
Projects
End-of-semester Review

cs378h

Outline/Administrivia

• Questions?

• Comments on Exam

• Project presentations x 2

• Review
• Can someone please act as scribe?
• Requested review content:

• NoSQL/databases
• ACID vs. BASE
• Linearizability vs. Serializability
• Spark

• Pros/cons wrt page rank / indexing
• Pros/cons wrt multi-core parallelism

Project Presentations

• Emily & Abby

• Ryan & Patrick

• Any last minute additions?

What is NoSQL?
• Next Generation Compute/Storage engines (databases)

• non-relational

• distributed

• open-source

• horizontally scalable

• One view: “no” → elide SQL/database functionality to achieve scale

• Another view: “NoSQL” is actually misleading.

• more appropriate term is actually “Not Only SQL”

What is NoSQL?
• Next Generation Compute/Storage engines (databases)

• non-relational

• distributed

• open-source

• horizontally scalable

• One view: “no” → elide SQL/database functionality to achieve scale

• Another view: “NoSQL” is actually misleading.

• more appropriate term is actually “Not Only SQL”

What NoSQL gives up in exchange for scale:

● Relationships between entities are non-existent

● Limited or no ACID transactions

● No standard language for queries (SQL)

● Less structured

What is NoSQL?
• Next Generation Compute/Storage engines (databases)

• non-relational

• distributed

• open-source

• horizontally scalable

• One view: “no” → elide SQL/database functionality to achieve scale

• Another view: “NoSQL” is actually misleading.

• more appropriate term is actually “Not Only SQL”

What NoSQL gives up in exchange for scale:

● Relationships between entities are non-existent

● Limited or no ACID transactions

● No standard language for queries (SQL)

● Less structured

Why talk about NoSQL in concurrency class?

● Principle
● Most tradeoffs are a direct result of concurrency

● Practice
● NoSQL systems are ubiquitous

● Relevant aspects
● scale/performance tradeoff space

● Correctness/programmability tradeoff space

Review: noSQL Taxonomy

5

Review: noSQL Taxonomy

5

Consistency

Review: noSQL Taxonomy

5

D
a

ta
M

o
d

el

Consistency

Review: noSQL Taxonomy

5

D
a

ta
M

o
d

el

Consistency

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

• Atomicity
• Consistency
• Isolation
• Durability

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

• Basically Available
• Soft State
• Eventually Consistent

• Atomicity
• Consistency
• Isolation
• Durability

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Key Value Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Key Value Stores

Document Stores

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Key Value Stores

Document Stores

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Shared-Disk
• Range-Sharding
• Hash-Sharding
• Consistent Hashing

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Primary-Backup
• Commit-Consensus

Protocol
• Sync/Async

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Logging
• Update In Place
• Caching
• In-Memory Storage

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support
• Secondary Indexing
• Query Planning
• Materialized Views
• Analytics

Wide-Column Stores

Review: noSQL Taxonomy

5

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

NoSQL faux quiz:

• What is the CAP theorem? What does “PACELC” stand for and how does it
relate to CAP?

• What is the difference between ACID and BASE?
• Why do NoSQL systems claim to be more horizontally scalable than RDMBSes?

List some features NoSQL systems give up toward this goal?
• What is eventual consistency? Give a concrete example of how of why it

causes a complex programming model (relative to a strongly consistent
model).

• Compare and contrast Key-Value, Document, and Wide-column Stores
• Define and contrast the following consistency properties:

• strong consistency, eventual consistency, consistent prefix, monotonic reads, read-my-
writes, bounded staleness

NoSQL faux quiz:

• What is the CAP theorem? What does “PACELC” stand for and how does it
relate to CAP?

• What is the difference between ACID and BASE?
• Why do NoSQL systems claim to be more horizontally scalable than RDMBSes?

List some features NoSQL systems give up toward this goal?
• What is eventual consistency? Give a concrete example of how of why it

causes a complex programming model (relative to a strongly consistent
model).

