
Foundations:
Synchronization

Execution Abstractions

Chris Rossbach

CS378H Fall 2018

9/10/18

Today

• Questions?

• Administrivia
• Lab 1 due sooner than you’d like

• Foundations
• Threads/Processes/Fibers

• Cache coherence (maybe)

• Acknowledgments: some materials in this lecture borrowed from

• Emmett Witchel (who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery
Berger)

• Andy Tannenbaum

Faux Quiz (answer any 2, 5 min)

• What is the maximum possible speedup of a 75% parallelizable
program on 8 CPUs

• What is super-linear speedup? List two ways in which super-linear
speedup can occur.

• What is the difference between strong and weak scaling?

• Define Safety, Liveness, Bounded Waiting, Failure Atomicity

• What is the difference between processes and threads?

• What’s a fiber? When and why might fibers be a better abstraction
than threads?

Faux Quiz (answer any 2, 5 min)

• What is the maximum possible speedup of a 75% parallelizable
program on 8 CPUs

• What is super-linear speedup? List two ways in which super-linear
speedup can occur.

• What is the difference between strong and weak scaling?

• Define Safety, Liveness, Bounded Waiting, Failure Atomicity

• What is the difference between processes and threads?

• What’s a fiber? When and why might fibers be a better abstraction
than threads?

Processes and Threads and Fibers…

• Abstractions

• Containers

• State
• Where is shared state?
• How is it accessed?
• Is it mutable?

Processes and Threads and Fibers…

• Abstractions

• Containers

• State
• Where is shared state?
• How is it accessed?
• Is it mutable?

Programming and Machines: a mental model

Parallel Machines: a mental model

8

Processes

• Multiprogramming of four programs

• Conceptual model of 4 independent, sequential processes

• Only one program active at any instant

Model

8

Processes

• Multiprogramming of four programs

• Conceptual model of 4 independent, sequential processes

• Only one program active at any instant

Model Implementation

ustack (1)

Process Address Space

kernel

kernel

kernel

kernel

ucode (1)

kcode

kdata

kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
 G

B
1

 G
B

used

free

user (1)

user (1)

udata (1)

user (1)

user (2)

user (2)

user (2)

access possible in user mode

access requires kernel mode

P1

ustack (1)

Process Address Space

kernel

kernel

kernel

kernel

ucode (1)

kcode

kdata

kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
 G

B
1

 G
B

used

free

user (1)

user (1)

udata (1)

user (1)

user (2)

user (2)

user (2)

access possible in user mode

access requires kernel mode

P1

Why relevant?

ustack (1)

Process Address Space

kernel

kernel

kernel

kernel

ucode (1)

kcode

kdata

kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
 G

B
1

 G
B

used

free

user (1)

user (1)

udata (1)

user (1)

user (2)

user (2)

user (2)

access possible in user mode

access requires kernel mode

P1

Why relevant?

State is shared through memory!

ustack (1)

Process Address Space

kernel

kernel

kernel

kernel

ucode (1)

kcode

kdata

kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
 G

B
1

 G
B

used

free

user (1)

user (1)

udata (1)

user (1)

user (2)

user (2)

user (2)

access possible in user mode

access requires kernel mode

P1

Why relevant?

State is shared through memory!

Q:How to share data across processes?

ustack (1)

Process Address Space

kernel

kernel

kernel

kernel

ucode (1)

kcode

kdata

kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
 G

B
1

 G
B

used

free

user (1)

user (1)

udata (1)

user (1)

user (2)

user (2)

user (2)

access possible in user mode

access requires kernel mode

P1

Anyone see another issue?

Why relevant?

State is shared through memory!

Q:How to share data across processes?

10

Abstractions for Concurrency

10

Abstractions for Concurrency

(a) Three processes each with one thread

10

Abstractions for Concurrency

(a) Three processes each with one thread (b) One process with three threads

10

Abstractions for Concurrency

(a) Three processes each with one thread (b) One process with three threads

10

Abstractions for Concurrency

(a) Three processes each with one thread

When might (a) be better than (b)? Vice versa?

