Concurrency: Honors
Welcome to cs37/8hn

Chris Rossbach

Outline for Today

* Questions?

* Administrivia

* Course Overview

* Course Details and Logistics

* Concurrency & Parallelism Basics

Acknowledgments: some materials in this lecture borrowed from:
* Emmett Witchel, who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger

* Mark Silberstein, who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta

Course Details

Course Name: CS378H — Concurrency: Honors

Unique Number: 52670

Lectures: T-Th 9:30-11:00AM Zoom

Class Web Page: http://www.cs.utexas.edu/users/rossbach/cs378h

Chris Rossbach

Karthik Velayutham B
Principles of Parallel Programming (ISBN-10: 0321487907) i PARALLEL

PROGRAMMING

Please read the syllabus!

CALVIN LIN
LAWRENCGCE SNYDER

...More on this shortly...

http://www.cs.utexas.edu/users/rossbach/cs378h
http://www.cs.utexas.edu/users/rossbach
https://www.universitycoop.com/search?keywords=Lin%20Snyder%20Parallel%20Programming

Why you should take this course

Why you should take this course

* Concurrency is super-cool, and super-important

Why you should take this course

* Concurrency is super-cool, and super-important

* You'll learn important concepts and background

Why you should take this course

* Concurrency is super-cool, and super-important
* You'll learn important concepts and background

* Have fun programming cool systems
 GPUs! (optionally) FGPASs!
* Modern Programming languages: Go! Rust!
* Interesting synchronization primitives (not just boring old locks)
* Programming tools people use to program super-computers (ooh...)

Why you should take this course

* Concurrency is super-cool, and super-important
* You'll learn important concepts and background

* Have fun programming cool systems

GPUs! (optionally) FGPAs!

Modern Programming languages: Go! Rust!

Interesting synchronization primitives (not just boring old locks)
Programming tools people use to program super-computers (ooh...)

Two perspectives:

* The “just eat your kale and quinoa” argument
* The “it’s going to be fun” argument

My first computer

My first computer

My first computer

My first computer

My first computer

Storage

L cmwaw =5

Tape drive! »
(also good for playing heavy metal music)

My first computer

screen

Storage

Tape drive! »
(also good for playing heavy metal music)

My first computer

screen

Storage

L cmwaw =5

Tape drive! »
(also good for playing heavy metal music)

My current computer

My current computer

Too boring...

Another of my current computers

stocks

Notes

Another of my current computers

\ T R T

e 050 20
L]

Another of my current computers

Mail

Reminders

calendar

. Noies

Home

CPU

USH S3ME
== CPU
wsh 20 L
o [HEIE) tmrgel
GPU
Unidort™-M devioe
.

Image DSP

Crypto

Dstis & Irace
CTALSTRFTM

== Rl e 3
Fast A cantralier

ANo
ther of my current computers

Calendar Photos Camera

M
o
% ©
-
Hews

Clock Weather

Maps

Notes stocks

Reminders Home

CPU

CPU

GPU

[
s | b |

Another of my current computers

A lot has changed but...

the common theme is...??

MANDVHOR USH S5MHE

mea | o W]
oz | e | imceo [smmea [rioon |

2050 20 L
ot MBI i

GPU

Notes stocks

Modern Technology Stack

Modern Technology Stack

CPU /O dev DISK NIC

MH

Modern Technology Stack

MH

CPU

/O dev

DISK

NIC

Modern Technology Stack

Applications

%: CPU /0 dev DISK NIC

Modern Technology Stack

Applications

— : ,
process files user-mode

c

§ LIBC/CLR Runtimes/libs
. . OS-level

%i process files pipes D abstractions

)

I

___driver | driver W driver LY

Modern Technology Stack

FPGA GPU ASIC

MH

NVM DSP CRYPT

Modern Technology Stack

Applications

— device
APlIs

Runtime

device device
APIs APlIs APls }

Runtime Runtime Runtime

— Runtime
support

Vendor-specific

driver

g FPGA GPU ASIC

NVM DSP CRYPT

Concurrency and Parallelism are Everywhere

Applications

device device device device
APIs APls APIs APIs

Runtime Runtime Runtime Runtime

[joctl]

Vendor-specific

driver

driver

CPU GPU DISK ASIC

NVM FPGA DSP CRYPT

Concurrency and Parallelism are Everywhere

Applications

device device device device
APIs APls APIs APIs

Runtime Runtime Runtime Runtime

[joctl]

