
Foundations:
Concurrency Concerns
Synchronization Basics

Chris Rossbach
CS378H

Today

• Questions?
• Administrivia

• You’ve started Lab 1 right?
• Foundations

• Parallelism
• Basic Synchronization
• Threads/Processes/Fibers, Oh my!
• Cache coherence (maybe)

• Acknowledgments: some materials in this lecture borrowed from
• Emmett Witchel (who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger)
• Mark Silberstein (who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta)
• Andy Tannenbaum
• Don Porter
• me…
• Photo source: https://img.devrant.com/devrant/rant/r_10875_uRYQF.jpg

Faux Quiz (answer any 2, 5 min)

• Who was Flynn? Why is her/his taxonomy important?
• How does domain decomposition differ from functional

decomposition? Give examples of each.
• Can a SIMD parallel program use functional decomposition?

Why/why not?
• What is an RMW instruction? How can they be used to construct

synchronization primitives? How can sync primitives be constructed
without them?

Who is Flynn?

Who is Flynn?

Who is Flynn?

Michael J. Flynn

Who is Flynn?

Michael J. Flynn
• Emeritus at Stanford

Who is Flynn?

Michael J. Flynn
• Emeritus at Stanford
• Proposed taxonomy in 1966 (!!)

Who is Flynn?

Michael J. Flynn
• Emeritus at Stanford
• Proposed taxonomy in 1966 (!!)
• 30 pages of publication titles

Who is Flynn?

Michael J. Flynn
• Emeritus at Stanford
• Proposed taxonomy in 1966 (!!)
• 30 pages of publication titles
• Founding member of SIGARCH

Who is Flynn?

Michael J. Flynn
• Emeritus at Stanford
• Proposed taxonomy in 1966 (!!)
• 30 pages of publication titles
• Founding member of SIGARCH

• (Thanks Wikipedia)

Review: Flynn’s Taxonomy

Review: Flynn’s Taxonomy

Review: Flynn’s Taxonomy

Y AXIS:

X AXIS:

Review: Flynn’s Taxonomy

Y AXIS:

X AXIS:

Instruction
Streams

Data Streams

Review: Flynn’s Taxonomy

Y AXIS:

X AXIS:

Instruction
Streams

Data Streams

Review: Problem Partitioning

Review: Problem Partitioning

• Domain Decomposition

Review: Problem Partitioning

• Domain Decomposition
• SPMD
• Input domain
• Output Domain
• Both

Review: Problem Partitioning

• Domain Decomposition
• SPMD
• Input domain
• Output Domain
• Both

Review: Problem Partitioning

• Domain Decomposition
• SPMD
• Input domain
• Output Domain
• Both

• Functional Decomposition

Review: Problem Partitioning

• Domain Decomposition
• SPMD
• Input domain
• Output Domain
• Both

• Functional Decomposition
• MPMD
• Independent Tasks
• Pipelining

Review: Problem Partitioning

• Domain Decomposition
• SPMD
• Input domain
• Output Domain
• Both

• Functional Decomposition
• MPMD
• Independent Tasks
• Pipelining

Domain decomposition

Domain decomposition

• Each CPU gets part of the input

Domain decomposition

• Each CPU gets part of the input

CPU 0

CPU 1

Domain decomposition

• Each CPU gets part of the input

CPU 0

CPU 1

Issues?

Domain decomposition

• Each CPU gets part of the input

CPU 0

CPU 1

Issues?
• Accessing Data

Domain decomposition

• Each CPU gets part of the input

CPU 0

CPU 1

Issues?
• Accessing Data

• Can we access v(i+1, j) from CPU 0

Domain decomposition

• Each CPU gets part of the input

CPU 0

CPU 1

Issues?
• Accessing Data

• Can we access v(i+1, j) from CPU 0
• …as in a “normal” serial program?
• Shared memory? Distributed?

• Time to access v(i+1,j) == Time to access v(i-1,j) ?
• Scalability vs Latency

Domain decomposition

• Each CPU gets part of the input

CPU 0

CPU 1

Issues?
• Accessing Data

• Can we access v(i+1, j) from CPU 0
• …as in a “normal” serial program?
• Shared memory? Distributed?