(b) One process with three threads

10

Abstractions for Concurrency

(a) Three processes each with one thread

When might (a) be better than (b)? Vice versa?

Could you do lab 1 with processes instead of threads?

(b) One process with three threads

10

Abstractions for Concurrency

(a) Three processes each with one thread

When might (a) be better than (b)? Vice versa?

Could you do lab 1 with processes instead of threads?

(b) One process with three threads

Threads simplify sharing and reduce context overheads

11

The Thread Model

11

The Thread Model

• Items shared by all threads in a process

Each thread has
its own stack

11

The Thread Model

• Items shared by all threads in a process

• Items private to each thread

Each thread has
its own stack

11

The Thread Model

• Items shared by all threads in a process

• Items private to each thread

• Decouples memory and control abstractions!

Each thread has
its own stack

11

The Thread Model

• Items shared by all threads in a process

• Items private to each thread

• Decouples memory and control abstractions!

• What is the advantage of that?

Each thread has
its own stack

11

The Thread Model

• Items shared by all threads in a process

• Items private to each thread

• Decouples memory and control abstractions!

• What is the advantage of that?

13

Where to Implement Threads:

13

Where to Implement Threads:

User Space Kernel Space

13

Where to Implement Threads:

A user-level threads package

User Space Kernel Space

13

Where to Implement Threads:

A user-level threads package

User Space Kernel Space

A threads package managed by the kernel

13

Where to Implement Threads:

A user-level threads package

User Space Kernel Space

A threads package managed by the kernel

What are some tradeoffs
between user/kernel support

for threads?

Execution Context Management
“Task” == “Flow of Control”, but with less typing
“Stack” == Task State

14

Execution Context Management
“Task” == “Flow of Control”, but with less typing
“Stack” == Task State

Task Management

14

Execution Context Management
“Task” == “Flow of Control”, but with less typing
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor

• Overlap on multiprocessor

14

Execution Context Management
“Task” == “Flow of Control”, but with less typing
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor

• Overlap on multiprocessor

• Serial
• One at a time, no conflict

14

Execution Context Management
“Task” == “Flow of Control”, but with less typing
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor

• Overlap on multiprocessor

• Serial
• One at a time, no conflict

• Cooperative
• Yields at well-defined points

• E.g. wait for long-running
I/O

14

Execution Context Management
“Task” == “Flow of Control”, but with less typing
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor

• Overlap on multiprocessor

• Serial
• One at a time, no conflict

• Cooperative
• Yields at well-defined points

• E.g. wait for long-running
I/O

14

Stack Management

• Manual
• Inherent in Cooperative

• Changing at quiescent points

• Automatic
• Inherent in pre-emptive

• Downside: Hidden concurrency
assumptions

Execution Context Management
“Task” == “Flow of Control”, but with less typing
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor

• Overlap on multiprocessor

• Serial
• One at a time, no conflict

• Cooperative
• Yields at well-defined points

• E.g. wait for long-running
I/O

14

Stack Management

• Manual
• Inherent in Cooperative

• Changing at quiescent points

• Automatic
• Inherent in pre-emptive

• Downside: Hidden concurrency
assumptions

These dimensions can be
orthogonal

Fibers: the Sweet Spot?

15

Fibers: the Sweet Spot?

15

• Cooperative tasks
• most desirable when reasoning about

concurrency

• usually associated with event-driven
programming

Fibers: the Sweet Spot?

15

• Cooperative tasks
• most desirable when reasoning about

concurrency

• usually associated with event-driven
programming

• Automatic stack management
• most desirable when reading/maintaining code

• Usually associated with threaded (or serial)
programming

Fibers: the Sweet Spot?

