
3Concurrent Objects

The behavior of concurrent objects is best described through their safety and
liveness properties, often referred to as correctness and progress. In this chapter
we examine various ways of specifying correctness and progress.

While all notions of correctness for concurrent objects are based on some
notion of equivalence with sequential behavior, different notions are appropriate
for different systems. We examine three correctness conditions. Quiescent consis-
tency is appropriate for applications that require high performance at the cost of
placing relatively weak constraints on object behavior. Sequential consistency is a
stronger condition, often useful for describing low-level systems such as hardware
memory interfaces. Linearizability, even stronger, is useful for describing higher-
level systems composed from linearizable components.

Along a different dimension, different method implementations provide
different progress guarantees. Some are blocking, where the delay of any one
thread can delay others, and some are nonblocking, where the delay of a thread
cannot delay the others.

3.1 Concurrency and Correctness

What does it mean for a concurrent object to be correct? Fig. 3.1 shows a simple
lock-based concurrent FIFO queue. The enq() and deq() methods synchronize
by a mutual exclusion lock of the kind studied in Chapter 2. It is easy to see that
this implementation is a correct concurrent FIFO queue. Because each method
accesses and updates fields while holding an exclusive lock, the method calls take
effect sequentially.

This idea is illustrated in Fig. 3.2, which shows an execution in which A en-
queues a, B enqueues b, and C dequeues twice, first throwing EmptyException,
and second returning b. Overlapping intervals indicate concurrent method calls.
All three method calls overlap in time. In this figure, as in others, time moves from

45

46 Chapter 3 Concurrent Objects

1 class LockBasedQueue<T> {
2 int head, tail;
3 T[] items;
4 Lock lock;
5 public LockBasedQueue(int capacity) {
6 head = 0; tail = 0;
7 lock = new ReentrantLock();
8 items = (T[])new Object[capacity];
9 }
10 public void enq(T x) throws FullException {
11 lock.lock();
12 try {
13 if (tail - head == items.length)
14 throw new FullException();
15 items[tail % items.length] = x;
16 tail++;
17 } finally {
18 lock.unlock();
19 }
20 }
21 public T deq() throws EmptyException {
22 lock.lock();
23 try {
24 if (tail == head)
25 throw new EmptyException();
26 T x = items[head % items.length];
27 head++;
28 return x;
29 } finally {
30 lock.unlock();
31 }
32 }
33 }

Figure 3.1 A lock-based FIFO queue. The queue’s items are kept in an array items, where
head is the index of the next item to dequeue, and tail is the index of the first open array
slot (modulo the capacity). The lock field is a lock that ensures that methods are mutually
exclusive. Initially head and tail are zero, and the queue is empty. If enq() finds the queue
is full, i.e., head and tail differ by the queue size, then it throws an exception. Otherwise,
there is room, so enq() stores the item at array entry tail, and then increments tail. The
deq() method works in a symmetric way.

left to right, and dark lines indicate intervals. The intervals for a single thread
are displayed along a single horizontal line. When convenient, the thread name
appears on the left. A bar represents an interval with a fixed start and stop time.
A bar with dotted lines on the right represents an interval with a fixed start-time
and an unknown stop-time. The label “q.enq(x)” means that a thread enqueues
item x at object q, while “q.deq(x)” means that the thread dequeues item x from
object q.

The timeline shows which thread holds the lock. Here, C acquires the lock,
observes the queue to be empty, releases the lock, and throws an exception. It

3.1 Concurrency and Correctness 47

q.enq(a)

q.enq(b)

q.deq(b)

A

B

C

Lock
Holder
Timeline B

enq(b)
C

deq(b)
A

enq(a)

lock() enq(a) unlock()

deq(b) unlock()

lock() enq(b) unlock()

lock() unlock()

C
deq(empty)

lock()

Figure 3.2 Locking queue execution. Here, C acquires the lock, observes the queue to be empty, releases
the lock, and throws an exception. B acquires the lock, inserts b, and releases the lock. A acquires the lock,
inserts a, and releases the lock. C re-acquires the lock, dequeues b, releases the lock, and returns.

does not modify the queue. B acquires the lock, inserts b, and releases the lock.
A acquires the lock, inserts a, and releases the lock. C reacquires the lock,
dequeues b, releases the lock, and returns. Each of these calls takes effect sequen-
tially, and we can easily verify that dequeuing b before a is consistent with our
understanding of sequential FIFO queue behavior.

