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Race 
Detection 
Faux Quiz

Are linearizable objects composable? Why/why not? Is 
serializable code composable?

What is a data race? What kinds of conditions make them 
difficult to detect automatically?

What is a consistent cut in a distributed causality interaction 
graph? 

List some tradeoffs between static and dynamic race detection

What are some pros and cons of happens-before analysis for 
race detection? Same for lockset analysis?

Why might one use a vector clock instead of a logical clock?

What are some advantages and disadvantages of combined 
lock-set and happens-before analysis? 
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Review: Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

4

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the 
invocations/responses?

• Start/end impose ordering constraints

Total Order: 
1. Insert(10)
2. Find(20)
3. Insert(20)
• Is consistent with real-time order
• 2, 3 overlap, but return order OK

Why is this one OK?
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Review: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

5

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• Neither is consistent w return values
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT 
linearizable?

1. Delete(10)
2. Insert(10)
3. Insert(10)

Assumptions:
• The set is initially empty
• Return values are meaningful:

• Insert returns true → item wasn’t present
• Insert returns false → item already present
• Delete returns true → item was present



Linearizability Properties
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• non-blocking
• one method is never forced to wait to sync with another.

• local property: 
• a system is linearizable iff each individual object is linearizable. 

• gives us composability.

• Why is it important? 
• Serializability is not composable. 

Linearizability Properties
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Huh? Composable?
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• Lock-based code doesn’t compose
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Composability

• Lock-based code doesn’t compose

• If list were a linearizable concurrent data structure, composition OK

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

void move(list s, list d, Obj key){

LOCK(s);

LOCK(d);

tmp = s.remove(key);

d.insert(key, tmp);

UNLOCK(d);

UNLOCK(s);

}



• non-blocking
• one method is never forced to wait to sync with another.

• local property: 
• a system is linearizable iff each individual object is linearizable. 

• gives us composability.

• Why is it important? 
• Serializability is not composable. 

• Core hypotheses: 
• structuring all as concurrent objects buys composability

• structuring all as concurrent objects is tractable/possible

Linearizability Properties
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Race Detection

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Use locks!
• But automate bug-finding!
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Races

1 Lock(lock);

2 Read-Write(X);

3 Unlock(lock);

1

2 Read-Write(X);

3

• Is there a race here?
• What is a race?
• Informally: accesses with missing/incorrect synchronization
• Formally: 

• >1 threads access same item
• No intervening synchronization
• At least one access is a write

How to detect races: 
forall(X) {

if(not_synchronized(X)) 
declare_race()

}
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Races
1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2  
3  read-write(X);
4  
5 }

Is there a race here?
How can a race detector tell?

Unsynchronized access can be

• Benign due to fork/join

• Benign due to view serializability

• Benign due to application-level constraints

• E.g. approximate stats counters



Detecting Races

• Static
• Run a tool that analyses just code

• Maybe code is annotated to help

• Conservative: detect races that never occur

• Dynamic
• Instrument code

• Check synchronization invariants on accesses

• More precise

• Difficult to make fast

• Lockset vs happens-before

How to detect races: 
forall(X) {

if(not_synchronized(X)) 
declare_race()

}

1 Lock(lock);

2 Read-Write(X);

3 Unlock(lock);

1

2 Read-Write(X);

3



Static Data Race Detection

• Type-based analysis 
• Language type system augmented 

• express common synchronization relationships”: correct typing→no data races
• Difficult to do 
• Restricts the type of synchronization primitives

• Language features
• e.g., use of monitors
• Only works for static data – not dynamic data

• Model Checking
• Path analysis

• Doesn’t scale well
• Too many false positives
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Static Data Race Detection

• Type-based analysis 
• Language type system augmented 

• express common synchronization relationships”: correct typing→no data races
• Difficult to do 
• Restricts the type of synchronization primitives

• Language features
• e.g., use of monitors
• Only works for static data – not dynamic data

• Model Checking
• Path analysis

• Doesn’t scale well
• Too many false positives

1 Lock(lock);

2 Read-Write(X);

3 Unlock(lock);

1

2 Read-Write(X);

3

What if these *never* run 
concurrently? (False Positive)
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Lockset Algorithm

• Locking discipline
• Every shared mutable variable is protected by some locks

• Core idea
• Track locks held by thread t

• On access to var v, check if t holds the proper locks

• Challenge: how to know what locks are required?