15

• Cooperative tasks
• most desirable when reasoning about

concurrency

• usually associated with event-driven
programming

• Automatic stack management
• most desirable when reading/maintaining code

• Usually associated with threaded (or serial)
programming

Fibers: the Sweet Spot?

15

• Cooperative tasks
• most desirable when reasoning about

concurrency

• usually associated with event-driven
programming

• Automatic stack management
• most desirable when reading/maintaining code

• Usually associated with threaded (or serial)
programming

Fibers: cooperative threading
with automatic stack

management

Threads vs Fibers
Blah blah fibers

blah thread
blah…

Threads vs Fibers

• Like threads, just an abstraction for flow of control

Blah blah fibers
blah thread

blah…

Threads vs Fibers

• Like threads, just an abstraction for flow of control

• Lighter weight than threads
• In Windows, just a stack, subset of arch. registers, non-preemptive

• *Not* just threads without exception support

• stack management/impl has interplay with exceptions

• Can be completely exception safe

Blah blah fibers
blah thread

blah…

Threads vs Fibers

• Like threads, just an abstraction for flow of control

• Lighter weight than threads
• In Windows, just a stack, subset of arch. registers, non-preemptive

• *Not* just threads without exception support

• stack management/impl has interplay with exceptions

• Can be completely exception safe

• Takeaway: diversity of abstractions/containers for execution flows

Blah blah fibers
blah thread

blah…

x86_64 Architectural Registers

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

Linux x86_64 context
switch excerpt Complete fiber

context switch on
Unix and Windows

x86_64 Registers and Threads

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

x86_64 Registers and Threads

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

x86_64 Registers and Fibers

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

x86_64 Registers and Fibers

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

x86_64 Registers and Fibers

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

The takeaway:
• Many abstractions for flows of control
• Different tradeoffs in overhead, flexibility
• Matters for concurrency: exercised heavily

Pthreads

• POSIX standard thread model,

• Specifies the API and call semantics.

• Popular – most thread libraries are Pthreads-compatible

Can you find the bug here?

Pthread Mutexes

Pthread Mutexes

• Type: pthread_mutex_t

Pthread Mutexes

• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex,

Pthread Mutexes

• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

Pthread Mutexes

• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

Pthread Mutexes

• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

Pthread Mutexes

• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Pthread Mutexes

• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

Pthread Mutexes

• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

• Attributes: for shared mutexes/condition vars among processes, for priority
inheritance, etc.
• use defaults

Pthread Mutexes

• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

• Attributes: for shared mutexes/condition vars among processes, for priority
inheritance, etc.
• use defaults

• Important: Mutex scope must be visible to all threads!

Pthread Spinlock

Pthread Spinlock

• Type: pthread_spinlock_t

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

int pthread_spin_lock(pthread_spinlock_t *lock);

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_unlock(pthread_spinlock_t *lock);

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_unlock(pthread_spinlock_t *lock);

int pthread_spin_trylock(pthread_spinlock_t *lock);

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_unlock(pthread_spinlock_t *lock);

int pthread_spin_trylock(pthread_spinlock_t *lock);

int pthread_mutex_init(pthread_mutex_t *mutex,…);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

Wait…what’s the
difference?

Review: correctness conditions

while(1) {

Entry section

Critical section

Exit section

Non-critical section

}

Review: correctness conditions
• Safety

• Only one thread in the critical region

while(1) {

Entry section

Critical section

Exit section

Non-critical section

}

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region

• Even if other thread takes forever in non-critical region

while(1) {

Entry section

Critical section

Exit section

Non-critical section

}

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region

• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.

while(1) {

Entry section

Critical section

Exit section

Non-critical section

}

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region

• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.

• If a thread i is in entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is
granted

while(1) {

Entry section

Critical section

Exit section

Non-critical section

}

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region

• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.

• If a thread i is in entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is
granted

while(1) {

Entry section

Critical section

Exit section

Non-critical section

}

Theorem: Every property is a
combination of a safety property
and a liveness property.