• Compare and contrast Key-Value, Document, and Wide-column Stores
• Define and contrast the following consistency properties:

• strong consistency, eventual consistency, consistent prefix, monotonic reads, read-my-
writes, bounded staleness

Consistency

Consistency

Consistency

Partitions

Consistency

Partitions

Consistency

Partitions

Consistency

Partitions• Clients perform reads and writes

Consistency

Partitions• Clients perform reads and writes
• Data is replicated among a set of servers

Consistency

Partitions• Clients perform reads and writes
• Data is replicated among a set of servers
• Writes must be performed at all servers

Consistency

Partitions• Clients perform reads and writes
• Data is replicated among a set of servers
• Writes must be performed at all servers
• Reads return the result of one or more past writes

Consistency

Partitions• Clients perform reads and writes
• Data is replicated among a set of servers
• Writes must be performed at all servers
• Reads return the result of one or more past writes
• How to keep data in sync?

Consistency

Partitions• Clients perform reads and writes
• Data is replicated among a set of servers
• Writes must be performed at all servers
• Reads return the result of one or more past writes
• How to keep data in sync?

Consistency != Correctess
• consistency: no internal contradictions
• Correct: higher-level property
• Inconsistency → code does wrong things

Consistency Spectrum

Strong

(e.g., Sequential)Eventual

More consistency

Faster reads and writes

• Strict:
• Absolute time ordering of all shared accesses, reads always return

last write

• Linearizability:
• Each operation is visible (or available) to all other clients in real-time

order

• Sequential Consistency [Lamport]:
• "... the result of any execution is the same as if the operations of all the

processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by
its program.

• After the fact, find a “reasonable” ordering of the operations (can re-order
operations) that obeys sanity (consistency) at all clients, and across clients.

• ACID properties

• Eventual Consistency
• If writes to a key stop, all replicas of key will

converge

• Originally from Amazon’s Dynamo and LinkedIn’s
Voldemort systems

BASE:

• Basically Available

• Soft State

• Eventually Consistent

Consistency Spectrum

Strong

(e.g., Sequential)Eventual

More consistency

Faster reads and writes

• Strict:
• Absolute time ordering of all shared accesses, reads always return

last write

• Linearizability:
• Each operation is visible (or available) to all other clients in real-time

order

• Sequential Consistency [Lamport]:
• "... the result of any execution is the same as if the operations of all the

processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by
its program.

• After the fact, find a “reasonable” ordering of the operations (can re-order
operations) that obeys sanity (consistency) at all clients, and across clients.

• ACID properties

• Eventual Consistency
• If writes to a key stop, all replicas of key will

converge

• Originally from Amazon’s Dynamo and LinkedIn’s
Voldemort systems

BASE:

• Basically Available

• Soft State

• Eventually Consistent

Strong: ACIDEventual: BASE

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

• Nothing is said about “most recent write”

Linearizability vs. Serializability

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability
• Linearizability assumes sequential consistency and

• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability
• Linearizability assumes sequential consistency and

• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency

• Difference between linearizability and serializability?
• Granularity: reads/writes versus transactions

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability
• Linearizability assumes sequential consistency and

• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency

• Difference between linearizability and serializability?
• Granularity: reads/writes versus transactions

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability:

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability
• Linearizability assumes sequential consistency and

• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency

• Difference between linearizability and serializability?
• Granularity: reads/writes versus transactions

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability:
•Single-operation, single-object, real-time order

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability
• Linearizability assumes sequential consistency and

• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency

• Difference between linearizability and serializability?
• Granularity: reads/writes versus transactions

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability:
•Single-operation, single-object, real-time order
•Talks about order of ops on single object (e.g.
atomic register)

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability
• Linearizability assumes sequential consistency and

• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency

• Difference between linearizability and serializability?
• Granularity: reads/writes versus transactions

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability:
•Single-operation, single-object, real-time order
•Talks about order of ops on single object (e.g.
atomic register)
•Ops should appear instantaneous, reflect real
time order

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability
• Linearizability assumes sequential consistency and

• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency

• Difference between linearizability and serializability?
• Granularity: reads/writes versus transactions

http://www.bailis.org/blog/linearizability-versus-serializability/

Serializability:Linearizability:
•Single-operation, single-object, real-time order
•Talks about order of ops on single object (e.g.
atomic register)
•Ops should appear instantaneous, reflect real
time order

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability
• Linearizability assumes sequential consistency and

• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency

• Difference between linearizability and serializability?
• Granularity: reads/writes versus transactions

http://www.bailis.org/blog/linearizability-versus-serializability/

Serializability:
•Talks about groups of 1 or more ops on one or
more objects

Linearizability:
•Single-operation, single-object, real-time order
•Talks about order of ops on single object (e.g.
atomic register)
•Ops should appear instantaneous, reflect real
time order

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability
• Linearizability assumes sequential consistency and

• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency

• Difference between linearizability and serializability?
• Granularity: reads/writes versus transactions

http://www.bailis.org/blog/linearizability-versus-serializability/

Serializability:
•Talks about groups of 1 or more ops on one or
more objects
•Txns over multiple items equivalent to serial
order of txns

Linearizability:
•Single-operation, single-object, real-time order
•Talks about order of ops on single object (e.g.
atomic register)
•Ops should appear instantaneous, reflect real
time order

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability
• Linearizability assumes sequential consistency and

• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency

• Difference between linearizability and serializability?
• Granularity: reads/writes versus transactions

http://www.bailis.org/blog/linearizability-versus-serializability/

Serializability:
•Talks about groups of 1 or more ops on one or
more objects
•Txns over multiple items equivalent to serial
order of txns
•Only requires *some* equivalent serial order

Linearizability:
•Single-operation, single-object, real-time order
•Talks about order of ops on single object (e.g.
atomic register)
•Ops should appear instantaneous, reflect real
time order

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability
• Linearizability assumes sequential consistency and

• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency

• Difference between linearizability and serializability?
• Granularity: reads/writes versus transactions

http://www.bailis.org/blog/linearizability-versus-serializability/

Serializability:
•Talks about groups of 1 or more ops on one or
more objects
•Txns over multiple items equivalent to serial
order of txns
•Only requires *some* equivalent serial order

Linearizability:
•Single-operation, single-object, real-time order
•Talks about order of ops on single object (e.g.
atomic register)
•Ops should appear instantaneous, reflect real
time order

Serializability + Linearizability == “Strict Serializability”
• Txn order equivalent to some serial order that respects real time order
• Linearizability: degenerate case of Strict Ser: txns are single op single object

http://www.bailis.org/blog/linearizability-versus-serializability/

Causal consistency

Causal consistency

• Causally related writes seen by all processes in same order.

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

Causal:
If a write produces a value that
causes another write, they are causally related

X = 1
if(X > 0) {

Y = 1
}
Causal consistency → all see X=1, Y=1 in same order

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Not permitted

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Not permitted

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Not permitted
Permitted

Dataflow

Dataflow

• MR is a dataflow engine

Dataflow

• MR is a dataflow engine

Dataflow

• MR is a dataflow engine

• So are Lots of others
• Dryad

• DryadLINQ

• Dandelion

• CIEL

• GraphChi/PowerGraph/Pregel

• Spark

Dataflow

• MR is a dataflow engine

• So are Lots of others
• Dryad

• DryadLINQ

• Dandelion

• CIEL

• GraphChi/PowerGraph/Pregel

• Spark

Spark faux quiz (5 min, any 2):

• What is the difference between transformations and actions in Spark?

• Spark supports a persist API. When should a programmer want to use it?
When should she [not] use use the “RELIABLE” flag?

• Compare and contrast fault tolerance guarantees of Spark to those of
MapReduce. How are[n’t] the mechanisms different?

• Is Spark a good system for indexing the web? For computing page rank
over a web index? Why [not]?

• List aspects of Spark’s design that help/hinder multi-core parallelism
relative to MapReduce. If the issue is orthogonal, explain why.

Collections and Iterators

15

class Collection<T> : IEnumerable<T>;

Collections and Iterators

15

class Collection<T> : IEnumerable<T>;

public interface IEnumerable<T> {
IEnumerator<T> GetEnumerator();

}

Collections and Iterators

15

class Collection<T> : IEnumerable<T>;

public interface IEnumerable<T> {
IEnumerator<T> GetEnumerator();

}

public interface IEnumerator <T> {
T Current { get; }
bool MoveNext();
void Reset();

}

Collections and Iterators

15

class Collection<T> : IEnumerable<T>;

public interface IEnumerable<T> {
IEnumerator<T> GetEnumerator();

}

public interface IEnumerator <T> {
T Current { get; }
bool MoveNext();
void Reset();