Vendor-specific

driver

driver

Wait! CPU GPU DISK ASIC

* What’s concurrency?
* What’s parallelism? NVM FPGA DSP CRYPT

Concurrency and Parallelism are Everywhere

Applications

device device device device
APIs APls APIs APIs

Runtime Runtime Runtime Runtime

[joctl]

Vendor-specific

driver

driver

CPU GPU DISK ASIC

NVM FPGA DSP CRYPT

Applications

Concurrency and Parallelism are Everywhere

device device device device
APIs APIs APIs APIs

Runtime

Runtime

Runtime

Runtime

[doctl]
Vendor-specific
driver
vCPU vGPU vDISK VASIC
vNVM VFPGA vDSP VvCRPT

HYPERVISOR

CPU

GPU

DISK

NVM

FPGA

DSP

Applications

Concurrency and Parallelism are Everywhere

device device device device
APIs APIs APIs APIs

Runtime

Runtime

Runtime

Runtime

[doctl]
Vendor-specific
driver
vCPU vGPU vDISK VASIC
vNVM VFPGA vDSP VvCRPT

HYPERVISOR

CPU

GPU

DISK

NVM

FPGA

DSP

Concurrency and Parallelism are Everywhere

oncurrency and Parallelism are Everywhere

)
HYPERVISOR

N] CPU GPU DISK ASIC

NVM DSP

oncurrency and Parallelism are Everywhere

o \7e;1-do‘r»s;)ecific

driver

)
I N HYPERVISOR

N] CPU GPU DISK ASIC

NVM DSP

oncurrency and Parallelism are Everywhere

— U Ve;dt;r»s;)ecific

driver

HYPERVISOR

N] CPU GPU DISK ASIC

NVM DSP

Concurrency and Parallelism are Everywhere

Vendor-specific e — Vendor-specific

driver er i driver

HYPERVISOR HYPERVISOR

N] CPU GPU DISK ASIC N] CPU GPU DISK ASIC
PG
NVM A DSP e NVM A DSP -

Concurrency and Parallelism are Everywhere

Vendor-specific e — Vendor-specific e — - Vendor-specific

driver er i driver er driver

HYPERVISOR HYPERVISOR HYPERVISOR

N cru GPU DISK ASIC N cru GPU DISK ASIC N cru GPU DISK ASIC
DSP A4S DSP DSP
NVM A DT NVM A 2 NVM A PT

Concurrency and Parallelism are Everywhere

5 Veﬁ-dc;-saecific

driver

Vendor-specific e — Vendor-specific e — - Vendor-specific

driver er i driver er driver

HYPERVISOR HYPERVISOR HYPERVISOR

N cpu GPU DISK ASIC N cpu GPU DISK ASIC N cru GPU DISK AsIC N CcPU GPU | Disk ASIC
PG CRY | PG
NVM A DSP o NVM \ DSP o NVM A DSP e NVM R DSP o

N HYPERVISO|

Concurrency and Parallelism are Everywhere

5 Veﬁ-dc;-saecific

driver

Vendor-specific —— Vendor-specific ——— - Vendor-specific

driver driver er driver

HYPERVISOR HYPERVISOR HYPERVISOR N HYPERVISOR

N cru GPU DISK AsiC N| cpu GPU DISK ASIC nf cpu GPU DISK ASIC N cpu Gpu |o Disk ASIC
FPG = CRY | TPG
NVM A DSP o NVM A DSP o NVM A DSP or NVM R DSP .

Cluster OS

Concurrency and Parallelism are Everywhere

Applications

— QL - -
Vendor-specific — Vendor-specific — Vendor-specific —_— B Vendor-specific

driver driver er driver iver | driver

HYPERVISOR HYPERVISOR HYPERVISOR HYPERVISOR

N cru GPU DISK AsiC N| cpu GPU DISK ASIC nf cpu GPU DISK ASIC N cpu Gpu |o Disk ASIC
FPG = CRY | TPG
NVM A DSP o NVM A DSP o NVM A DSP or NVM R DSP .

Cluster OS

Concurrency and Parallelism are Everywhere

Applications

— ole - - -
Vendor-specific — Vendor-specific — Vendor-specific —_— B Vendor-specific

driver driver er driver iver | driver

HYPERVISOR HYPERVISOR HYPERVISOR HYPERVISOR

N cru GPU DISK AsiC N| cpu GPU DISK ASIC nf cpu GPU DISK ASIC N cpu Gpu |o Disk ASIC
FPG = CRY | TPG
NVM A DSP o NVM A DSP o NVM A DSP or NVM R DSP .