-Bowen Alpern & Fred Schneider
https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region

• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.

• If a thread i is in entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is
granted

while(1) {

Entry section

Critical section

Exit section

Non-critical section

}

Mutex, spinlock, etc.
are ways to implement
these

Theorem: Every property is a
combination of a safety property
and a liveness property.

-Bowen Alpern & Fred Schneider
https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region

• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.

• If a thread i is in entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is
granted

while(1) {

Entry section

Critical section

Exit section

Non-critical section

}

Mutex, spinlock, etc.
are ways to implement
these

Theorem: Every property is a
combination of a safety property
and a liveness property.

-Bowen Alpern & Fred Schneider
https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

Did we get all the important conditions?
Why is correctness defined in terms of locks?

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Release() {
*lock = 0;

}

Lock::Release() {
*lock = 0;

}

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Release() {
*lock = 0;

}

Lock::Release() {
*lock = 0;

}

What are the problem(s) with this?
➢ A. CPU usage
➢ B. Memory usage
➢ C. Lock::Acquire() latency
➢ D. Memory bus usage
➢ E. Does not work

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Release() {
*lock = 0;

}

Lock::Release() {
*lock = 0;

}

What are the problem(s) with this?
➢ A. CPU usage
➢ B. Memory usage
➢ C. Lock::Acquire() latency
➢ D. Memory bus usage
➢ E. Does not work

Completely and utterly broken.
How can we fix it?

HW Support for Read-Modify-Write (RMW)

HW Support for Read-Modify-Write (RMW)

bool rmw(addr, value) {
atomic {
tmp = *addr;
newval = modify(tmp);
*addr = newval;
}

}

IDEA: hardware
implements

something like:

HW Support for Read-Modify-Write (RMW)

bool rmw(addr, value) {
atomic {
tmp = *addr;
newval = modify(tmp);
*addr = newval;
}

}

IDEA: hardware
implements

something like:

Why is that hard?
How can we do it?

HW Support for Read-Modify-Write (RMW)

Preview of Techniques:

bool rmw(addr, value) {
atomic {
tmp = *addr;
newval = modify(tmp);
*addr = newval;
}

}

IDEA: hardware
implements

something like:

Why is that hard?
How can we do it?

HW Support for Read-Modify-Write (RMW)

Preview of Techniques:

• Bus lockingbool rmw(addr, value) {
atomic {
tmp = *addr;
newval = modify(tmp);
*addr = newval;
}

}

IDEA: hardware
implements

something like:

Why is that hard?
How can we do it?

HW Support for Read-Modify-Write (RMW)

Preview of Techniques:

• Bus locking

• Single Instruction ISA extensions
• Test&Set

• CAS: Compare & swap

• Exchange, locked increment, locked decrement (x86)

bool rmw(addr, value) {
atomic {
tmp = *addr;
newval = modify(tmp);
*addr = newval;
}

}

IDEA: hardware
implements

something like:

Why is that hard?
How can we do it?

HW Support for Read-Modify-Write (RMW)

Preview of Techniques:

• Bus locking

• Single Instruction ISA extensions
• Test&Set

• CAS: Compare & swap

• Exchange, locked increment, locked decrement (x86)

• Multi-instruction ISA extensions:
• LLSC: (PowerPC,Alpha, MIPS)

• Transactional Memory (x86, PowerPC)

bool rmw(addr, value) {
atomic {
tmp = *addr;
newval = modify(tmp);
*addr = newval;
}

}

IDEA: hardware
implements

something like:

Why is that hard?
How can we do it?