• Time to access v(i+1,j) == Time to access v(i-1,j) ?
• Scalability vs Latency

• Control
• Can we assign one vertex per CPU?
• Can we assign one vertex per process/logical task?
• Task Management Overhead

Domain decomposition

• Each CPU gets part of the input

CPU 0

CPU 1

Issues?
• Accessing Data

• Can we access v(i+1, j) from CPU 0
• …as in a “normal” serial program?
• Shared memory? Distributed?

• Time to access v(i+1,j) == Time to access v(i-1,j) ?
• Scalability vs Latency

• Control
• Can we assign one vertex per CPU?
• Can we assign one vertex per process/logical task?
• Task Management Overhead

• Load Balance

Domain decomposition

• Each CPU gets part of the input

CPU 0

CPU 1

Issues?
• Accessing Data

• Can we access v(i+1, j) from CPU 0
• …as in a “normal” serial program?
• Shared memory? Distributed?

• Time to access v(i+1,j) == Time to access v(i-1,j) ?
• Scalability vs Latency

• Control
• Can we assign one vertex per CPU?
• Can we assign one vertex per process/logical task?
• Task Management Overhead

• Load Balance
• Correctness

• order of reads and writes is non-deterministic
• synchronization is required to enforce the order
• locks, semaphores, barriers, conditionals….

Load Balancing

8

Load Balancing

• Slowest task determines performance

8

Load Balancing

• Slowest task determines performance

8

Load Balancing

• Slowest task determines performance

8

Task 0
Task 1

Task 2
Task 3

wait
work

time

Granularity

Granularity

Granularity

Granularity
• Fine-grain parallelism

• G is small
• Good load balancing
• Potentially high overhead
• Hard to get correct

• Coarse-grain parallelism
• G is large
• Load balancing is tough
• Low overhead
• Easier to get correct

Performance: Amdahl’s law

Performance: Amdahl’s law

Performance: Amdahl’s law

Amdahl’s law

my task

X seconds

Amdahl’s law

Serial Parallelizable

X/2 seconds X/2 seconds

my task

X seconds

Amdahl’s law

What makes something “serial” vs. parallelizable?

Serial Parallelizable

X/2 seconds X/2 seconds

my task

X seconds

Amdahl’s law

Serial Parallelizable

X/2 seconds X/2 seconds

End to end time: X seconds

Amdahl’s law

Serial Parallelizable

X/2 seconds X/2 seconds

End to end time: X seconds

2 CPUs

Amdahl’s law

Serial

X/2 seconds

End to end time: X seconds

2 CPUs

Amdahl’s law

Serial
Parallelizable

Parallelizable

X/2 seconds

End to end time: X seconds

X/4 seconds

2 CPUs

Amdahl’s law

Serial
Parallelizable

Parallelizable

X/2 seconds
X/4 seconds

2 CPUs

Amdahl’s law

Serial
Parallelizable

Parallelizable

X/2 seconds
X/4 seconds

End to end time: (X/2 + X/4) = (3/4)X seconds

2 CPUs

Amdahl’s law

Serial
Parallelizable

Parallelizable

X/2 seconds
X/4 seconds

End to end time: (X/2 + X/4) = (3/4)X seconds

What is the “speedup” in this case?

2 CPUs

Amdahl’s law

Serial
Parallelizable

Parallelizable

X/2 seconds
X/4 seconds

End to end time: (X/2 + X/4) = (3/4)X seconds

What is the “speedup” in this case?

2 CPUs

Speedup exercise

Serial Parallelizable

X/4 seconds
3 * X/4 seconds

End to end time: X seconds

8 CPUs

Speedup exercise

Serial

X/4 seconds

End to end time: X seconds

8 CPUs

Speedup exercise

Serial

X/4 seconds

8 CPUs

Speedup exercise

Serial

X/4 seconds

What is the “speedup” in this case?

