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Today

• Questions?

• Administrivia
• Lab 1 due sooner than you’d like

• Foundations
• Threads/Processes/Fibers

• Cache coherence (maybe)

• Acknowledgments: some materials in this lecture borrowed from 

• Emmett Witchel (who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery 
Berger)

• Andy Tannenbaum



Faux Quiz (answer any 2, 5 min)

• What is the maximum possible speedup of a 75% parallelizable 
program on 8 CPUs

• What is super-linear speedup? List two ways in which super-linear 
speedup can occur.

• What is the difference between strong and weak scaling?

• Define Safety, Liveness, Bounded Waiting, Failure Atomicity

• What is the difference between processes and threads?

• What’s a fiber? When and why might fibers be a better abstraction 
than threads?
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• Conceptual model of 4 independent, sequential processes

• Only one program active at any instant

Model Implementation
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Anyone see another issue?

Why relevant?

State is shared through memory!

Q:How to share data across processes?
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Abstractions for Concurrency

(a) Three processes each with one thread

When might (a) be better than (b)? Vice versa?

Could you do lab 1 with processes instead of threads?

(b) One process with three threads

Threads simplify sharing and reduce context overheads
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The Thread Model

• Items shared by all threads in a process

• Items private to each thread

• Decouples memory and control abstractions!

• What is the advantage of that?
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Where to Implement Threads:

A user-level threads package

User Space Kernel Space

A threads package managed by the kernel

What are some tradeoffs 
between user/kernel support 

for threads?
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Stack Management

• Manual
• Inherent in Cooperative

• Changing at quiescent points

• Automatic
• Inherent in pre-emptive

• Downside: Hidden concurrency 
assumptions

These dimensions can be 
orthogonal
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• Cooperative tasks 
• most desirable when reasoning about 

concurrency 

• usually associated with event-driven 
programming

• Automatic stack management 
• most desirable when reading/maintaining code 

• Usually associated with threaded (or serial) 
programming

Fibers: cooperative threading 
with automatic stack 

management
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Threads vs Fibers

• Like threads, just an abstraction for flow of control 

• Lighter weight than threads
• In Windows, just a stack, subset of arch. registers, non-preemptive

• *Not* just threads without exception support 

• stack management/impl has interplay with exceptions

• Can be completely exception safe

• Takeaway: diversity of abstractions/containers for execution flows

Blah blah fibers
blah thread 

blah…



x86_64 Architectural Registers

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525
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Linux x86_64 context 
switch excerpt Complete fiber 

context switch on 
Unix and Windows
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x86_64 Registers and Fibers

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

The takeaway: 
• Many abstractions for flows of control
• Different tradeoffs in overhead, flexibility
• Matters for concurrency: exercised heavily



Pthreads

• POSIX standard thread model, 

• Specifies the API and call semantics.

• Popular – most thread libraries are Pthreads-compatible



Can you find the bug here?
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• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex, 

const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

• Attributes: for shared mutexes/condition vars among processes, for priority 
inheritance, etc.
• use defaults

• Important: Mutex scope must be visible to all threads!
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Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock); 

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_unlock(pthread_spinlock_t *lock);

int pthread_spin_trylock(pthread_spinlock_t *lock);

int pthread_mutex_init(pthread_mutex_t *mutex,…);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

Wait…what’s the 
difference?
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• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region 

• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some 

bounded number of operations.

• If a thread i is in entry section, then there is a bound on the number of times that 
other threads are allowed to enter the critical section before thread i’s request is 
granted

while(1) {

Entry section

Critical section

Exit section

Non-critical section

}

Mutex, spinlock, etc.
are ways to implement 
these

Theorem: Every property is a 
combination of a safety property 
and a liveness property.

