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Today

• Questions?
• Administrivia

• You’ve started Lab 1 right? 
• Foundations

• Parallelism 
• Basic Synchronization
• Threads/Processes/Fibers, Oh my!
• Cache coherence (maybe)

• Acknowledgments: some materials in this lecture borrowed from 
• Emmett Witchel (who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger)
• Mark Silberstein (who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta)
• Andy Tannenbaum
• Don Porter
• me…
• Photo source: https://img.devrant.com/devrant/rant/r_10875_uRYQF.jpg



Faux Quiz (answer any 2, 5 min)

• Who was Flynn? Why is her/his taxonomy important?
• How does domain decomposition differ from functional 

decomposition? Give examples of each.
• Can a SIMD parallel program use functional decomposition? 

Why/why not?
• What is an RMW instruction? How can they be used to construct 

synchronization primitives? How can sync primitives be constructed 
without them?
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Who is Flynn?

Michael J. Flynn
• Emeritus at Stanford
• Proposed taxonomy in 1966 (!!)
• 30 pages of publication titles
• Founding member of SIGARCH

• (Thanks Wikipedia)
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• Domain Decomposition
• SPMD
• Input domain
• Output Domain
• Both

• Functional Decomposition
• MPMD
• Independent Tasks
• Pipelining
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Domain decomposition

• Each CPU gets part of the input

CPU 0

CPU 1

Issues?
• Accessing Data

• Can we access v(i+1, j) from CPU 0
• …as in a “normal” serial program?
• Shared memory? Distributed?

• Time to access v(i+1,j) == Time to access v(i-1,j) ?
• Scalability vs Latency

• Control
• Can we assign one vertex per CPU?
• Can we assign one vertex per process/logical task?
• Task Management  Overhead

• Load Balance
• Correctness

• order of reads and writes is non-deterministic
• synchronization is required to enforce the order
• locks, semaphores, barriers, conditionals….
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Load Balancing

• Slowest task determines performance

8

Task 0
Task 1

Task 2
Task 3

wait
work

time
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Granularity
• Fine-grain parallelism

• G is small
• Good load balancing
• Potentially high overhead
• Hard to get correct

• Coarse-grain parallelism
• G is large
• Load balancing is tough
• Low overhead
• Easier to get correct
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X/4 seconds

End to end time: (X/2 + X/4) = (3/4)X seconds

What is the “speedup” in this case?

2 CPUs
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X/4 seconds

What is the “speedup” in this case?

8 CPUs
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(3X/4)/8 seconds
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Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

When is Gustavson’s law a better metric?
When is Amdahl’s law a better metric?

• Gustafson’s law: Speedup(N) = S + (S-1)*N
• Weak scaling: Speedup(N) calculated given that work per CPU is fixed
• Work/CPU fixed when adding more CPUs keeps granularity fixed
• Problem size grows: solve larger problems
• Consequence: speedup upper bound is much higher
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Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Efficient bubble sort
•Serial: 150s
•Parallel 40s
•Speedup:
NO NO NO!
•Serial quicksort: 30s
•Speedup = 30/40 = 0.75X

Why insist on best serial algorithm as baseline?



Concurrency and Correctness
If two threads execute this program concurrently, 

how many different final values of X are there?
Initially, X == 0.

void increment() {
int temp = X;
temp = temp + 1;
X = temp;

}

void increment() {
int temp = X;
temp = temp + 1;
X = temp;

}

Thread 1 Thread 2

Answer:
A. 0
B. 1
C. 2
D. More than 2



Schedules/Interleavings
Model of concurrent execution
• Interleave statements from each thread into a single thread
• If any interleaving yields incorrect results, synchronization is needed

tmp1 = X;
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Schedules/Interleavings
Model of concurrent execution
• Interleave statements from each thread into a single thread
• If any interleaving yields incorrect results, synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;   

Thread 1
tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!

Thread 2



Locks fix this with Mutual Exclusion

Mutual exclusion ensures only safe interleavings
• But it limits concurrency, and hence scalability/performance

void increment() {
lock.acquire();
int temp = X;
temp = temp + 1;
X = temp;
lock.release();

}



Locks fix this with Mutual Exclusion

Mutual exclusion ensures only safe interleavings
• But it limits concurrency, and hence scalability/performance

void increment() {
lock.acquire();
int temp = X;
temp = temp + 1;
X = temp;
lock.release();

}

Is mutual exclusion a good abstraction?
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• Fine-grain locks
• Greater concurrency
• Greater code complexity
• Potential deadlocks

• Not composable
• Potential data races

• Which lock to lock?

Why are Locks “Hard?”

// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
LOCK(s);
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);

}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0 Thread 1

• Coarse-grain locks
• Simple to develop
• Easy to avoid deadlock
• Few data races
• Limited concurrency
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Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region 
• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some 

bounded number of operations.
• If a thread i is in entry section, then there is a bound on the number of times that 

other threads are allowed to enter the critical section before thread i’s request is 
granted

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Mutex, spinlock, etc.
are ways to implement 
these

Theorem: Every property is a 
combination of a safety property 
and a liveness property.

-Bowen Alpern & Fred Schneider
https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

Did we get all the important conditions?
Why is correctness defined in terms of locks?
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Implementing Locks
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Release() {
*lock = 0;

}

What are the problem(s) with this?
Ø A. CPU usage  
Ø B. Memory usage 
Ø C. Lock::Acquire() latency
Ø D. Memory bus usage 
Ø E. Does not work

Completely and utterly broken.
How can we fix it?