HW Support for Read-Modify-Write (RMW)

Preview of Techniques:

• Bus locking

• Single Instruction ISA extensions
• Test&Set

• CAS: Compare & swap

• Exchange, locked increment, locked decrement (x86)

• Multi-instruction ISA extensions:
• LLSC: (PowerPC,Alpha, MIPS)

• Transactional Memory (x86, PowerPC)

bool rmw(addr, value) {
atomic {
tmp = *addr;
newval = modify(tmp);
*addr = newval;
}

}

IDEA: hardware
implements

something like:

Why is that hard?
How can we do it?

More on this later…

Implementing Locks with Test&set
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Implementing Locks with Test&set
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

(test & set ~= CAS ~= LLSC)
TST: Test&set
• Reads a value from memory

• Write “1” back to memory location

Implementing Locks with Test&set
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

Lock::Release() {
*lock = 0;

}

Lock::Release() {
*lock = 0;

}

(test & set ~= CAS ~= LLSC)
TST: Test&set
• Reads a value from memory

• Write “1” back to memory location

Implementing Locks with Test&set
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

Lock::Release() {
*lock = 0;

}

Lock::Release() {
*lock = 0;

}

What are the problem(s) with this?
➢ A. CPU usage
➢ B. Memory usage
➢ C. Lock::Acquire() latency
➢ D. Memory bus usage
➢ E. Does not work

(test & set ~= CAS ~= LLSC)
TST: Test&set
• Reads a value from memory

• Write “1” back to memory location

Implementing Locks with Test&set
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

Lock::Release() {
*lock = 0;

}

Lock::Release() {
*lock = 0;

}

What are the problem(s) with this?
➢ A. CPU usage
➢ B. Memory usage
➢ C. Lock::Acquire() latency
➢ D. Memory bus usage
➢ E. Does not work

(test & set ~= CAS ~= LLSC)
TST: Test&set
• Reads a value from memory

• Write “1” back to memory location

More on this later…

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Release() {
*lock = 0;

}

Lock::Release() {
*lock = 0;

}

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Release() {
*lock = 0;

}

Lock::Release() {
*lock = 0;

}

What are the problem(s) with this?
➢ A. CPU usage
➢ B. Memory usage
➢ C. Lock::Acquire() latency
➢ D. Memory bus usage
➢ E. Does not work

Multiprocessor Cache Coherence

F = ma

Multiprocessor Cache Coherence

F = ma ~ coherence
Physics | Concurrency

Multiprocessor Cache Coherence

X: 0

cache cache cache

Multiprocessor Cache Coherence

• P1: read X X: 0

cache cache cache

Multiprocessor Cache Coherence

• P1: read X X: 0

X: 0

cache cache cache

Multiprocessor Cache Coherence

• P1: read X

• P2: read X

X: 0

X: 0

cache cache cache

Multiprocessor Cache Coherence

• P1: read X

• P2: read X

X: 0

X: 0 X: 0

cache cache cache

Multiprocessor Cache Coherence

• P1: read X

• P2: read X

• P2: X++

X: 0

X: 0 X: 0

cache cache cache

Multiprocessor Cache Coherence

• P1: read X

• P2: read X

• P2: X++

X: 0

X: 0 X: 1

cache cache cache

Multiprocessor Cache Coherence

• P1: read X

• P2: read X

• P2: X++

• P3: read X

X: 0

X: 0 X: 1

cache cache cache

Multiprocessor Cache Coherence

• P1: read X

• P2: read X

• P2: X++

• P3: read X

X: 0

X: 0 X: X: ??1

cache cache cache

Multiprocessor Cache Coherence

Multiprocessor Cache Coherence

Multiprocessor Cache Coherence

Each cache line has a state (M, E, S, I)

Multiprocessor Cache Coherence

Each cache line has a state (M, E, S, I)

• Processors “snoop” bus to maintain states

Multiprocessor Cache Coherence

Each cache line has a state (M, E, S, I)

• Processors “snoop” bus to maintain states

• Initially → ‘I’ → Invalid

INVALID

Multiprocessor Cache Coherence

Each cache line has a state (M, E, S, I)