-Bowen Alpern & Fred Schneider
https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

Did we get all the important conditions?
Why is correctness defined in terms of locks?
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Implementing Locks
int lock_value = 0;
int* lock = &lock_value;
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Release() {
*lock = 0;

}

Lock::Release() {
*lock = 0;

}

What are the problem(s) with this?
➢ A. CPU usage  
➢ B. Memory usage 
➢ C. Lock::Acquire() latency
➢ D. Memory bus usage 
➢ E. Does not work

Completely and utterly broken.
How can we fix it?
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HW Support for Read-Modify-Write (RMW)

Preview of Techniques:

• Bus locking

• Single Instruction ISA extensions
• Test&Set

• CAS: Compare & swap

• Exchange, locked increment, locked decrement (x86)

• Multi-instruction ISA extensions:
• LLSC: (PowerPC,Alpha, MIPS)

• Transactional Memory (x86, PowerPC)

bool rmw(addr, value) {
atomic {
tmp = *addr;
newval = modify(tmp);
*addr = newval;
}

}

IDEA: hardware 
implements 

something like:

Why is that hard?
How can we do it?

More on this later…
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• Reads a value from memory

• Write “1” back to memory location

More on this later…
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Read-Modify-Write (RMW)
Implementing locks requires read-modify-write operations

Required effect is:
• An atomic and isolated action

1. read memory location AND

2. write a new value to the location

• RMW is very tricky in multi-processors

• Cache coherence alone doesn’t solve it

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try:  load lock, R0

test R0
bnz try
store lock, 1

}



Essence of HW-supported RMW 

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try:  load lock, R0

test R0
bnz try
store lock, 1

}

Make this into a single 
(atomic hardware instruction)



Test & Set CAS Exchange, locked 
increment/decrement,

LLSC: load-linked store-conditional

Most architectures Many architectures x86 PPC, Alpha, MIPS

HW Support for Read-Modify-Write (RMW)

bool cas(addr, old, new) {
atomic {
if(*addr == old) {
*addr = new;
return true;

} 
return false;

}
}

int TST(addr) {
atomic {
ret = *addr; 
if(!*addr)
*addr = 1;

return ret;
}

}

int XCHG(addr, val) {
atomic {
ret = *addr; 
*addr = val;
return ret;

}
}

bool LLSC(addr, val) {
ret = *addr; 
atomic {
if(*addr == ret) {
*addr = val;
return true;

}
return false;

}
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HW Support for Read-Modify-Write (RMW)
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}

void CAS_lock(lock) {
while(CAS(&lock, 0, 1) != true);

}



Test & Set CAS Exchange, locked 
increment/decrement,

LLSC: load-linked store-conditional

Most architectures Many architectures x86 PPC, Alpha, MIPS

HW Support for Read-Modify-Write (RMW)

bool cas(addr, old, new) {
atomic {
if(*addr == old) {
*addr = new;
return true;

} 
return false;

}
}

int TST(addr) {
atomic {
ret = *addr; 
if(!*addr)
*addr = 1;

return ret;
}

}

int XCHG(addr, val) {
atomic {
ret = *addr; 
*addr = val;
return ret;

}
}

bool LLSC(addr, val) {
ret = *addr; 
atomic {
if(*addr == ret) {
*addr = val;
return true;

}
return false;

}



LLSC: load-linked store-conditional
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HW Support for RMW: LL-SC

bool LLSC(addr, val) {
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• load-linked is a load that is “linked” to a subsequent store-conditional
• Store-conditional only succeeds if value from linked-load is unchanged



LLSC: load-linked store-conditional

PPC, Alpha, MIPS

HW Support for RMW: LL-SC

bool LLSC(addr, val) {
ret = *addr; 
atomic {
if(*addr == ret) {
*addr = val;
return true;

}
return false;

}

void LLSC_lock(lock) {
while(1) {
old = load-linked(lock);
if(old == 0 && store-cond(lock, 1))
return;

}
}

• load-linked is a load that is “linked” to a subsequent store-conditional
• Store-conditional only succeeds if value from linked-load is unchanged
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_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: lock:I I
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lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0S[L] lock: I



LLSC Lock Action Zone

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0S[L] lock: I



LLSC Lock Action Zone

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 1M lock: I



LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: lock:



LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: lock: S[L] 0



LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: lock: S[L] 0



LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0S[L] lock: S[L] 0



LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0S[L] lock: S[L] 0



LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 1M lock: I



LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0) 
if(sc(lock, 1))
return;

}
}

lock: 1M lock: I

Store 
conditional 

fails