}

DryadLINQ Data Model

16

Partition

Collection

.Net objects

Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

var results = from c in collection
where IsLegal(c.key)
select new { Hash(c.key), c.value};

17

DryadLINQ = LINQ + Dryad

Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

var results = from c in collection
where IsLegal(c.key)
select new { Hash(c.key), c.value};

17

DryadLINQ = LINQ + Dryad

collection

results

Data

Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

var results = from c in collection
where IsLegal(c.key)
select new { Hash(c.key), c.value};

17

DryadLINQ = LINQ + Dryad

collection

results

Query
plan
(Dryad job)

Data

Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

var results = from c in collection
where IsLegal(c.key)
select new { Hash(c.key), c.value};

17

DryadLINQ = LINQ + Dryad

C#

collection

results

C# C# C#

Vertex
code

Query
plan
(Dryad job)

Data

Language Summary

18

Language Summary

18

Where

Language Summary

18

Where

Language Summary

18

Where
Select

Language Summary

18

Where
Select

Language Summary

18

Where
Select
GroupBy

Language Summary

18

Where
Select
GroupBy

Language Summary

18

Where
Select
GroupBy
OrderBy

Language Summary

18

Where
Select
GroupBy
OrderBy

Language Summary

18

Where
Select
GroupBy
OrderBy
Aggregate

Language Summary

18

Where
Select
GroupBy
OrderBy
Aggregate

Language Summary

18

Where
Select
GroupBy
OrderBy
Aggregate
Join

Language Summary

18

Where
Select
GroupBy
OrderBy
Aggregate
Join

Language Summary

18

Where
Select
GroupBy
OrderBy
Aggregate
Join

Language Summary

18

Where
Select
GroupBy
OrderBy
Aggregate
Join
Apply

Language Summary

18

Where
Select
GroupBy
OrderBy
Aggregate
Join
Apply

Language Summary

18

Where
Select
GroupBy
OrderBy
Aggregate
Join
Apply
Materialize

Language Summary

18

Where
Select
GroupBy
OrderBy
Aggregate
Join
Apply
Materialize

Example: Histogram

19

public static IQueryable<Pair> Histogram(

IQueryable<LineRecord> input, int k)

{

var words = input.SelectMany(x => x.line.Split(' '));

var groups = words.GroupBy(x => x);

var counts = groups.Select(x => new Pair(x.Key, x.Count()));

var ordered = counts.OrderByDescending(x => x.count);

var top = ordered.Take(k);

return top;

}

“A line of words of wisdom”

[“A”, “line”, “of”, “words”, “of”, “wisdom”]

[[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]]

[{“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}]

[{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}]

[{“of”, 2}, {“A”, 1}, {“line”, 1}]

Iterative Computations: PageRank

MapMap

MapMap

MapMap

ReduceReduce

ReduceReduce

Input Output

MapMap

MapMap

MapMap

ReduceReduce

ReduceReduce

Output

MapMap

MapMap

MapMap

ReduceReduce

ReduceReduce

Output

RDD Operations

Transformations
(define a new RDD)

map
filter
sample
union
groupByKey
reduceByKey
join
persist/cache
…

Parallel operations
(return a result to driver)

reduce
collect
count
save
lookupKey
…

RDD Operations

Transformations
(define a new RDD)

map
filter
sample
union
groupByKey
reduceByKey
join
persist/cache
…

Parallel operations
(return a result to driver)

reduce
collect
count
save
lookupKey
…

RDD Fault Tolerance

• RDDs maintain lineage information that can be used
to reconstruct lost partitions

• Ex:
cachedMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))

.persist()

HdfsRDD
path: hdfs://…

HdfsRDD
path: hdfs://…

FilteredRDD
func: contains(...)

FilteredRDD
func: contains(...)

MappedRDD
func: split(…)

MappedRDD
func: split(…)

CachedRDDCachedRDD

RDDs vs Distributed Shared Memory

Concern RDDs Distr. Shared Mem.

Reads Fine-grained Fine-grained

Writes Bulk transformations Fine-grained

Consistency Trivial (immutable) Up to app / runtime

Fault recovery Fine-grained and low-
overhead using lineage

Requires checkpoints
and program rollback

Straggler
mitigation

Possible using
speculative execution

Difficult

Work placement Automatic based on
data locality

Up to app (but runtime
aims for transparency)

