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Today

 Questions?
e Administrivia
* You've started Lab 1 right?
 Foundations
Parallelism
Basic Synchronization

Threads/Processes/Fibers, Oh my!
Cache coherence (maybe)

* Acknowledgments: some materials in this lecture borrowed from
*  Emmett Witchel (who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger)
e Mark Silberstein (who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta)
* Andy Tannenbaum
e Don Porter
* me...
*  Photo source: https://img.devrant.com/devrant/rant/r_10875_uRYQF.jpg



Fa UX QUIZ (answer any 2, 5 min)

* Who was Flynn? Why is her/his taxonomy important?

* How does domain decomposition differ from functional
decomposition? Give examples of each.

e Can a SIMD parallel program use functional decomposition?
Why/why not?

* What is an RMW instruction? How can they be used to construct
synchronization primitives? How can sync primitives be constructed
without them?
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Who is Flynn?

Michael J. Flynn

* Emeritus at Stanford

* Proposed taxonomy in 1966 (!!)
* 30 pages of publication titles

* Founding member of SIGARCH

* (Thanks Wikipedia)
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Review: Flynn’s Taxonomy

Y AXIS:
Instruction

Streams

X AXIS:
Data Streams



Review: Flynn’s Taxonomy

SISD SIMD

Single Instruction stream Single Instruction stream
Y AXIS: Single Data stream Multiple Data stream

Instruction |

Streams MISD MIMD

Multiple Instruction stream | Multiple Instruction stream
Single Data stream Multiple Data stream

X AXIS:
Data Streams
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* Domain Decomposition

* SPMD | | |
* Input domain - - - -
¢ OUtpUt Domain task 0 task 1 task 2 task 3

* Both

* Functional Decomposition PfaBlginstruction Set
* MPMD
* Independent Tasks
* Pipelining
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Domain decomposition

e Each CPU gets part of the input

CPUO
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Issues?

Accessing Data
e Can we access v(i+1, j) from CPU O
e ..asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
* Scalability vs Latency
Control
* Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
 Task Management Overhead
Load Balance
Correctness
e order of reads and writes is non-deterministic
* synchronization is required to enforce the order
* Jlocks, semaphores, barriers, conditionals....
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Granularity

* Fine-grain parallelism
 Gissmall
* Good load balancing
Potentially high overhead
Hard to get correct

w3

Computation

G =

Communication * Coarse-grain parallelism
e Gislarge
* Load balancing is tough
* Low overhead
* Easier to get correct

swi}
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* Speedup is bound by serial component

* Split program serial time ( Tsprjqg = 1) into
* |deally parallelizable portion: A
* assumingperfect load balancing, identical speed, no overheads
e Cannot be parallelized (serial) portion:1 — A
* Parallel time:

Tserial 1

Speedup(#CPUs) = =~
llel _
paraliet gepps T (1~ A)




Performance: Amdahl!’s law

o Sprocliiaiathanad b ca A==
Sp . .
' serial run time
peeaup = .
parallel run time
pe #CPUs
Speedup(#CPUs) = Tseriat =— 1
parallel +(1—A)

#CPUs
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What makes something “serial” vs. parallelizable?
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Amdahl’s law

X/4 seconds
X/2 seconds , |

Parallelizable

Parallelizable

End to end time: (X/2 + X/4) = (3/4)X seconds
What is the “speedup” in this case?

o oodun serial runtime 1 _ 1 _ 1333
peectp = parallel runtime A 5 ] S
—+(1_A) +(1.5)
#CPUs 2 cpus
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Speedup exercise

(3X/4)/8 seconds

X/4 seconds

o U |0  © U U U U

What is the “speedup” in this case?

serial run time 1 1
Speedup = =7 = 2.91x

parallel run time .
rpgs F(1— 4 75/8 + (1-.75)
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Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

* N =#CPUs, S = serial portion=1—-A

* Amdahl's law: Speedup(N) = %
S48

* Strong scaling: Speedup (N) calculated given total amount of work is fixed
* Solve same problems faster when problem size is fixed and #CPU grows /
* Assuming parallel portion is fixed, speedup soon seizes to increase

e Gustafson’s law: Speedup(N) =S + (S-1)*N
* Weak scaling: Speedup(N) calculated given that work per CPU is fixed
* Work/CPU fixed when adding more CPUs keeps granularity fixed
* Problem size grows: solve larger problems
* Consequence: speedup upper bound is much higher

When is Gustavson’s law a better metric?

When is Amdahl’s law a better metric?
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* Example:
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Super-linear speedup

e Possible due to cache

* But usually just poor methodology ™

* Baseline: *best* serial algorithm

* Example:

Superlinear

Efficient bubble sort
*Serial: 150s

*Parallel 40s

*Speedup: 5o

NO NO NO! 7, =3.757
Serial quicksort: 3Us
*Speedup = 30/40 = 0.75X

Processors

Why insist on best serial algorithm as baseline?



Concurrency and Correctness

If two threads execute this program concurrently,
how many different final values of X are there?

Initially, X == 0.