• Processors “snoop” bus to maintain states

• Initially → ‘I’ → Invalid

• Read one → ‘E’ → exclusive

EXCLUSIVE

INVALID

Multiprocessor Cache Coherence

Each cache line has a state (M, E, S, I)

• Processors “snoop” bus to maintain states

• Initially → ‘I’ → Invalid

• Read one → ‘E’ → exclusive

• Reads → ‘S’ →multiple copies possible

EXCLUSIVE

SHARED

INVALID

Multiprocessor Cache Coherence

Each cache line has a state (M, E, S, I)

• Processors “snoop” bus to maintain states

• Initially → ‘I’ → Invalid

• Read one → ‘E’ → exclusive

• Reads → ‘S’ →multiple copies possible

• Write → ‘M’ → single copy → lots of cache coherence traffic

EXCLUSIVE

SHARED

INVALID

Multiprocessor Cache Coherence

Each cache line has a state (M, E, S, I)

• Processors “snoop” bus to maintain states

• Initially → ‘I’ → Invalid

• Read one → ‘E’ → exclusive

• Reads → ‘S’ →multiple copies possible

• Write → ‘M’ → single copy → lots of cache coherence traffic

EXCLUSIVE

SHARED

INVALID

Multiprocessor Cache Coherence

Each cache line has a state (M, E, S, I)

• Processors “snoop” bus to maintain states

• Initially → ‘I’ → Invalid

• Read one → ‘E’ → exclusive

• Reads → ‘S’ →multiple copies possible

• Write → ‘M’ → single copy → lots of cache coherence traffic

MODIFIED

EXCLUSIVE

SHARED

INVALID

Cache Coherence: single-thread

lock: 0

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

I

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

Cache Coherence: single-thread

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

E

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

Cache Coherence: single-thread

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

E

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

Cache Coherence: single-thread

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

E

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

Cache Coherence: single-thread

lock: 0

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

M 1

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

Cache Coherence: single-thread

lock:

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

I

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1
1

[cache
eviction]

Cache Coherence Action Zone

lock: 0

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

I

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P2

I lock:

Cache Coherence Action Zone

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

E

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P2

I lock:

Cache Coherence Action Zone

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

E

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P2

I lock:

Cache Coherence Action Zone

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

E

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P2

I lock:

Cache Coherence Action Zone

lock: 0

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

M 1

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P2

I lock:

Cache Coherence Action Zone

lock: 0

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

M 1

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P2

I lock:

Cache Coherence Action Zone

lock: 0

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

M 1

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P2

I lock:

Cache Coherence Action Zone

lock:

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

1

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P2

S S lock:

1

1

Cache Coherence Action Zone

lock:

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

1

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P2

S S lock:

1

1

Cache Coherence Action Zone

lock:

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

1

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P2

S S lock:

1

1

Cache Coherence Action Zone

lock:

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

1

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P2

S S lock:

1

1

SAFE!

Cache Coherence Action Zone II

lock: 0

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

I

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

lock:I

Cache Coherence Action Zone II

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

E

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

lock:I

Cache Coherence Action Zone II

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

E

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

lock:I

Cache Coherence Action Zone II

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

E

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

lock:I

Cache Coherence Action Zone II

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

E

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

lock:I

Cache Coherence Action Zone II

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

lock: 0SS

Cache Coherence Action Zone II

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

lock: 0SS

Cache Coherence Action Zone II

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

lock: 0SS

Cache Coherence Action Zone II

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

lock: 0SS

Cache Coherence Action Zone II

lock: 0

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

M lock:1I

Cache Coherence Action Zone II

lock:

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

M 1

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

lock:

1

I

Cache Coherence Action Zone II

lock:

lock:

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

M 1

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

lock:

1

INOT
SAFE!

