Foundations:
Concurrency Concerns
Synchronization Basics

Chris Rossbach
CS378H

Multithreaded programming
D N ARMCAR| RRNPP T 1

) 2 [.
~"‘-"!A. ;

Today

 Questions?
e Administrivia
* You've started Lab 1 right?
 Foundations
Parallelism
Basic Synchronization

Threads/Processes/Fibers, Oh my!
Cache coherence (maybe)

* Acknowledgments: some materials in this lecture borrowed from
* Emmett Witchel (who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger)
e Mark Silberstein (who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta)
* Andy Tannenbaum
e Don Porter
* me...
* Photo source: https://img.devrant.com/devrant/rant/r_10875_uRYQF.jpg

Fa UX QUIZ (answer any 2, 5 min)

* Who was Flynn? Why is her/his taxonomy important?

* How does domain decomposition differ from functional
decomposition? Give examples of each.

e Can a SIMD parallel program use functional decomposition?
Why/why not?

* What is an RMW instruction? How can they be used to construct
synchronization primitives? How can sync primitives be constructed
without them?

Who is Flynn?

Who is Flynn?

Who is Flynn?

Michael J. Flynn

Who is Flynn?

Michael J. Flynn
* Emeritus at Stanford

Who is Flynn?

Michael J. Flynn
* Emeritus at Stanford
* Proposed taxonomy in 1966 (!!)

Who is Flynn?

Michael J. Flynn

* Emeritus at Stanford

* Proposed taxonomy in 1966 (!!)
* 30 pages of publication titles

Who is Flynn?

Michael J. Flynn

* Emeritus at Stanford

* Proposed taxonomy in 1966 (!!)
* 30 pages of publication titles

* Founding member of SIGARCH

Who is Flynn?

Michael J. Flynn

* Emeritus at Stanford

* Proposed taxonomy in 1966 (!!)
* 30 pages of publication titles

* Founding member of SIGARCH

* (Thanks Wikipedia)

Review: Flynn’s Taxonomy

Review: Flynn’s Taxonomy

Review: Flynn’s Taxonomy

Y AXIS:

X AXIS:

Review: Flynn’s Taxonomy

Y AXIS:
Instruction

Streams

X AXIS:
Data Streams

Review: Flynn’s Taxonomy

SISD SIMD

Single Instruction stream Single Instruction stream
Y AXIS: Single Data stream Multiple Data stream

Instruction |

Streams MISD MIMD

Multiple Instruction stream | Multiple Instruction stream
Single Data stream Multiple Data stream

X AXIS:
Data Streams

Review: Problem Partitioning

Review: Problem Partitioning

* Domain Decomposition

Review: Problem Partitioning

* Domain Decomposition
* SPMD
* Input domain

* Output Domain
* Both

Review: Problem Partitioning

Problem Data Set

* Domain Decomposition
* SPMD

o LI
° OUtpUt Domain task 0 task 1 task 2 task 3

* Both

Review: Problem Partitioning

Problem Data Set

* Domain Decomposition

* SPMD A A . A
s UL
° OUtpUt Domain task 0 task 1 task 2 task 3
* Both

* Functional Decomposition

Review: Problem Partitioning

Problem Data Set

* Domain Decomposition

* SPMD |) A
* Input domain - - - -
* Qutput Domain — S S S
* Both

* Functional Decomposition
* MPMD

* Independent Tasks
* Pipelining

Review: Problem Partitioning

* Domain Decomposition

* SPMD | | |
* Input domain - - - -
¢ OUtpUt Domain task 0 task 1 task 2 task 3

* Both

* Functional Decomposition PfaBlginstruction Set
* MPMD
* Independent Tasks
* Pipelining

Domain decomposition

Domain decomposition

e Each CPU gets part of the input

Domain decomposition

e Each CPU gets part of the input

CPUDO
j*+1
& 66
i-1 i) i+1
O @ —O
j-1
O O —@-
CPU 1

Domain decomposition

e Each CPU gets part of the input Issues?