• Infer protection relation
• Infer which locks protect which variable from execution history.

• Assume every lock protects every variable

• On each access, use locks held by thread to narrow that assumption

Narrow down set of 
locks maybe 
protecting v
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Lockset Algorithm Example

16

lock(lockA);

v++;

unlock(lockA);

lock(lockB);

v++;

unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

ACK! race

Pretty clever!
Why isn’t this 

a complete 
solution?
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Improving over lockset

1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2  
3  read-write(X);
4  
5 }

Lockset detects a race
There is no race: why not?
• A-1 happens before B-3
• B-3 happens before A-6
• Insight: races occur when “happens-before” cannot be known

thread A thread B
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Thread 2

Happens-before

• Happens-before relation
• Within single thread

• Between threads

• Accessing variables not ordered  
by “happens-before” is a race

• Captures locks and dynamism

• How to track “happens-before”?
• Sync objects are ordering events

• Generalizes to fork/join, etc

Thread 1

T1 access to V
“Happens-before”
T2 access to V
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Ordering and Causality

A, B, C have local orders

• Want total order
• But only for causality

Different types of clocks

• Physical

• Logical
• TS(A) later than others A knows about

• Vector 
• TS(A): what A knows about other TS’s

• Matrix
• TS(A) is N^2 showing pairwise 

knowledge
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A Naïve Approach (cont)

• Ideally, we will construct real order of events from local  timestamps 
and detect this dependency chain:

System A

System B

System C

System C 
sent data

Tc

Ta

System A 
asked for 
work Tb

System B 
asked for 
data
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• But in reality, we do not know if Tc occurred before Ta and Tb, because 
in an asynchronous distributed system clocks are not synchronized!
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Rules for Ordering of Events

• local events precede one another → precede one another globally:
• If ei

k ,ei
m Є hi and k < m, then ei

k→ei
m

• Sending a message always precedes receipt of that message:
• If ei = send(m) and ej= receive(m), then ei→ej

• Event ordering is transitive:
• If e → e’ and e’ → e”, then e → e”
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Cuts of a Distributed Computation

• Suppose there is an external monitor process

• External monitor constructs a global state:
• Asks processes to send it local history

• Global state constructed from these local histories is:

a cut of a distributed computation
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Consistent vs. Inconsistent Cuts

• A cut is consistent if 
• for any event e included in the cut

• any event e’ that causally precedes e is also included in that cut

• For cut C:
(e Є C) Λ (e’→ e) => e’ Є C
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A consistent cut corresponds to a consistent global state



What Do We Need to Know to 
Construct a Consistent Cut?
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…but not 
included 

in C
We must know the causal 
ordering of events. If we 

do we can detect an 
inconsistent cut



Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of process p counts how many events in a distributed computation causally 
preceded the current event at p (including the current event).

• LC(ei) – the logical clock value at process pi at event ei

• Suppose we had a distributed system with only a single process
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Logical Clocks (cont.)

• In a system with more than one process logical clocks are updated as 
follows:

• Each message m that is sent contains a timestamp TS(m)

• TS(m) is the logical clock value associated with sending event at the 
sending process



Logical Clocks (cont.)
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• TS(m) is the logical clock value associated with sending event at the 
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Logical Clocks (cont.)

• In a system with more than one process logical clocks are updated as 
follows:

• Each message m that is sent contains a timestamp TS(m)

• TS(m) is the logical clock value associated with sending event at the 
sending process
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Logical Clocks (cont.)