Let us consider, however, the alternative concurrent queue implementation in
Fig. 3.3. (This queue is correct only if it is shared by a single enqueuer and a single
dequeuer.) It has almost the same internal representation as the lock-based queue
of Fig. 3.1. The only difference is the absence of a lock. We claim this is a correct
implementation of a single-enqueuer/single-dequeuer FIFO queue, although it is
no longer easy to explain why. It may not even be clear what it means for a queue
to be FIFO when enqueues and dequeues are concurrent.

Unfortunately, it follows from Amdahl’s Law (Chapter 1) that concurrent
objects whose methods hold exclusive locks, and therefore effectively execute one
after the other, are less desirable than ones with finer-grained locking or no locks
at all. We therefore need a way to specify the behavior of concurrent objects, and
to reason about their implementations, without relying on method-level locking.
Nevertheless, the lock-based queue example illustrates a useful principle: it is eas-
ier to reason about concurrent objects if we can somehow map their concurrent
executions to sequential ones, and limit our reasoning to these sequential execu-
tions. This principle is the key to the correctness properties introduced in this
chapter.

48 Chapter 3 Concurrent Objects

1 class WaitFreeQueue<T> {
2 volatile int head = 0, tail = 0;
3 T[] items;
4 public WaitFreeQueue(int capacity) {
5 items = (T[])new Object[capacity];
6 head = 0; tail = 0;
7 }
8 public void enq(T x) throws FullException {
9 if (tail - head == items.length)

10 throw new FullException();
11 items[tail % items.length] = x;
12 tail++;
13 }
14 public T deq() throws EmptyException {
15 if (tail - head == 0)
16 throw new EmptyException();
17 T x = items[head % items.length];
18 head++;
19 return x;
20 }
21 }

Figure 3.3 A single-enqueuer/single-dequeuer FIFO queue. The structure is identical to that
of the lock-based FIFO queue, except that there is no need for the lock to coordinate access.

3.2 Sequential Objects

An object in languages such as Java and C++ is a container for data. Each object
provides a set of methods which are the only way to manipulate that object. Each
object has a class, which defines the object’s methods and how they behave. An
object has a well-defined state (for example, the FIFO queue’s current sequence of
items). There are many ways to describe how an object’s methods behave, ranging
from formal specifications to plain English. The application program interface
(API) documentation that we use every day lies somewhere in between.

The API documentation typically says something like the following: if the
object is in such-and-such a state before you call the method, then the object will
be in some other state when the method returns, and the call will return a par-
ticular value, or throw a particular exception. This kind of description divides
naturally into a precondition (describing the object’s state before invoking the
method) and a postcondition, describing, once the method returns, the object’s
state and return value. A change to an object’s state is sometimes called a side
effect. For example, consider how one might specify a first-in-first-out (FIFO)
queue class. The class provides two methods: enq() and deq(). The queue state
is just a sequence of items, possibly empty. If the queue state is a sequence
q (precondition), then a call to enq(z) leaves the queue in state q · z, where
“·” denotes concatenation. If the queue object is nonempty (precondition), say
a · q, then the deq() method removes and returns the sequence’s first element a

3.3 Quiescent Consistency 49

(postcondition), leaving the queue in state q (side effect). If, instead, the queue
object is empty (precondition), the method throws EmptyException and leaves
the queue state unchanged (postcondition).