CPUO

P AP

i-1] I+1
O O— O
i1

O (O—(

CPU 1

Domain decomposition

e Each CPU gets part of the input Issues?
* Accessing Data
CPUO
& & &
i-1] I+1
O O—O
-1
@ e
CPU 1

Domain decomposition

e Each CPU gets part of the input Issues?
* Accessing Data
e Can we access v(i+1, j) from CPU O

CPUO

O WP

F\H ﬂ r\i+1
i-1

O O —O-
CPU 1

Domain decomposition

e Each CPU gets part of the input Issues?

* Accessing Data

e Can we access v(i+1, j) from CPU O
CPU O ° H o" 124 M ?
...as in a “normal” serial program~
KL /Q+1 /L\ « Shared memory? Distributed?
O/ o) * Time to access v(i+1,j) == Time to access v(i-1,j) ?
_ * Scalability vs Latency
i-1 I +1
O O—0O
-1
O (o
CPU 1

Domain decomposition

e Each CPU gets part of the input

CPUO
j*+1
o ¢ o
i-1 N I+1
O O—
j-1
O L
CPU 1

Issues?

Accessing Data
e Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
* Scalability vs Latency
Control
* Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
 Task Management Overhead

Domain decomposition

e Each CPU gets part of the input

CPUO
j*+1
o ¢ o
i-1 N I+1
O O—
j-1
O o
CPU 1

Issues?

Accessing Data
e Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
* Scalability vs Latency
Control
* Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
 Task Management Overhead
Load Balance

Domain decomposition

e Each CPU gets part of the input

CPUO
j+1
o— 0 0O
i-1 i,j I+1
O Q@ —O
j-1
O O——O
CPU 1

Issues?

Accessing Data
e Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
* Scalability vs Latency
Control
* Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
 Task Management Overhead
Load Balance
Correctness
e order of reads and writes is non-deterministic
* synchronization is required to enforce the order
* Jlocks, semaphores, barriers, conditionals....

Load Balancing

Load Balancing

* Slowest task determines performance

Load Balancing

* Slowest task determines performance

CPUDO CPU 1
Eine
O O
i1 n i+1
O

CPU 2 Q—
j-1

CPU 3

Load Balancing

* Slowest task determines performance

CPUO

4%)—

i+1

CPU 1

CPU 3

Granularity

Granularity

Computation

G =

Communication

Granularity

aw}

Computation

G =

Communication

aw}

\d

[communication
@ computation

Granularity

* Fine-grain parallelism
 Gissmall
* Good load balancing
Potentially high overhead
Hard to get correct

w3

Computation

G =

Communication * Coarse-grain parallelism
e Gislarge
* Load balancing is tough
* Low overhead
* Easier to get correct

swi}

\d

[communication
8 computation

Performance: Amdahl!’s law

Performance: Amdahl!’s law

* Speedup is bound by serial component

* Split program serial time (Tsprjqg = 1) into
* |deally parallelizable portion: A
* assumingperfect load balancing, identical speed, no overheads
e Cannot be parallelized (serial) portion:1 — A
* Parallel time:

Tserial 1

Speedup(#CPUs) = =~
llel _
paraliet gepps T (1~ A)

Performance: Amdahl!’s law

o Sprocliiaiathanad b ca A==
Sp . .
' serial run time
peeaup = .
parallel run time
pe #CPUs
Speedup(#CPUs) = Tseriat =— 1
parallel +(1—A)

#CPUs

Amdahl’s law

X seconds
[|

Amdahl’s law

X seconds

X/2 seconds X/2 seconds

| | I | |
Serial Parallelizable

Amdahl’s law

X seconds

X/2 seconds X/2 seconds

| | I | |
Serial Parallelizable

What makes something “serial” vs. parallelizable?

