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Why you should take this course

* Concurrency is super-cool, and super-important
* You'll learn important concepts and background

* Have fun programming cool systems

GPUs! (optionally) FGPAs!

Modern Programming languages: Go! Rust!

Interesting synchronization primitives (not just boring old locks)
Programming tools people use to program super-computers (ooh...)

Two perspectives:

* The “just eat your kale and quinoa” argument
* The “it’s going to be fun” argument
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Another of my current computers

A lot has changed but...

the common theme is...??
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Concurrency and Parallelism are everywhere

How much parallel and concurrent programming

have you learned so far?

* Concurrency/parallelism can’t be avoided
anymore (want a job?)
A program or two playing with locks and threads
isn’t enough
I’ve worked in industry a lot—I know

Course goal is to expose you to lots of ways of
programming systems like these

...So “you should take this course because it’s good for you” (eat your #$(*& kale!)




Goal: Make Concurrency Your Close Friend
Method: Use Many Different Approaches to Concurrency

Abstract | Concrete

Locks and Shared Memory Synchronization

Language Support

Parallel Architectures

HPC
Distributed Computing / Big Data

Modern/Advanced Topics

Whatever Interests YOU

Prefix Sum with pthreads

Go lab: condition variables, channels, go routines
Rust lab: 2PC

GPU Programming Lab
(Optional) FPGA Programming Lab

Optional MPI lab
Rust 2PC / MPI labs

» Specialized Runtimes / Programming Models
e Auto-parallelization
* Race Detection

Project
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Serial vs. Parallel Program

l instructions /
N

13 2 t1

Key concerns:

* Programming model

* Execution Model

* Performance/Efficiency
e Exposing parallelism

N\

Multiple instructions
in parallel

15
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Free lunch —is over ®
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Uncommon architecture:

Fault — tolerance
Pipeline parallelism
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prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)}
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

./
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e Example: vector operations (e.g., Intel SSE/AVX, GPU)
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MIMD

* Example: multi-core CPU

prev instruct

prev instruct

load A(1)

call funcD

load B(1)

X=y*z

C(1)=A(1)*B(1)

sum=x*2

store C(1)

call sub1(i,j)

next instruct

P1

next instruct

P2

prev instruct

do 10 i=1,N

alpha=w**3

zeta=C(i)

10 continue

next instruct

Pn

awy
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Problem Partitioning

;"f |III III II.H"-.

* Domain Decomposition - e
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* Input domain
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* Functional Decomposition
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* Independent Tasks
* Pipelining
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Problem Partitioning

Problem Data Set

* Decomposition: Domain v. Functional

* Domain Decomposition ' '
SPMD . .

Input domain
Output Domain
Both

* Functional Decomposition
* MPMD
* Independent Tasks
* Pipelining

Problem Instruction Set
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Game of Life

* Given a 2D Grid:
c v:(i,]) = F(vt_l(of all its neighbors))

j+1
o

O

N . 1
ql 1 .I,J '

-1 What model fits “best”?

D
</

¢

O—O
] SISD SIMD

Single Instruction stream Single Instruction stream
Single Data stream Multiple Data stream

M
/

MISD MIMD

Multiple Instruction stream | Multiple Instruction stream
Single Data stream Multiple Data stream
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* Accessing Data
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* Accessing Data
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* Task Management Overhead
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Domain decomposition

e Each CPU gets part of the input

CPUO

»w
T
N/ p—y

i-1 ] i+1

O O O

J-1
O O O

How could we do a functional decomposition?

Issues?

Accessing Data
e Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
e Scalability vs Latency
Control
e Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
* Task Management Overhead
Load Balance
Correctness
e order of reads and writes is non-deterministic
* synchronization is required to enforce the order
* locks, semaphores, barriers, conditionals....



Lab #1

* Basic synchronization
* http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html

* Start early!!!


http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html

Questions?