This style of documentation, called a sequential specification, is so familiar that
it is easy to overlook how elegant and powerful it is. The length of the object’s
documentation is linear in the number of methods, because each method can be
described in isolation. There are a vast number of potential interactions among
methods, and all such interactions are characterized succinctly by the methods’
side effects on the object state. The object’s documentation describes the object
state before and after each call, and we can safely ignore any intermediate states
that the object may assume while the method call is in progress.

Defining objects in terms of preconditions and postconditions makes perfect
sense in a sequential model of computation where a single thread manipulates a
collection of objects. Unfortunately, for objects shared by multiple threads, this
successful and familiar style of documentation falls apart. If an object’s meth-
ods can be invoked by concurrent threads, then the method calls can overlap in
time, and it no longer makes sense to talk about their order. What does it mean,
in a multithreaded program, if x and y are enqueued on a FIFO queue during
overlapping intervals? Which will be dequeued first? Can we continue to describe
methods in isolation, via preconditions and postconditions, or must we provide
explicit descriptions of every possible interaction among every possible collection
of concurrent method calls?

Even the notion of an object’s state becomes confusing. In single-threaded pro-
grams, an object must assume a meaningful state only between method calls.1 For
concurrent objects, however, overlapping method calls may be in progress at every
instant, so the object may never be between method calls. Any method call must be
prepared to encounter an object state that reflects the incomplete effects of other
concurrent method calls, a problem that simply does not arise in single-threaded
programs.

3.3 Quiescent Consistency

One way to develop an intuition about how concurrent objects should behave is
to review examples of concurrent computations involving simple objects, and to
decide, in each case, whether the behavior agrees with our intuition about how a
concurrent object should behave.

Method calls take time. A method call is the interval that starts with an
invocation event and ends with a response event. Method calls by concurrent
threads may overlap, while method calls by a single thread are always sequential

1 There is an exception: care must be taken if one method partially changes an object’s state and
then calls another method of that same object.

50 Chapter 3 Concurrent Objects

r.write(7)

r.write(23) r.read(27)

Thread A

Thread B

Figure 3.4 Why each method call should appear to take effect instantaneously. Two threads
concurrently write −3 and 7 to a shared register r. Later, one thread reads r and returns the
value −7. We expect to find either 7 or −3 in the register, not a mixture of both.

(non-overlapping, one-after-the-other). We say a method call is pending if its call
event has occurred, but not its response event.

For historical reasons, the object version of a read–write memory location
is called a register (see Chapter 4). In Fig. 3.4, two threads concurrently write
−3 and 7 to a shared register r (as before, “r.read(x)” means that a thread reads
value x from register object r, and similarly for “r.write(x).”). Later, one thread
reads r and returns the value−7. This behavior is clearly not acceptable. We expect
to find either 7 or −3 in the register, not a mixture of both. This example suggests
the following principle:

Principle 3.3.1. Method calls should appear to happen in a one-at-a-time,
sequential order.

By itself, this principle is usually too weak to be useful. For example, it
permits reads always to return the object’s initial state, even in sequential
executions.

Here is a slightly stronger condition. An object is quiescent if it has no pending
method calls.

Principle 3.3.2. Method calls separated by a period of quiescence should appear
to take effect in their real-time order.

For example, suppose A and B concurrently enqueue x and y in a FIFO
queue. The queue becomes quiescent, and then C enqueues z. We may not be
able to predict the relative order of x and y in the queue, but we know they are
ahead of z.

Together, Principles 3.3.1 and 3.3.2 define a correctness property called
quiescent consistency. Informally, it says that any time an object becomes qui-
escent, then the execution so far is equivalent to some sequential execution of the
completed calls.