• In a system with more than one process logical clocks are updated as 
follows:

• Each message m that is sent contains a timestamp TS(m)

• TS(m) is the logical clock value associated with sending event at the 
sending process
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Logical Clocks (cont)

• When the receiving process receives message m, it updates its 
logical clock to:

max{LC, TS(m)} + 1
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Logical Clocks (cont)

• When the receiving process receives message m, it updates its 
logical clock to:

max{LC, TS(m)} + 1
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Logical Clocks (cont)

• When the receiving process receives message m, it updates its 
logical clock to:
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Logical Clocks (cont)

• When the receiving process receives message m, it updates its 
logical clock to:

max{LC, TS(m)} + 1

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 send(m) TS(m) = 1

e2
2

What is the LC 
value of e2

2?
e2

1

LC=1



Logical Clocks (cont)

• When the receiving process receives message m, it updates its 
logical clock to:

max{LC, TS(m)} + 1
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Total vs Partial Order
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Replace Single Logical value with Vector!
Vi[i] : #events occurred at i
Vi[j] : #events i knows occurred at j
Update

• On local-event: increment Vi[I]
• On send-message: increment, 

piggyback entire local vector V
• On recv-message: Vj[k] = max( 

Vj[k],Vi[k] )
• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of 

events sender knows occurred 
elsewhere
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Vector Clock Example

Each process i maintains a vector Vi

• Vi[i] : number of events that have occurred at i

• Vi[j] : number of events I knows have occurred at 
process j

Update

• Local event: increment Vi[I]

• Send a message :piggyback entire vector V

• Receipt of a message: Vj[k] = max( Vj[k],Vi[k] )

• Receiver is told about how many events the 
sender knows occurred at another process k

• Also Vj[i] = Vj[i]+1



Vector Clock Example

Each process i maintains a vector Vi

• Vi[i] : number of events that have occurred at i

• Vi[j] : number of events I knows have occurred at 
process j

Update

• Local event: increment Vi[I]

• Send a message :piggyback entire vector V

• Receipt of a message: Vj[k] = max( Vj[k],Vi[k] )

• Receiver is told about how many events the 
sender knows occurred at another process k

• Also Vj[i] = Vj[i]+1

• Need to order operations
• Can’t rely on real-time
• Vector clock: timestamping algorithm s.t.

• TS(A) < TS(B) → A happens before B
• Independent ops remain unordered

See any drawbacks?



Happens-before

• Happens-before relation
• Within single thread

• Between threads

• Accessing variables not ordered  
by “happens-before” is a race

• Captures locks and dynamism

• How to track “happens-before”?
• Sync objects are ordering events

• Generalizes to fork/join, etc
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Thread 2

Happens-before

• Happens-before relation
• Within single thread

• Between threads

• Accessing variables not ordered  
by “happens-before” is a race

• Captures locks and dynamism

• How to track “happens-before”?
• Sync objects are ordering events

• Generalizes to fork/join, etc

Thread 1

T1 access to V
“Happens-before”
T2 access to V
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• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving 
produced by the scheduler

• Example



Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving 
produced by the scheduler
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Dynamic Race Detection Summary

⚫ Lockset: verify locking discipline for shared memory
✓Detect race regardless of thread scheduling

 False positives because other synchronization primitives 
(fork/join, signal/wait) not supported

⚫ Happens-before: track partial order of program events
✓ Supports general synchronization primitives

 Higher overhead compared to lockset

 False negatives due to sensitivity to thread scheduling

RaceTrack = Lockset + Happens-before



False positive using Lockset  

Inst State Lockset 

1 Virgin { }

3 Exclusive:t { }

6 Shared Modified {a}

9 Report race { }

Tracking accesses to X



RaceTrack Notations

Notation Meaning

L
t

Lockset of  thread t

C
x

Lockset of memory x

B
u

Vector clock of thread u

S
x

Threadset of memory x

t
i

Thread t at clock time i



RaceTrack Algorithm

Notation Meaning
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Avoiding Lockset's false positive (1)
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Avoiding Lockset's false positive (2)
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Avoiding Lockset's false positive (2)
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Lockset of  thread t

C
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Lockset of memory x

B
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Vector clock of thread t

S
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Threadset of memory x

t
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Thread t at clock time 1

Only one thread!
Are we done? 