Cluster OS

Concurrency and Parallelism are everywhere

CPU(s)

GPU
Image DSP

Crypto

Concurrency and Parallelism are everywhere

How much parallel and concurrent programming
have you learned so far?

Concurrency and Parallelism are everywhere

How much parallel and concurrent programming

have you learned so far?

* Concurrency/parallelism can’t be avoided
anymore (want a job?)
A program or two playing with locks and threads
isn’t enough
I’ve worked in industry a lot—I know

Course goal is to expose you to lots of ways of
programming systems like these

...So “you should take this course because it’s good for you” (eat your #$(*& kale!)

Goal: Make Concurrency Your Close Friend
Method: Use Many Different Approaches to Concurrency

Abstract | Concrete

Locks and Shared Memory Synchronization

Language Support

Parallel Architectures

HPC
Distributed Computing / Big Data

Modern/Advanced Topics

Whatever Interests YOU

Prefix Sum with pthreads

Go lab: condition variables, channels, go routines
Rust lab: 2PC

GPU Programming Lab
(Optional) FPGA Programming Lab

Optional MPI lab
Rust 2PC / MPI labs

» Specialized Runtimes / Programming Models
e Auto-parallelization
* Race Detection

Project

Logistics Reprise

Course Name: CS378H — Concurrency: Honors

Unique Number: 52670
Lectures: TTh 9:30-11:00AM WAG 420

CELATSLEEC http://www.cs.utexas.edu/users/rossbach/cs378h
Chris Rossbach

Karthik Velayutham | vkiveiiss o

PARALLEL

| _ 5
Principles of Parallel Programming (ISBN-10: 0321487907) SGRAMMI

PROGRAMMING

Seriously, read the syllabus!
AISO, start Lab 1[CALVIN LIN

LAWRENCGCE SNYDER

http://www.cs.utexas.edu/users/rossbach/cs378h
http://www.cs.utexas.edu/users/rossbach
https://www.universitycoop.com/search?keywords=Lin%20Snyder%20Parallel%20Programming

Two Super-Serious Notes

Two Super-Serious Notes

* Inclusivity and respect are absolute musts

Two Super-Serious Notes

* Inclusivity and respect are absolute musts

* Don’t make your repos public or look at other people’s public repos

Two Super-Serious Notes

* Inclusivity and respect are absolute musts

* Don’t make your repos public or look at other people’s public repos
* Don’t make your repos public or look at other people’s public repos

Two Super-Serious Notes

* Inclusivity and respect are absolute musts

* Don’t make your repos public or look at other people’s public repos
* Don’t make your repos public or look at other people’s public repos
* Don’t make your repos public or look at other people’s public repos

Two Super-Serious Notes

* Inclusivity and respect are absolute musts

* Don’t ma
* Don’t ma
* Don’t ma
* Don’t ma

ke your repos pu
ke your repos pu
ke your repos pu

ke your repos pu

Ic or
IC or
IC or
Ic or

0]0)
0]0)
0]0)
0]0)

K at ot
K at ot
< at ot

K at ot

her peop
her peop
her peop

ner peop

e’s pub
e’s pub
e’s pub
e’s pub

IC repos
IC repos
IC repos
IC repos

Two Super-Serious Notes

* Inclusivity and respect are absolute musts

* Don’t ma
* Don’t ma
* Don’t ma
* Don’t ma
* Don’t ma

ke your repos pu
Ke your repos pu
ke your repos pu
ke your repos pu

ke your repos pu

Ic or
IC or
IC or
Ic or
IC or

0]0)
0]0)
0]0)
0]0)
0]0)

K at ot
K at ot
K at ot
K at ot

K at ot

her peop
her peop
her peop
her peop

ner peop

e’s pub
e’s pub
e’s pub
e’s pub
e’s pub

IC repos
IC repos
IC repos
IC repos
IC repos

Serial vs. Parallel Program

Serial vs. Parallel Program

l instructions
N 13 2 t1

One instruction at a
time (apparently)