As an example of a quiescently consistent object, consider the shared counter
from Chapter 1. A quiescently-consistent shared counter would return numbers,
not necessarily in the order of the getAndIncrement() requests, but always
without duplicating or omitting a number. The execution of a quiescently con-
sistent object is somewhat like a musical-chairs game: at any point, the music
might stop, that is, the state could become quiescent. At that point, each pending

3.4 Sequential Consistency 51

method call must return an index so that all the indexes together meet the
specification of a sequential counter, implying no duplicated or omitted numbers.
In other words, a quiescently consistent counter is an index distribution mecha-
nism, useful as a “loop counter” in programs that do not care about the order in
which indexes are issued.

3.3.1 Remarks

How much does quiescent consistency limit concurrency? Specifically, under
what circumstances does quiescent consistency require one method call to block
waiting for another to complete? Surprisingly, the answer is (essentially), never.
A method is total if it is defined for every object state; otherwise it is partial. For
example, let us consider the following alternative specification for an unbounded
sequential FIFO queue. One can always enqueue another item, but one can
dequeue only from a nonempty queue. In the sequential specification of a FIFO
queue, enq() is total, since its effects are defined in every queue state, but deq() is
partial, since its effects are defined only for nonempty queues.

In any concurrent execution, for any pending invocation of a total method,
there exists a quiescently consistent response. This observation does not mean
that it is easy (or even always possible) to figure out what that response is, but
only that the correctness condition itself does not stand in the way. We say that
quiescent consistency is a nonblocking correctness condition. We make this notion
more clear in Section 3.6.

A correctness property P is compositional if, whenever each object in the
system satisfies P , the system as a whole satisfies P . Compositionality is impor-
tant in large systems. Any sufficiently complex system must be designed and
implemented in a modular fashion. Components are designed, implemented, and
proved correct independently. Each component makes a clear distinction between
its implementation, which is hidden, and its interface, which precisely character-
izes the guarantees it makes to the other components. For example, if a concur-
rent object’s interface states that it is a sequentially consistent FIFO queue, then
users of the queue need to know nothing about how the queue is implemented.
The result of composing individually correct components that rely only on one
anothers’ interfaces should itself be a correct system. Can we, in fact, compose a
collection of independently implemented quiescently consistent objects to con-
struct a quiescently consistent system? The answer is, yes: quiescent consistency
is compositional, so quiescently consistent objects can be composed to construct
more complex quiescently consistent objects.

3.4 Sequential Consistency

In Fig. 3.5, a single thread writes 7 and then−3 to a shared register r. Later, it reads
r and returns 7. For some applications, this behavior might not be acceptable
because the value the thread read is not the last value it wrote. The order in which

52 Chapter 3 Concurrent Objects

r.write(7) r.write(23) r.read(7)

Figure 3.5 Why method calls should appear to take effect in program order. This behavior is
not acceptable because the value the thread read is not the last value it wrote.

q.enq(x) q.deq(y)

q.enq(y) q.deq(x)

Figure 3.6 There are two possible sequential orders that can justify this execution. Both
orders are consistent with the method calls’ program order, and either one is enough to
show the execution is sequentially consistent.

a single thread issues method calls is called its program order. (Method calls by
different threads are unrelated by program order.)

In this example, we were surprised that operation calls did not take effect in
program order. This example suggests an alternative principle:

Principle 3.4.1. Method calls should appear to take effect in program order.

This principle ensures that purely sequential computations behave the way we
would expect.

Together, Principles 3.3.1 and 3.4.1 define a correctness property called sequen-
tial consistency, which is widely used in the literature on multiprocessor synchro-
nization.

Sequential consistency requires that method calls act as if they occurred in a
sequential order consistent with program order. That is, in any concurrent exe-
cution, there is a way to order the method calls sequentially so that they (1) are
consistent with program order, and (2) meet the object’s sequential specifica-
tion. There may be more than one order satisfying this condition. In Fig. 3.6,
thread A enqueues x while B enqueues y, and then A dequeues y while B
dequeues x. There are two possible sequential orders that can explain these results:
(1) A enqueues x, B enqueues y, B dequeues x, then A dequeues y, or (2) B
enqueues y, A enqueues x, A dequeues y, then B dequeues x. Both these orders
are consistent with the method calls’ program order, and either one is enough to
show the execution is sequentially consistent.