Read-Modify-Write (RMW)
Implementing locks requires read-modify-write operations

Required effect is:
• An atomic and isolated action

1. read memory location AND

2. write a new value to the location

• RMW is very tricky in multi-processors

• Cache coherence alone doesn’t solve it

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

Essence of HW-supported RMW

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

Make this into a single
(atomic hardware instruction)

Test & Set CAS Exchange, locked
increment/decrement,

LLSC: load-linked store-conditional

Most architectures Many architectures x86 PPC, Alpha, MIPS

HW Support for Read-Modify-Write (RMW)

bool cas(addr, old, new) {
atomic {
if(*addr == old) {
*addr = new;
return true;

}
return false;

}
}

int TST(addr) {
atomic {
ret = *addr;
if(!*addr)
*addr = 1;

return ret;
}

}

int XCHG(addr, val) {
atomic {
ret = *addr;
*addr = val;
return ret;

}
}

bool LLSC(addr, val) {
ret = *addr;
atomic {
if(*addr == ret) {
*addr = val;
return true;

}
return false;

}

Test & Set CAS Exchange, locked
increment/decrement,

LLSC: load-linked store-conditional

Most architectures Many architectures x86 PPC, Alpha, MIPS

HW Support for Read-Modify-Write (RMW)

bool cas(addr, old, new) {
atomic {
if(*addr == old) {
*addr = new;
return true;

}
return false;

}
}

int TST(addr) {
atomic {
ret = *addr;
if(!*addr)
*addr = 1;

return ret;
}

}

int XCHG(addr, val) {
atomic {
ret = *addr;
*addr = val;
return ret;

}
}

bool LLSC(addr, val) {
ret = *addr;
atomic {
if(*addr == ret) {
*addr = val;
return true;

}
return false;

}

void CAS_lock(lock) {
while(CAS(&lock, 0, 1) != true);

}

Test & Set CAS Exchange, locked
increment/decrement,

LLSC: load-linked store-conditional

Most architectures Many architectures x86 PPC, Alpha, MIPS

HW Support for Read-Modify-Write (RMW)

bool cas(addr, old, new) {
atomic {
if(*addr == old) {
*addr = new;
return true;

}
return false;

}
}

int TST(addr) {
atomic {
ret = *addr;
if(!*addr)
*addr = 1;

return ret;
}

}

int XCHG(addr, val) {
atomic {
ret = *addr;
*addr = val;
return ret;

}
}

bool LLSC(addr, val) {
ret = *addr;
atomic {
if(*addr == ret) {
*addr = val;
return true;

}
return false;

}

LLSC: load-linked store-conditional

PPC, Alpha, MIPS

HW Support for RMW: LL-SC

bool LLSC(addr, val) {
ret = *addr;
atomic {
if(*addr == ret) {
*addr = val;
return true;

}
return false;

}

• load-linked is a load that is “linked” to a subsequent store-conditional
• Store-conditional only succeeds if value from linked-load is unchanged

LLSC: load-linked store-conditional

PPC, Alpha, MIPS

HW Support for RMW: LL-SC

bool LLSC(addr, val) {
ret = *addr;
atomic {
if(*addr == ret) {
*addr = val;
return true;

}
return false;

}

void LLSC_lock(lock) {
while(1) {
old = load-linked(lock);
if(old == 0 && store-cond(lock, 1))
return;

}
}

• load-linked is a load that is “linked” to a subsequent store-conditional
• Store-conditional only succeeds if value from linked-load is unchanged

LLSC Lock Action Zone

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: lock:I I

LLSC Lock Action Zone

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: lock:I I

LLSC Lock Action Zone

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0S[L] lock: I

LLSC Lock Action Zone

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0S[L] lock: I

LLSC Lock Action Zone

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 1M lock: I

LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: lock:

LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: lock: S[L] 0

LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: lock: S[L] 0

LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0S[L] lock: S[L] 0

LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0S[L] lock: S[L] 0

LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 1M lock: I

LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 1M lock: I

Store
conditional

fails