CCCCCC

Serial vs. Parallel Program

problem
_ One instruction at a

instructions time (a ppa rently)

instructions

=-'IIIIII I |- ==

=ML |- v nstruce
Multiple instructions

=.|II|I| I |=.- in parallel

-~ |-

CS3

15

Serial vs. Parallel Program

instructions

Key concerns:

instructions

=~'IIIIII I |- ==

=ML |- v nstruce
Multiple instructions

=...|II|II I I=...- in parallel

-~ |-

CS3

15

Serial vs. Parallel Program

instructions

1
A

13 2 t1

Key concerns:
* Programming model

probhlgs instructions

-l |-
~Hlll 1 |- ple instruct
Multiple instructions
=..|||||| l |=..- in parallel
-l | -E

15

Serial vs. Parallel Program

IN
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEEEEEEEEREERI|

~E
- Multiple instructions
_.- in parallel
~ =

Key concerns:
* Programming model
* Execution Model

instructions

13 2 t1

instryefions

prﬂ pr

)

b4

i

15

Key concerns:

Serial vs. Parallel Program
* Programming model

0. Execution Model
l instructions / * Performance/Efficiency
N

13 2 t1

instryefions

prﬂ pr

N\

)

Multiple instructions
in parallel

b4

15

Serial vs. Parallel Program

l instructions /
N

13 2 t1

Key concerns:

* Programming model

* Execution Model

* Performance/Efficiency
e Exposing parallelism

N\

Multiple instructions
in parallel

15

Free lunch...

35 YEARS OF MICROPROCESSOR TREND DATA

7 E
10 ¢ : } § ; : : Transistors
i : : : : : : (thousands)

6 | :] : ? f :

5[| | |
i Single-thread
) Performance
(SpecINT)

10% b

T 50 TS S SR S

Typical Power
(Watts)

Number of
- Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Free lunch —is over ®

Transistor
35 YEARS OF MICROPROCESSOR TREND DATA number grows

/ (Moore’s law)

107 - Transistors
6 : : : : ; (thousands)
10° | Sequential
E Single-thread
]_04 ; . Performance perfo rmance
(SpeciliD) no longer
10] improves
2 : Typical Power
10 — (Watts)
101 : Number of
100 r grows

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Flynn’s Taxonomy

Flynn’s Taxonomy

SISD SIMD

MISD MIMD

Execution Models: Flynn’s Taxonomy

Execution Models: Flynn’s Taxonomy

SISD

Single Instruction stream
Single Data stream

SIMD

Single Instruction stream
Multiple Data stream

MISD

Multiple Instruction stream
Single Data stream

MIMD

Multiple Instruction stream
Multiple Data stream

19

Execution Models: Flynn’s Taxonomy

Normal Serial program

s

SISD >

Slngle Data strey

SIMD

Single Instruction stream
Multiple Data stream

MISD

Multiple Instruction stream
Single Data stream

MIMD

Multiple Instruction stream
Multiple Data stream

19

Execution Models: Flynn’s Taxonomy

Uncommon architecture:

Fault — tolerance
Pipeline parallelism

SISD

Single Instruction stream
Single Data stream

SIMD

Single Instruction stream
Multiple Data stream

“MISD >

< Multiple Instruction stream

Single Data stream

)MIMD

ultiple Instruction stream
Multiple Data stream

19

Execution Models: Flynn’s Taxonomy

sisp | simp | 7

Single Instruction stream Single Instruction stream
Single Data stream Multiple Data stream

MISD || MIMD

Itiple Instruction strea
Itiple Data strea

Multiple Instruction stream
Single Data stream

19

SIMD

SIMD

P1

P2

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)|
store C(1) store C(2) store C(n)
next instruct next instruct next instruct

Pn

qwy

SIMD

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)|
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

qwy

e Example: vector operations (e.g., Intel SSE/AVX, GPU)

SIMD

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)}
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

./

+

)/

B2/

X[1] |’ x3

x2

x1 x0 |]

-+

F 4

T[]Iﬂ-lﬂlﬂlrﬂﬂ

i i
X[1+Y[] | x3+y3 [x2+y2

o
x1+y1 | x0 + yﬂ'ﬂ

qwy

e Example: vector operations (e.g., Intel SSE/AVX, GPU)

MIMD

MIMD

* Example: multi-core CPU

MIMD

* Example: multi-core CPU

prev instruct

prev instruct

load A(1)

call funcD

load B(1)

X=y*z

C(1)=A(1)*B(1)

sum=x*2

store C(1)

call sub1(i,j)

next instruct

P1

next instruct

P2

prev instruct

do 10 i=1,N

alpha=w**3

zeta=C(i)

10 continue

next instruct

Pn

awy

Problem Partitioning

Problem Partitioning

* Decomposition: Domain v. Functional

Problem Partitioning

* Decomposition: Domain v. Functional

* Domain Decomposition
* SPMD
* Input domain

* Output Domain
* Both

Problem Partitioning

* Decomposition: Domain v. Functional

* Domain Decomposition - ' ' -
« SPMD N
task 0 task 1 task 2 task 3

* Input domain
* Output Domain
* Both

Problem Partitioning

;"f |III III II.H"-.