3.4.1 Remarks

It is worth noting that sequential consistency and quiescent consistency are in-
comparable: there exist sequentially consistent executions that are not qui-
escently consistent, and vice versa. Quiescent consistency does not necessarily

3.4 Sequential Consistency 53

preserve program order, and sequential consistency is unaffected by quiescent
periods.

In most modern multiprocessor architectures, memory reads and writes are
not sequentially consistent: they can be typically reordered in complex ways. Most
of the time no one can tell, because the vast majority of reads–writes are not used
for synchronization. In those specific cases where programmers need sequen-
tial consistency, they must ask for it explicitly. The architectures provide special
instructions (usually called memory barriers or fences) that instruct the processor
to propagate updates to and from memory as needed, to ensure that reads and
writes interact correctly. In the end, the architectures do implement sequential
consistency, but only on demand. We discuss further issues related to sequential
consistency and the Java programming language in detail in Section 3.8.

In Fig. 3.7, thread A enqueues x, and later B enqueues y, and finally A
dequeues y. This execution may violate our intuitive notion of how a FIFO queue
should behave: the call enqueuing x finishes before the call dequeuing y starts, so
although y is enqueued after x, it is dequeued before. Nevertheless, this execution
is sequentially consistent. Even though the call that enqueues x happens before
the call that enqueues y, these calls are unrelated by program order, so sequential
consistency is free to reorder them.

One could argue whether it is acceptable to reorder method calls whose inter-
vals do not overlap, even if they occur in different threads. For example, we might
be unhappy if we deposit our paycheck on Monday, but the bank bounces our rent
check the following Friday because it reordered our deposit after your withdrawal.

Sequential consistency, like quiescent consistency, is nonblocking: any pending
call to a total method can always be completed.

Is sequential consistency compositional? That is, is the result of composing
multiple sequentially consistent objects itself sequentially consistent? Here, unfor-
tunately, the answer is no. In Fig. 3.8, two threads, A and B, call enqueue and
dequeue methods for two queue objects, p and q. It is not hard to see that p and q
are each sequentially consistent: the sequence of method calls for p is the same as
in the sequentially consistent execution shown in Fig. 3.7, and the behavior of q is
symmetric. Nevertheless, the execution as a whole is not sequentially consistent.

q.enq(x) q.deq(y)

q.enq(y)

Figure 3.7 Sequential consistency versus real-time order. Thread A enqueues x, and later
thread B enqueues y, and finally A dequeues y. This execution may violate our intuitive notion
of how a FIFO queue should behave because the method call enqueuing x finishes before
the method call dequeuing y starts, so although y is enqueued after x, it is dequeued before.
Nevertheless, this execution is sequentially consistent.

54 Chapter 3 Concurrent Objects

q.enq(x) p.deq(y)

p.enq(y) q.deq(x)

p.enq(x)

q.enq(y)

A

B

Figure 3.8 Sequential consistency is not compositional. Two threads, A and B, call enqueue
and dequeue methods on two queue objects, p and q. It is not hard to see that p and q are
each sequentially consistent, yet the execution as a whole is not sequentially consistent.

Let us check that there is no correct sequential execution in which these method
calls can be ordered in a way consistent with their program order. Let us assume,
by way of contradiction, that these method calls can be reordered to form a correct
FIFO queue execution, where the order of the method calls is consistent with the
program order. We use the following shorthand: 〈p.enq(x) A〉 → 〈q.deq(x) B〉
means that any sequential execution must order A’s enqueue of x at p before B’s
dequeue of x at p, and so on. Because p is FIFO and A dequeues y from p, y must
have been enqueued before x:

〈p.enq(y) B〉 → 〈p.enq(x) A〉

Likewise,

〈q.enq(x) A〉 → 〈q.enq(y) B〉.