8 CPUs

Speedup exercise

Serial

X/4 seconds

What is the “speedup” in this case?

8 CPUs

P P P P P P P P

Speedup exercise

Serial

X/4 seconds

What is the “speedup” in this case?

8 CPUs

Speedup exercise

Serial

X/4 seconds

What is the “speedup” in this case?

8 CPUs

P
P
P
P
P
P
P
P

(3X/4)/8 seconds

Speedup exercise

Serial

X/4 seconds

What is the “speedup” in this case?

8 CPUs

P
P
P
P
P
P
P
P

(3X/4)/8 seconds

Amdahl Action Zone

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

SP
EE

DU
P

NUMBER OF CPUS

50% PARALLEL

Amdahl Action Zone

0

1

2

3

4

5

1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

SP
EE

DU
P

NUMBER OF CPUS

50% 75%

Amdahl Action Zone

0
20
40
60
80

100
120

1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

SP
EE

DU
P

NUMBER OF CPUS

50% 75% 90% 95% 99%

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

• Gustafson’s law: Speedup(N) = S + (S-1)*N
• Weak scaling: Speedup(N) calculated given that work per CPU is fixed
• Work/CPU fixed when adding more CPUs keeps granularity fixed
• Problem size grows: solve larger problems
• Consequence: speedup upper bound is much higher

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

• Gustafson’s law: Speedup(N) = S + (S-1)*N
• Weak scaling: Speedup(N) calculated given that work per CPU is fixed
• Work/CPU fixed when adding more CPUs keeps granularity fixed
• Problem size grows: solve larger problems
• Consequence: speedup upper bound is much higher

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

When is Gustavson’s law a better metric?
When is Amdahl’s law a better metric?

• Gustafson’s law: Speedup(N) = S + (S-1)*N
• Weak scaling: Speedup(N) calculated given that work per CPU is fixed
• Work/CPU fixed when adding more CPUs keeps granularity fixed
• Problem size grows: solve larger problems
• Consequence: speedup upper bound is much higher

Super-linear speedup

Super-linear speedup

Super-linear speedup
Can this
happen?

Super-linear speedup

Super-linear speedup
• Possible due to cache

Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm

Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Efficient bubble sort

Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Efficient bubble sort
•Serial: 150s

Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Efficient bubble sort
•Serial: 150s
•Parallel 40s

Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Efficient bubble sort
•Serial: 150s
•Parallel 40s
•Speedup:

Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Efficient bubble sort
•Serial: 150s
•Parallel 40s
•Speedup:

Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Efficient bubble sort
•Serial: 150s
•Parallel 40s
•Speedup:
NO NO NO!

Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Efficient bubble sort
•Serial: 150s
•Parallel 40s
•Speedup:
NO NO NO!
•Serial quicksort: 30s

Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Efficient bubble sort
•Serial: 150s
•Parallel 40s
•Speedup:
NO NO NO!
•Serial quicksort: 30s
•Speedup = 30/40 = 0.75X

Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Efficient bubble sort
•Serial: 150s
•Parallel 40s
•Speedup:
NO NO NO!
•Serial quicksort: 30s
•Speedup = 30/40 = 0.75X

Why insist on best serial algorithm as baseline?

Concurrency and Correctness
If two threads execute this program concurrently,

how many different final values of X are there?
Initially, X == 0.

void increment() {
int temp = X;
temp = temp + 1;
X = temp;

}

void increment() {
int temp = X;
temp = temp + 1;
X = temp;

}

Thread 1 Thread 2

Answer:
A. 0
B. 1
C. 2
D. More than 2

Schedules/Interleavings
Model of concurrent execution
• Interleave statements from each thread into a single thread
• If any interleaving yields incorrect results, synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;

Thread 1 Thread 2

Schedules/Interleavings
Model of concurrent execution
• Interleave statements from each thread into a single thread
• If any interleaving yields incorrect results, synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;

Thread 1
tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!