Thread 1

void increment () {
int temp = X;
temp = temp + 1;
X = temp;

Thread 2

void increment () {
int temp = X;
temp = temp + 1;
X = temp;




Schedules/Interleavings

Model of concurrent execution
* Interleave statements from each thread into a single thread
* If any interleaving yields incorrect results, synchronization is needed

Thread 1 Thread 2
tmpl = X; tmp2 = X;
tmpl = tmpl + 1; tmp2 = tmp2 + 1;
X = tmpl; X = tmp2;




Schedules/Interleavings

Model of concurrent execution
* Interleave statements from each thread into a single thread
* If any interleaving yields incorrect results, synchronization is needed

Thread 1 Thread 2

/tmpl = %0
tmp2 X;
tmpl = X; R tmp2 = X;

tmp2 = tmp2 + 1;
tmpl = tmpl + 1;_ stmpl = tmpl + 1; tmp2 = tmp2 + 1;
X = tmp2;

X = tmpl; —> X = tmpl;
X = tmp2;/

\ 7]

If X==0 initially, X == 1 at the end. WRONG result!



Locks fix this with Mutual Exclusion

void increment () {
lock.acquire() ;
int temp = X;
temp = temp + 1;
X = temp;
lock.release() ;

Mutual exclusion ensures only safe interleavings
* But it limits concurrency, and hence scalability/performance



Locks fix this with Mutual Exclusion

void increment () {
lock.acquire() ;
int temp = X;
temp = temp + 1;
X = temp;
lock.release() ;

Mutual exclusion ensures only safe interleavings
* But it limits concurrency, and hence scalability/performance

Is mutual exclusion a good abstraction?
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* Limited concurrency * Not composable
* Potential data races
// WITH FINE-GRAIN LOCKS * Which lock to lock?
void move (T s, T d, Obj key) {
LOCK (s) ;
LOCK (4d) ;

tmp = s.remove (key) ;
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;
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* Few data races

* Limited concurrency * Not composable
* Potential data races
// WITH FINE-GRAIN LOCKS * Which lock to lock?
void move (T s, T d, Obj key) {
LOCK (s) ; Thread 0 Thread 1
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Why are Locks “Hard?”

e Coarse-grain locks * Fine-grain locks
e Simple to develop

Greater concurrency

e Easy to avoid deadlock Greater code complexity

Potential deadlocks

* Few data races

* Limited concurrency * Not composable
* Potential data races
// WITH FINE-GRAIN LOCKS * Which lock to lock?
void move (T s, T d, Obj key) {
LOCK (s) ; Thread 0 Thread 1
LOCK (d) ; move (a, b, keyl);

tmp = s.remove (key) ;
d.insert (key, tmp);
UNLOCK (d) ;

UNLOCK (s) ; DEADLOCK!

move (b, a, key2);
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e Safety

* Only one thread in the critical region

* Liveness
* Some thread that enters the entry section eventually enters the critical region
* Even if other thread takes forever in non-critical region

* Bounded waiting

* A thread that enters the entry section enters the critical section within some
bounded number of operations.
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Entry section
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e Safety

* Only one thread in the critical region

* Liveness
* Some thread that enters the entry section eventually enters the critical region
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» Safety :
* Only one thread in the critical region Theor.em:. Every property Is a
combination of a safety property
* Liveness and a liveness property.
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https://www.cs.cornell.edu/fbs/publications/defliveness.pdf
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Review: correctness conditions

» Safety :
* Only one thread in the critical region Theor.em:. Every property Is a
combination of a safety property
* Liveness and a liveness property.
* Some thread that enters the entry section eventually enters the critical region -Bowen Alpern & Fred Schneider

. . N . -/fwww.cs.cornell.edu/fbs/publications/defliveness.pdf
* Even if other thread takes forever in non-critical region hitps://www.cs.comell.edu/fbs/publications/defliveness.p

* Bounded waiting
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* Ifathreadiisin entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is

granted ,
while (1) {
[Entry section]
Mutex, spinlock, etc. / Crits 1 F
are ways to implement \ ritical section
[Exit section |
Non-critical section
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Review: correctness conditions

e Safety :
, N , Theorem: Every property is a
* Only one thread in the critical region ..
combination of a safety property
* Liveness and a liveness property.
* Some thread that enters the entry section eventually enters the critical region -Bowen Alpern & Fred Schneider
« Even if other thread takes forever in non-critical region https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

* Bounded waiting

. Al " | . | tical . e
boundednumberofeoperations—— —— — — — — —
* Ifathreadiisin entry section, then there is a bound on the number of times that

other threads are allowed to enter the critical section before thread i’s request is
granted

while (1) {
[Entry section]
Mutex, spinlock, etc. / Critical section
0 implement \ . .
Did we get all the important conditions? Exit SECLLON | |
Why is correctness defined in terms of locks? Non-critical section
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Implementing Locks

int lock_value = O;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)
; //spin
*lock = 1;

}

Lock::Release() {
*lock = O;
}

Completely and utterly broken.
How can we fix it?

What are the problem(s) with this?
» A. CPU usage
» B. Memory usage
» C. Lock::Acquire() latency

» D. Memory bus usage
» E. Does not work