But program order implies that

〈p.enq(x) A〉 → 〈q.enq(x) A〉 and 〈q.enq(y) B〉 → 〈p.enq(y) B〉.

Together, these orderings form a cycle.

3.5 Linearizability

We have seen that the principal drawback of sequential consistency is that it is not
compositional: the result of composing sequentially consistent components is not
itself necessarily sequentially consistent. We propose the following way out of this
dilemma. Let us replace the requirement that method calls appear to happen in
program order with the following stronger restriction:

Principle 3.5.1. Each method call should appear to take effect instantaneously at
some moment between its invocation and response.

This principle states that the real-time behavior of method calls must be pre-
served. We call this correctness property linearizability. Every linearizable execu-
tion is sequentially consistent, but not vice versa.

3.6 Formal Definitions 55

3.5.1 Linearization Points

The usual way to show that a concurrent object implementation is linearizable is
to identify for each method a linearization point where the method takes effect.
For lock-based implementations, each method’s critical section can serve as its
linearization point. For implementations that do not use locking, the linearization
point is typically a single step where the effects of the method call become visible
to other method calls.

For example, let us recall the single-enqueuer/single-dequeuer queue of
Fig. 3.3. This implementation has no critical sections, and yet we can identify its
linearization points. Here, the linearization points depend on the execution. If it
returns an item, the deq() method has a linearization point when the head field
is updated (Line 18). If the queue is empty, the deq() method has a lineariza-
tion point when it throws Empty Exception (Line 16). The enq() method is
similar.

3.5.2 Remarks

Sequential consistency is a good way to describe standalone systems, such as
hardware memories, where composition is not an issue. Linearizability, by con-
trast, is a good way to describe components of large systems, where components
must be implemented and verified independently. Moreover, the techniques we
use to implement concurrent objects, are all linearizable. Because we are inter-
ested in systems that preserve program order and compose, most (but not all)
data structures considered in this book are linearizable.

How much does linearizability limit concurrency? Linearizability, like sequen-
tial consistency, is nonblocking. Moreover, like quiescent consistency, but unlike
sequential consistency, linearizability is compositional; the result of composing
linearizable objects is linearizable.

3.6 Formal Definitions

We now consider more precise definitions. Here, we focus on the formal proper-
ties of linearizability, since it is the property most often used in this book. We leave
it as an exercise to provide the same kinds of definitions for quiescent consistency
and sequential consistency.

Informally, we know that a concurrent object is linearizable if each method call
appears to take effect instantaneously at some moment between that method’s
invocation and return events. This statement is probably enough for most infor-
mal reasoning, but a more precise formulation is needed to take care of some
tricky cases (such as method calls that have not returned), and for more rigorous
styles of argument.

56 Chapter 3 Concurrent Objects

An execution of a concurrent system is modeled by a history, a finite sequence
of method invocation and response events. A subhistory of a history H is a subse-
quence of the events of H . We write a method invocation as 〈x.m(a∗) A〉, where
x is an object, m a method name, a∗ a sequence of arguments, and A a thread.
We write a method response as 〈x : t(r∗) A〉 where t is either Ok or an exception
name, and r∗ is a sequence of result values. Sometimes we refer to an event labeled
with thread A as a step of A.

A response matches an invocation if they have the same object and thread. We
have been using the term “method call” informally, but here is a more formal
definition: a method call in a history H is a pair consisting of an invocation and
the next matching response in H . We need to distinguish calls that have returned
from those that have not: An invocation is pending in H if no matching response
follows the invocation. An extension of H is a history constructed by append-
ing responses to zero or more pending invocations of H . Sometimes, we ignore
all pending invocations: complete(H) is the subsequence of H consisting of all
matching invocations and responses.

In some histories, method calls do not overlap: A history H is sequential if the
first event of H is an invocation, and each invocation, except possibly the last, is
immediately followed by a matching response.