Thread 2

Locks fix this with Mutual Exclusion

Mutual exclusion ensures only safe interleavings
• But it limits concurrency, and hence scalability/performance

void increment() {
lock.acquire();
int temp = X;
temp = temp + 1;
X = temp;
lock.release();

}

Locks fix this with Mutual Exclusion

Mutual exclusion ensures only safe interleavings
• But it limits concurrency, and hence scalability/performance

void increment() {
lock.acquire();
int temp = X;
temp = temp + 1;
X = temp;
lock.release();

}

Is mutual exclusion a good abstraction?

Why are Locks “Hard?”

Why are Locks “Hard?”

• Coarse-grain locks

• Fine-grain locks

Why are Locks “Hard?”

• Coarse-grain locks

• Fine-grain locks

Why are Locks “Hard?”

• Coarse-grain locks
• Simple to develop
• Easy to avoid deadlock
• Few data races
• Limited concurrency

• Fine-grain locks
• Greater concurrency
• Greater code complexity
• Potential deadlocks

• Not composable
• Potential data races

• Which lock to lock?

Why are Locks “Hard?”

• Coarse-grain locks
• Simple to develop
• Easy to avoid deadlock
• Few data races
• Limited concurrency

• Fine-grain locks
• Greater concurrency
• Greater code complexity
• Potential deadlocks

• Not composable
• Potential data races

• Which lock to lock?

Why are Locks “Hard?”

// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
LOCK(s);
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);

}

• Coarse-grain locks
• Simple to develop
• Easy to avoid deadlock
• Few data races
• Limited concurrency

• Fine-grain locks
• Greater concurrency
• Greater code complexity
• Potential deadlocks

• Not composable
• Potential data races

• Which lock to lock?

Why are Locks “Hard?”

// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
LOCK(s);
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);

}

move(a, b, key1);

move(b, a, key2);

Thread 0 Thread 1

• Coarse-grain locks
• Simple to develop
• Easy to avoid deadlock
• Few data races
• Limited concurrency

• Fine-grain locks
• Greater concurrency
• Greater code complexity
• Potential deadlocks

• Not composable
• Potential data races

• Which lock to lock?

Why are Locks “Hard?”

// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
LOCK(s);
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);

}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0 Thread 1

• Coarse-grain locks
• Simple to develop
• Easy to avoid deadlock
• Few data races
• Limited concurrency

Review: correctness conditions

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Review: correctness conditions
• Safety

• Only one thread in the critical region

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region
• Even if other thread takes forever in non-critical region

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region
• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region
• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.
• If a thread i is in entry section, then there is a bound on the number of times that

other threads are allowed to enter the critical section before thread i’s request is
granted

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region
• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.
• If a thread i is in entry section, then there is a bound on the number of times that

other threads are allowed to enter the critical section before thread i’s request is
granted

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Theorem: Every property is a
combination of a safety property
and a liveness property.

-Bowen Alpern & Fred Schneider
https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region
• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.
• If a thread i is in entry section, then there is a bound on the number of times that

other threads are allowed to enter the critical section before thread i’s request is
granted

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Mutex, spinlock, etc.
are ways to implement
these

Theorem: Every property is a
combination of a safety property
and a liveness property.

-Bowen Alpern & Fred Schneider
https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region
• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.
• If a thread i is in entry section, then there is a bound on the number of times that

other threads are allowed to enter the critical section before thread i’s request is
granted

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Mutex, spinlock, etc.
are ways to implement
these

Theorem: Every property is a
combination of a safety property
and a liveness property.

-Bowen Alpern & Fred Schneider
https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

Did we get all the important conditions?
Why is correctness defined in terms of locks?

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Release() {
*lock = 0;

}

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Release() {
*lock = 0;

}

What are the problem(s) with this?
Ø A. CPU usage
Ø B. Memory usage
Ø C. Lock::Acquire() latency
Ø D. Memory bus usage
Ø E. Does not work

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Release() {
*lock = 0;

}

What are the problem(s) with this?
Ø A. CPU usage
Ø B. Memory usage
Ø C. Lock::Acquire() latency
Ø D. Memory bus usage
Ø E. Does not work

Completely and utterly broken.
How can we fix it?

