
t Inc(Vit) = w—if u =1 then V(u)+ 1 else V(u)
C Lockset of memory x Merge(V,W) = u s maz(V(u), W (u))
X Remove(V,W) £ w s if V(u) < W(u) then 0 else V()
Bu Vector clock of thread u
SX Threadset of memory x
ti Thread t at clock time i




RaceTrack Algorithm
Notation | Meaning |

Lt Lockset of thread t
CX Lockset of memory x
B t Vector clock of thread t
SX Threadset of memory x
t1 Thread t at clock time 1
VI = [{teT:V(t) >0}
Inc(V,t) = ursifu=t then V(u)+ 1 else V(u)

Merge(V,W)
Remove(V, W)

u — maz(V(u), W(u))
w — if V(u) < W(u) then 0 else V (u)

1= A [

At t:Lock(l):
Ly — L, U{l}

At t:Unlock(I):
Lt — Lt - {E}

At t:Fork(u):
Ly —{}
B, «— Merge({(u,1)}, B;)
B; «— Ine(B;,t)

At t:Join(u):
B: «— Merge(Bs, B.)

At t:Rd(z) or t:Wr(z):
Sz — Merge(Remove(Sg, Bt), {(t, B:(t))})
if [Sz] > 1
then C; — Cz N Ly
else C; «— Ly
if [Sz| > 1 A C; = {} then report race



|_t Lockset of thread t
. . | i C Lockset of memory x
Avoiding Lockset's false positive (1) R Fien
SX Threadset of memory x
t 1 Thread t at clock time 1

1

1 0 All ] j
71 t:Fork(u) u {} {} {t,}
L | {3 {t.u}

2 r:lﬂckiéj p 5 u:Lockia)
3t:Wrix) 6 u:Wr(x) {a}

2 4 t:Unlock(a) 7 u:Unlockia)
— {a} | {t,}

+é_i‘_:3[:iﬂl: 1)
9 t:Wrix)
X.Zl@ EFE'I']‘I(U}' U

{}

11 t:Lock(a) 4 14 v:Locki(a)
12 t:Wrix) 15 v:Wrix)
3 13 t:Unlock(a) 16 v:Unlock(a)

——— {t2!u1} - -

“17 t-Join(v)

hvd

{tu,}

0 N O o Pbdh WOD
~
Q
—




Lockset of thread t

I

@)

Lockset of memory x

Avoiding Lockset's false positive (2) T

Threadset of memory x

—_

n | | w

Thread t at clock time 1

(s
-

8 {a} {tzsu1} {} {tzau1} - -

L
1
o1 t: Furk(u]l U

2 r:lﬂckiéj B 5 u:Lockia) 9 {} {tz}
3t:Wrix) 6 u:Wr(x) 10 {t3,u1} {} {t2,v1}

2 4 t:Unlock(a) 7 u:Unlockia)

+é_i‘_:3[:iﬂl: 1) 1 {a}
9 t:Wrix) 12 | {a} | {t;}
k) g 13 0
11 t:Lock(a) "' 14 v:Lock(a) 14 (a)
12 t:Wrix) 15 v:Wrix)
3| 13 £Unlock(a) 16 v:Unlock(a) | 19 {tyvy}
_ 16 {}

“17 t-Join(v)

hvd




|_t Lockset of thread t
. . | o C, Lockset of memory x
Avoiding Lockset's false positive (2) s v
S, Threadset of memory x
t, Thread t at clock time 1

L
1
o1 t: Furk(u]l U

8 | {a} iy {} {tpud ) - -
2 r:Luck(é}_l_ o 5 u:Lockia) 9
3 t:Wrix) 6 uw:Wr(x) 10 {tyu} {3 {tyv,)
2 4 t:Unlock(a) \ 7 u:Unlockia)
+é_i‘_:3[:iﬂl: 1) 1 {a}
9 t:Wr(x) 12 | {a} | {t,}
k) g 13 0
11 t:Lock(a) "' 14 v:Lock(a) 14 (a)
12 t:Wrix) 15 v:Wrix)
3| 13 £Unlock(a) 16 v:Unlock(a) | 19 {tyvy}
- 16 {}

“17 t-Join(v)
"4 Only one thread!
Are we done?