Sometimes we focus on a single thread or object: a thread subhistory, H |A (“H
at A”), of a history H is the subsequence of all events in H whose thread names
are A. An object subhistory H |x is similarly defined for an object x. In the end,
all that matters is how each thread views what happened: two histories H and
H ′ are equivalent if for every thread A, H |A = H ′|A. Finally, we need to rule out
histories that make no sense: A history H is well formed if each thread subhistory
is sequential. All histories we consider here are well-formed. Notice that thread
subhistories of a well-formed history are always sequential, but object subhistories
need not be.

How can we tell whether an object is really a FIFO queue? We simply assume
that we have some effective way of recognizing whether any sequential object his-
tory is or is not a legal history for that object’s class. A sequential specification for
an object is just a set of sequential histories for the object. A sequential history H
is legal if each object subhistory is legal for that object.

Recall from Chapter 2 that a partial order → on a set X is a relation that is
irreflexive and transitive. That is, it is never true that x→ x, and whenever x→ y
and y→ z, then x→ z. Note that it is possible that there are distinct x and y such
that neither x→ y nor y→ x. A total order < on X is a partial order such that for
all distinct x and y in X, either x < y or y < x.

Any partial order can be extended to a total order:

Fact 3.6.1. If → is a partial order on X, then there exists a total order “<” on X
such that if x→ y, then x < y.

We say that a method call m0 precedes a method call m1 in history H
if m0 finished before m1 started: that is, m0’s response event occurs before

3.6 Formal Definitions 57

m1’s invocation event. This notion is important enough to introduce some
shorthand notion. Given a history H containing method calls m0 and m1, we
say that m0 →H m1 if m0 precedes m1 in H . We leave it as an exercise to show that
→H is a partial order. Notice that if H is sequential, then →H is a total order.
Given a history H and an object x, such that H |x contains method calls m0 and
m1, we say that m0 →x m1 if m0 precedes m1 in H |x.

3.6.1 Linearizability

The basic idea behind linearizability is that every concurrent history is equiv-
alent, in the following sense, to some sequential history. The basic rule is that
if one method call precedes another, then the earlier call must have taken effect
before the later call. By contrast, if two method calls overlap, then their order is
ambiguous, and we are free to order them in any convenient way.

More formally,

Definition 3.6.1. A history H is linearizable if it has an extension H ′ and there
is a legal sequential history S such that

L1 complete(H ′) is equivalent to S, and

L2 if method call m0 precedes method call m1 in H , then the same is true in S.

We refer to S as a linearization of H . (H may have multiple linearizations.)
Informally, extending H to H ′ captures the idea that some pending invo-

cations may have taken effect, even though their responses have not yet been
returned to the caller. Fig. 3.9 illustrates the notion: we must complete the pending
enq(x) method call to justify the deq() call that returns x. The second condition
says that if one method call precedes another in the original history, then that
ordering must be preserved in the linearization.

3.6.2 Compositional Linearizability

Linearizability is compositional:

Theorem 3.6.1. H is linearizable if, and only if, for each object x, H |x is
linearizable.

q.enq(x)

q.deq(x)

Figure 3.9 The pending enq(x) method call must take effect early to justify the deq() call that
returns x.

58 Chapter 3 Concurrent Objects

Proof: The “only if ” part is left as an exercise.
For each object x, pick a linearization of H |x. Let Rx be the set of responses

appended to H |x to construct that linearization, and let →x be the corresponding
linearization order. Let H ′ be the history constructed by appending to H each
response in Rx.

We argue by induction on the number of method calls in H ′. For the base case,
if H ′ contains only one method call, we are done. Otherwise, assume the claim
for every H containing fewer than k > 1 method calls. For each object x, consider
the last method call in H ′|x. One of these calls m must be maximal with respect
to →H : that is, there is no m′ such that m→H m′. Let G′ be the history defined
by removing m from H ′. Because m is maximal, H ′ is equivalent to G′ ·m. By the
induction hypothesis, G′ is linearizable to a sequential history S ′, and both H ′

and H are linearizable to S ′ ·m. �

Compositionality is important because it allows concurrent systems to be
designed and constructed in a modular fashion; linearizable objects can be imple-
mented, verified, and executed independently. A concurrent system based on a
noncompositional correctness property must either rely on a centralized sched-
uler for all objects, or else satisfy additional constraints placed on objects to ensure
that they follow compatible scheduling protocols.