Amdahl’s law

X/2 seconds X/2 seconds
| 1 | |

Serial Parallelizable

End to end time: X seconds

Amdahl’s law

X/2 seconds X/2 seconds
| 1 | |

Serial Parallelizable

End to end time: X seconds

Amdahl’s law

X/2 seconds
| |

Serial

End to end time: X seconds

Amdahl’s law

X/4 seconds
X/2 seconds , |

Parallelizable

Parallelizable

End to end time: X seconds

Amdahl’s law

X/4 seconds
X/2 seconds , |

Parallelizable

Parallelizable

Amdahl’s law

X/4 seconds
X/2 seconds , |

Parallelizable
Serial

Parallelizable

End to end time: (X/2 + X/4) = (3/4)X seconds

Amdahl’s law

X/4 seconds
X/2 seconds , |

Parallelizable
Serial

Parallelizable

End to end time: (X/2 + X/4) = (3/4)X seconds

What is the “speedup” in this case?

Amdahl’s law

X/4 seconds
X/2 seconds , |

Parallelizable

Parallelizable

End to end time: (X/2 + X/4) = (3/4)X seconds
What is the “speedup” in this case?

o oodun serial runtime 1 _ 1 _ 1333
peectp = parallel runtime A 5] S
—+(1_A) +(1.5)
#CPUs 2 cpus

Speedup exercise A P A

3 * X/4 seconds
X/4 seconds

l If I

Serial Parallelizable

End to end time: X seconds

Speedup exercise

X/4 seconds

l I

Serial

End to end time: X seconds

Speedup exercise

X/4 seconds

l I

Serial

Speedup exercise

X/4 seconds

l I

Serial

What is the “speedup” in this case?

Speedup exercise s cpus A? |

X/4 seconds

Serial P p 5 : : : : P

What is the “speedup” in this case?

Speedup exercise

X/4 seconds

l I

Serial

What is the “speedup” in this case?

Speedup exercise

(3X/4)/8 seconds

X/4 seconds

o U |0 © U U U U

What is the “speedup” in this case?

Speedup exercise

(3X/4)/8 seconds

X/4 seconds

o U |0 © U U U U

What is the “speedup” in this case?

serial run time 1 1
Speedup = =7 = 2.91x

parallel run time .
rpgs F(1— 4 75/8 + (1-.75)

Amdahl Action Zone

50% PARALLEL

2.5
2
>
2 1.5
L
a 1
e
0.5
0
N S A S S S N I I
S A R IR AR GRS R A

NUMBER OF CPUS

Amdahl Action Zone

=50% =75%

SPEEDUP

O = N W b U

™
R
ko)
No

AT R T UG S N @ S

™ ©
YV %)
N

NUMBER OF CPUS

Amdahl Action Zone

=50% =75% —90% 95% —99%
120
100
80
60
40
20

0 —— - -

™

N Y %Y 9 0 O N XX B 0O Y A" @ o A
N O VY N X O O D
SR G S

SPEEDUP

NUMBER OF CPUS

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

* N =#CPUs, S = serial portion=1—-A

* Amdahl's law: Speedup(N) = %
S+

* Strong scaling: Speedup (N) calculated given total amount of work is fixed
* Solve same problems faster when problem size is fixed and #CPU grows
* Assuming parallel portion is fixed, speedup soon seizes to increase

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

* N =#CPUs, S = serial portion=1—-A
1

* Amdahl's law: Speedup(N) = +—
S+
* Strong scaling: Speedup (N) calculated given total amount of work is fixed

* Solve same problems faster when problem size is fixed and #CPU grows

* Assuming parallel portion is fixed, speedup soon seizes to increase

e Gustafson’s law: Speedup(N) =S + (S-1)*N
* Weak scaling: Speedup(N) calculated given that work per CPU is fixed
* Work/CPU fixed when adding more CPUs keeps granularity fixed
* Problem size grows: solve larger problems
* Consequence: speedup upper bound is much higher

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

* N =#CPUs, S = serial portion=1—-A

* Amdahl's law: Speedup(N) = AL
S+

* Strong scaling: Speedup (N) calculated given total amount of work is fixed
* Solve same problems faster when problem size is fixed and #CPU grows
* Assuming parallel portion is fixed, speedup soon seizes to increase

e Gustafson’s law: Speedup(N) =S + (S-1)*N
* Weak scaling: Speedup(N) calculated given that work per CPU is fixed
* Work/CPU fixed when adding more CPUs keeps granularity fixed
* Problem size grows: solve larger problems
* Consequence: speedup upper bound is much higher