* Domain Decomposition - e
« SPMD I
task 0 task 1 task 2 task 3

* Input domain
* Output Domain
* Both

* Functional Decomposition
* MPMD
* Independent Tasks
* Pipelining

* Decomposition: Domain v. Functional

Problem Partitioning

Problem Data Set

* Decomposition: Domain v. Functional

* Domain Decomposition ' '
SPMD . .

Input domain
Output Domain
Both

* Functional Decomposition
* MPMD
* Independent Tasks
* Pipelining

Problem Instruction Set

Game of Life

Game of Life

* Given a 2D Grid:
c v:(i,]) = F(vt_l(of all its neighbors))

»
O P
N/ p p—y

)]
o @' o

-1
o

O
N—
)
/

>y

Game of Life

* Given a 2D Grid:
c v:(i,]) = F(vt_l(of all its neighbors))

j+1
o

O

N . 1
ql 1 .I,J '

-1 What model fits “best”?

D
</

¢

O—O
] SISD SIMD

Single Instruction stream Single Instruction stream
Single Data stream Multiple Data stream

M
/

MISD MIMD

Multiple Instruction stream | Multiple Instruction stream
Single Data stream Multiple Data stream

Domain decomposition

Domain decomposition

e Each CPU gets part of the input

Domain decomposition

e Each CPU gets part of the input

CPU O
b

d &4

o/ h g p—g
|

¢ o o
J-1

& o0
CPU 1

Domain decomposition

e Each CPU gets part of the input Issues?

CPUO

o @ &

-1 i i+1
) O O
-1

O O O

CPU 1

Domain decomposition

e Each CPU gets part of the input Issues?
* Accessing Data
CPUO
o @ o
-1 i i+1
) O O
-1
O O O
CPU 1

Domain decomposition

e Each CPU gets part of the input Issues?

* Accessing Data

 Can we access v(i+1, j) from CPU O
CPU 0 (+1.)
1
PP UL
/ f N
. . 1
o o' o
J-1
@) O O
CPU 1

Domain decomposition

e Each CPU gets part of the input Issues?

* Accessing Data

* Can we access v(i+1, j) from CPU O
CPU O e ,
...as in a “normal” serial program~
A\j+1 /]\ « Shared memory? Distributed?
O O N\ * Time to access v(i+1,j) == Time to access v(i-1,j) ?
N e Scalability vs Latency
i-1] I+1
O O O
J-1
)))
— N~ N~
CPU 1

Domain decomposition

e Each CPU gets part of the input

CPU 0
e
P P
./ A p—yY
_ i +1
o o' o
J-1
O OO
CPU 1

Issues?

Accessing Data
* Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
e Scalability vs Latency
Control
e Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
* Task Management Overhead

Domain decomposition

e Each CPU gets part of the input

CPU 0
e
P P
./ A p—yY
_ i +1
o o' o
J-1
O O 0O
CPU 1

Issues?

Accessing Data
* Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
e Scalability vs Latency
Control
e Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
* Task Management Overhead
Load Balance

Domain decomposition

e Each CPU gets part of the input

CPU 0
e
P P
./ A p—yY
_ i +1
o o' o
J-1
O O 0O
CPU 1

Issues?

Accessing Data
* Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
e Scalability vs Latency
Control
e Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
* Task Management Overhead
Load Balance
Correctness
e order of reads and writes is non-deterministic
* synchronization is required to enforce the order
* Jocks, semaphores, barriers, conditionals....

Domain decomposition

e Each CPU gets part of the input

CPUO

»w
T
N/ p—y

i-1] i+1

O O O

J-1
O O O

How could we do a functional decomposition?

Issues?

Accessing Data
e Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
e Scalability vs Latency
Control
e Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
* Task Management Overhead
Load Balance
Correctness
e order of reads and writes is non-deterministic
* synchronization is required to enforce the order
* locks, semaphores, barriers, conditionals....

Lab #1

* Basic synchronization
* http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html

* Start early!!!

http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html

Questions?