3.6.3 The Nonblocking Property

Linearizability is a nonblocking property: a pending invocation of a total method
is never required to wait for another pending invocation to complete.

Theorem 3.6.2. Let inv(m) be an invocation of a total method. If 〈x inv P 〉 is
a pending invocation in a linearizable history H , then there exists a response
〈x res P 〉 such that H · 〈x res P 〉 is linearizable.

Proof: Let S be any linearization of H . If S includes a response 〈x res P 〉
to 〈x inv P 〉, we are done, since S is also a linearization of H · 〈x res P 〉.
Otherwise, 〈x inv P 〉 does not appear in S either, since linearizations, by defi-
nition, include no pending invocations. Because the method is total, there exists
a response 〈x res P 〉 such that

S ′ = S · 〈x inv P 〉 · 〈x res P 〉

is legal. S ′, however, is a linearization of H · 〈x res P 〉, and hence is also a lin-
earization of H . �

This theorem implies that linearizability by itself never forces a thread with
a pending invocation of a total method to block. Of course, blocking (or even
deadlock) may occur as artifacts of particular implementations of linearizability,
but it is not inherent to the correctness property itself. This theorem suggests that

3.7 Progress Conditions 59

linearizability is an appropriate correctness condition for systems where concur-
rency and real-time response are important.

The nonblocking property does not rule out blocking in situations where it
is explicitly intended. For example, it may be sensible for a thread attempting to
dequeue from an empty queue to block, waiting until another thread enqueues
an item. A queue specification would capture this intention by making the deq()
method’s specification partial, leaving its effect undefined when applied to an
empty queue. The most natural concurrent interpretation of a partial sequential
specification is simply to wait until the object reaches a state in which the method
is defined.

3.7 Progress Conditions

Linearizability’s nonblocking property states that any pending invocation has a
correct response, but does not talk about how to compute such a response. For
example, let us consider the scenario for the lock-based queue shown in Fig. 3.1.
Suppose the queue is initially empty. A halts half-way through enqueuing x, and
B then invokes deq(). The nonblocking property guarantees that B’s call to deq()
has a response: it could either throw an exception or return x. In this implemen-
tation, however, B is unable to acquire the lock, and will be delayed as long as A
is delayed.

Such an implementation is called blocking, because an unexpected delay by one
thread can prevent others from making progress. Unexpected thread delays are
common in multiprocessors. A cache miss might delay a processor for a hundred
cycles, a page fault for a few million cycles, preemption by the operating system
for hundreds of millions of cycles. These delays depend on the specifics of the
machine and the operating system.

A method is wait-free if it guarantees that every call finishes its execution
in a finite number of steps. It is bounded wait-free if there is a bound on the
number of steps a method call can take. This bound may depend on the num-
ber of threads. For example, the Bakery algorithm’s doorway section studied in
Chapter 2 is bounded wait-free, where the bound is the number of threads.
A wait-free method whose performance does not depend on the number of active
threads is called population-oblivious. We say that an object is wait-free if its meth-
ods are wait-free, and in an object oriented language, we say that a class is wait-
free if all instances of its objects are wait-free. Being wait-free is an example of a
nonblocking progress condition, meaning that an arbitrary and unexpected delay
by one thread (say, the one holding a lock) does not necessarily prevent the others
from making progress.

The queue shown in Fig. 3.3 is wait-free. For example, in the scenario where A
halts half-way through enqueuing x, and B then invokes deq(), then B will either
throw EmptyException (if A halted before storing the item in the array) or it
will return x (if A halted afterward). The lock-based queue is not nonblocking