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

* N =#CPUs, S = serial portion=1—-A

* Amdahl's law: Speedup(N) = %
S48

* Strong scaling: Speedup (N) calculated given total amount of work is fixed
* Solve same problems faster when problem size is fixed and #CPU grows /
* Assuming parallel portion is fixed, speedup soon seizes to increase

e Gustafson’s law: Speedup(N) =S + (S-1)*N
* Weak scaling: Speedup(N) calculated given that work per CPU is fixed
* Work/CPU fixed when adding more CPUs keeps granularity fixed
* Problem size grows: solve larger problems
* Consequence: speedup upper bound is much higher

When is Gustavson’s law a better metric?

When is Amdahl’s law a better metric?

Super-linear speedup

Super-linear speedup

Super-linear speedup

Can this
happen?
@

Super-linear speedup

Super-linear speedup

e Possible due to cache

Speedup

Superlinear

Super-linear speedup

e Possible due to cache

* But usually just poor methodology ™

* Baseline: *best* serial algorithm

Superlinear

Super-linear speedup

e Possible due to cache

* But usually just poor methodology ™

* Baseline: *best* serial algorithm

* Example: Superlinear

Sublinear

Super-linear speedup

e Possible due to cache

* But usually just poor methodology ™

* Baseline: *best* serial algorithm

* Example:

Superlinear

Efficient bubble sort
Sublinear

Processors

Super-linear speedup

e Possible due to cache

* But usually just poor methodology ™

* Baseline: *best* serial algorithm

* Example:

Superlinear

Efficient bubble sort

eSerial: 150s Sublinear

Processors

Super-linear speedup

e Possible due to cache

* But usually just poor methodology ™

* Baseline: *best* serial algorithm

* Example:

Superlinear

Efficient bubble sort
eSerial: 150s
*Parallel 40s

Sublinear

Processors

Super-linear speedup

e Possible due to cache

* But usually just poor methodology ™

* Baseline: *best* serial algorithm

* Example:

Superlinear

Efficient bubble sort
*Serial: 150s
*Parallel 40s
*Speedup:

Sublinear

Processors

Super-linear speedup

e Possible due to cache

* But usually just poor methodology ™

* Baseline: *best* serial algorithm

* Example:

Superlinear

Efficient bubble sort
*Serial: 150s
*Parallel 40s
*Speedup:

Sublinear

129 _ 37572

40 Processors

Super-linear speedup

e Possible due to cache

* But usually just poor methodology ™

* Baseline: *best* serial algorithm

* Example: Superlinear

Efficient bubble sort
*Serial: 150s

*Parallel 40s

*Speedup: 5o

NO NO NO! 75 =3.757

Sublinear

Processors

Super-linear speedup

e Possible due to cache

* But usually just poor methodology ™

* Baseline: *best* serial algorithm

* Example:

Superlinear

Efficient bubble sort
*Serial: 150s

*Parallel 40s

*Speedup: 150

NO NO NO! 7, =3.757
Serial quicksort: 3Us

Sublinear

Processors

Super-linear speedup

e Possible due to cache

* But usually just poor methodology ™

* Baseline: *best* serial algorithm

* Example:

Superlinear

Efficient bubble sort
Serial: 150s

*Parallel 40s

*Speedup: 150

NO NO NO! 75 =3757
Serial quicksort: 3Us
*Speedup = 30/40 = 0.75X

Sublinear

Processors

Super-linear speedup

e Possible due to cache

* But usually just poor methodology ™

* Baseline: *best* serial algorithm

* Example:

Superlinear

Efficient bubble sort
*Serial: 150s

*Parallel 40s

*Speedup: 5o

NO NO NO! 7, =3.757
Serial quicksort: 3Us
*Speedup = 30/40 = 0.75X

Processors

Why insist on best serial algorithm as baseline?

Concurrency and Correctness

If two threads execute this program concurrently,
how many different final values of X are there?

Initially, X == 0.

Thread 1

void increment () {
int temp = X;
temp = temp + 1;
X = temp;

Thread 2

void increment () {
int temp = X;
temp = temp + 1;
X = temp;

Schedules/Interleavings

Model of concurrent execution
* Interleave statements from each thread into a single thread
* If any interleaving yields incorrect results, synchronization is needed

Thread 1 Thread 2
tmpl = X; tmp2 = X;
tmpl = tmpl + 1; tmp2 = tmp2 + 1;
X = tmpl; X = tmp2;

Schedules/Interleavings

Model of concurrent execution
* Interleave statements from each thread into a single thread
* If any interleaving yields incorrect results, synchronization is needed

Thread 1 Thread 2

/tmpl = %0
tmp2 X;
tmpl = X; R tmp2 = X;

tmp2 = tmp2 + 1;
tmpl = tmpl + 1;_ stmpl = tmpl + 1; tmp2 = tmp2 + 1;
X = tmp2;

X = tmpl; —> X = tmpl;
X = tmp2;/

\ 7]

If X==0 initially, X == 1 at the end. WRONG result!

Locks fix this with Mutual Exclusion

void increment () {
lock.acquire() ;
int temp = X;
temp = temp + 1;
X = temp;
lock.release() ;

Mutual exclusion ensures only safe interleavings
* But it limits concurrency, and hence scalability/performance

Locks fix this with Mutual Exclusion

void increment () {
lock.acquire() ;
int temp = X;
temp = temp + 1;
X = temp;
lock.release() ;

Mutual exclusion ensures only safe interleavings
* But it limits concurrency, and hence scalability/performance

Is mutual exclusion a good abstraction?

Why are Locks “Hard?”

Why are Locks “Hard?”

e Coarse-grain locks

Why are Locks “Hard?”

e Coarse-grain locks * Fine-grain locks

Why are Locks “Hard?”

e Coarse-grain locks * Fine-grain locks
e Simple to develop
e Easy to avoid deadlock
* Few data races

e Limited concurrency

Why are Locks “Hard?”

e Coarse-grain locks * Fine-grain locks
e Simple to develop e Greater concurrency
e Easy to avoid deadlock * Greater code complexity
* Few data races * Potential deadlocks
* Limited concurrency * Not composable

e Potential data races
e Which lock to lock?

Why are Locks “Hard?”

e Coarse-grain locks * Fine-grain locks
e Simple to develop

Greater concurrency

e Easy to avoid deadlock Greater code complexity

Potential deadlocks

* Few data races

* Limited concurrency * Not composable
* Potential data races
// WITH FINE-GRAIN LOCKS * Which lock to lock?
void move (T s, T d, Obj key) {
LOCK (s) ;
LOCK (4d) ;

tmp = s.remove (key) ;
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;

Why are Locks “Hard?”

e Coarse-grain locks * Fine-grain locks
e Simple to develop

Greater concurrency

e Easy to avoid deadlock Greater code complexity

Potential deadlocks

* Few data races

* Limited concurrency * Not composable
* Potential data races
// WITH FINE-GRAIN LOCKS * Which lock to lock?
void move (T s, T d, Obj key) {
LOCK (s) ; Thread 0 Thread 1
LOCK (d) ; move (a, b, keyl);

tmp = s.remove (key) ;
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;

move (b, a, key2);

Why are Locks “Hard?”

e Coarse-grain locks * Fine-grain locks
e Simple to develop

Greater concurrency

e Easy to avoid deadlock Greater code complexity

Potential deadlocks

* Few data races

* Limited concurrency * Not composable
* Potential data races
// WITH FINE-GRAIN LOCKS * Which lock to lock?
void move (T s, T d, Obj key) {
LOCK (s) ; Thread 0 Thread 1
LOCK (d) ; move (a, b, keyl);

tmp = s.remove (key) ;
d.insert (key, tmp);
UNLOCK (d) ;

UNLOCK (s) ; DEADLOCK!

move (b, a, key2);

Review: correctness conditions

while (1) {
Entry section
Critical section
Exit section
Non-critical section

Review: correctness conditions

e Safety

* Only one thread in the critical region

while (1) {
Entry section
Critical section
Exit section
Non-critical section

Review: correctness conditions

e Safety

* Only one thread in the critical region

* Liveness
* Some thread that enters the entry section eventually enters the critical region
* Even if other thread takes forever in non-critical region

while (1) {
Entry section
Critical section
Exit section
Non-critical section

Review: correctness conditions

e Safety

* Only one thread in the critical region

* Liveness
* Some thread that enters the entry section eventually enters the critical region
* Even if other thread takes forever in non-critical region

* Bounded waiting

* A thread that enters the entry section enters the critical section within some
bounded number of operations.

while (1) {
Entry section
Critical section
Exit section
Non-critical section

Review: correctness conditions

e Safety

* Only one thread in the critical region

* Liveness
* Some thread that enters the entry section eventually enters the critical region

* Even if other thread takes forever in non-critical region

* Bounded waiting

LA :Ir\ (oW N oo Wal
T 3Uriic

)]
-+
-

* Ifathreadiisin entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is

granted while (1) {
Entry section
Critical section
Exit section
Non-critical section

Review: correctness conditions

» Safety :
* Only one thread in the critical region Theor.em:. Every property Is a
combination of a safety property
* Liveness and a liveness property.
* Some thread that enters the entry section eventually enters the critical region -Bowen Alpern & Fred Schneider

https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

* Even if other thread takes forever in non-critical region

* Bounded waiting

» Athread-thatentersthe-entry-section-entersthecritical section-withinsome—
boundednumberofeoperations—— —— — — — — —

* Ifathreadiisin entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is

granted while (1) {
Entry section
Critical section
Exit section
Non-critical section

Review: correctness conditions

» Safety :
* Only one thread in the critical region Theor.em:. Every property Is a
combination of a safety property
* Liveness and a liveness property.
* Some thread that enters the entry section eventually enters the critical region -Bowen Alpern & Fred Schneider

. . N . -/fwww.cs.cornell.edu/fbs/publications/defliveness.pdf
* Even if other thread takes forever in non-critical region hitps://www.cs.comell.edu/fbs/publications/defliveness.p

* Bounded waiting
. Al " | . | tical . e
boundednumberofeoperations—— —— — — — — —
* Ifathreadiisin entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is

granted ,
while (1) {
[Entry section]
Mutex, spinlock, etc. / Crits 1 F
are ways to implement \ ritical section
[Exit section |
Non-critical section

these

Review: correctness conditions

e Safety :
, N , Theorem: Every property is a
* Only one thread in the critical region ..
combination of a safety property
* Liveness and a liveness property.
* Some thread that enters the entry section eventually enters the critical region -Bowen Alpern & Fred Schneider
« Even if other thread takes forever in non-critical region https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

* Bounded waiting

. Al " | . | tical . e
boundednumberofeoperations—— —— — — — — —
* Ifathreadiisin entry section, then there is a bound on the number of times that

other threads are allowed to enter the critical section before thread i’s request is
granted

while (1) {
[Entry section]
Mutex, spinlock, etc. / Critical section
0 implement \ . .
Did we get all the important conditions? Exit SECLLON | |
Why is correctness defined in terms of locks? Non-critical section

Implementing Locks

int lock_value = O;
int* lock = &lock_value;

Implementing Locks

int lock_value = O;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)
; //spin
*lock = 1;

}

Implementing Locks

int lock_value = O;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)
; //spin
*lock = 1;

}

Lock::Release() {
*lock = O;
}

Implementing Locks

int lock_value = O;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)
; //spin
*lock = 1;

}

Lock::Release() {
*lock = O;
}

What are the problem(s) with this?
» A. CPU usage
» B. Memory usage
» C. Lock::Acquire() latency
» D. Memory bus usage
» E. Does not work

Implementing Locks

int lock_value = O;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)
; //spin
*lock = 1;

}

Lock::Release() {
*lock = O;
}

Completely and utterly broken.
How can we fix it?

What are the problem(s) with this?
» A. CPU usage
» B. Memory usage
» C. Lock::Acquire() latency

» D. Memory bus usage
» E. Does not work

