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Outline for Today

e Questions?

* Administrivia
e Comments on Lab 2 due date
* Comments on the changes to schedule

* Agenda
* Consistency
* Transactions
* Transactional Memory

e Acks: Yoav Cohen for some STM slides



Faux Quiz questions

* How are promises and futures related? Since there is disagreement
on the nomenclature, don’t worry about which is which—just
describe what the different objects are and how they function.

e How does HTM resemble or differ from Load-linked Stored-
Conditional?

 What are some pros and cons of HTM vs STM?
 What is Open Nesting? Closed Nesting? Flat Nesting?

e How does 2PL differ from 2PC?

* Define ACID properties: which, if any, of these properties does TM
relax?
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Memory Consistency

* Formal specification of memory semantics
* Statement of how shared memory will behave with multiple CPUs
e Ordering of reads and writes

* Memory Consistency != Cache Coherence
* Coherence: propagate updates to cached copies
 Invalidate vs. Update

* Coherence vs. Consistency?
 Coherence: ordering of ops. at a single location
* Consistency: ordering of ops. at multiple locations
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Sequential Consistency

e Result of any execution is same
as if all operations execute on a
uniprocessor
S\

* Operations on each processor
are totally ordered in the
sequence and respect program
order for each processor

Trying to mimic Uniprocessor semantics:
* Memory operations occur:
* How is this different from coherence? e Oneatatime

 Why do modern CPUs not implement SC? * Inprogram order
: . . . * Read returns value of last write
* Requirements: program order, write atomicity



Sequential Consistency

* All operations are executed in some sequential order

* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order
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Sequential Consistency

* All operations are executed in some sequential order

* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2 Wb P2. Wix)b

P3 R{x)b R(x)a P3: R(x)b R(x)a

P4 Rxb R(x)a P4. R(x)a R(x)b
(@) (b)

Are either of these SC?
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enter CS enter CS



Sequential Consistency: Canonical Example

Initially, Flagl = Flag2 = ©

Pl P2

Flagl = 1 Flag2 = 1

if (Flag2 == 0) if (Flagl == 0)
enter CS enter CS

Can both P1 and P2 wind up in the
critical section at the same time?

7
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Do we need Sequential Consistency?

Initially, Flagl = Flag2 =0

P1 P2
Flagl =1
Flag2 =1
if (Flagl ==0)
shared data++
if (Flag2 ==0)
shared data++
Key issue:

* P1 and P2 may not see each other’s writes in the same order
* Implication: both in critical section, which is incorrect
*  Why would this happen?



Do we need Sequential Consistency?

Initially, Flagl = Flag2 =0

Pl P2

P1 P2 B "

Flagl =1 o || o |
Flagz — 1 /1 rerteFl’agl 13 9 | erteF‘lag2 14
if (Flagl -= O) Shared Bus

shared_data++

if (Flag2 ==0) Foei o _—

shared data++ Flag2: 0

Key issue:

Write Buffers
, L
* P1 and P2 may not see each other’s writes in the same order | | S e = C NG a e i, Sreaas

* Implication: both in critical section, which is incorrect « P _Oread = lookin write buffer,
*  Why would this happen? e P_(x!=0)read = old value: write buffer hasn’t drained
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Requirements for Sequential Consistency

* Program Order
* Processor’s memory operations must complete in program order

* Write Atomicity
* Writes to the same location seen by all other CPUs
* Subsequent reads must not return value of a write until propagated to all

* Write acknowledgements are necessary
* Cache coherence provides these properties for a cache-only system

Disadvantages:

* Difficult to implement!
e Coherence to (e.g.) write buffers is hard

* Sacrifices many potential optimizations
* Hardware (cache) and software (compiler)
* Major performance hit
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* Program Order relaxations (different locations)
' W—=2R; W 2> W, R—2>R/W

* Write Atomicity relaxations
* Read returns another processor’s Write early

* Requirement: synchronization primitives for safety
* Fence, barrier instructions etc
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* Program Order relaxations (different locations)
s W—2>R;, W-2>W R—>R/W

* Write Atomicity relaxations
* Read returns another processor’s V.
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static inline void arch write lock(arch rwlock t *rw) {

asm volatile(LOCK PREFIX WRITE LOCK SUB(%1) x86
: :LOCK_PTR _REG (&rw->write), (RW_LOCK BIAS) : ); }
* Program Order relaxations (different locations)
s W—2>R;, W-2>W R—2>R/W
* Write Atomicity relaxations
* Read returns another processor’s Vi
* Requirement: synchronization pri[~ s Tw =W —wTx “&w [ Resoses e
er arly ar
* Fence, barrier instructions etc L_scisl | | | ” VA —
IBM 370 [14] W senahization mstructions
TSO [20] v V] RMW
PC[13, 12] WV v / RMW
[ psopol [ v [ v ] [ [/ [ RvwsiBaAR
WO [5] v v v v synchronization
RCsc [13,12] i f i f release, acquire, nsync,
RMW
RCpc [13, 12] N v N v v release, acquire, nsync,
RMW
Alpha [19] Vi v Vi v MB, WMB
RMO [21] o of o of vanous MEMBAR’s
PowerPC [17, 4] \/ / \/ v / SYNC



https://elixir.bootlin.com/linux/v3.13/C/ident/arch_write_lock
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_rwlock_t
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/volatile
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PREFIX
https://elixir.bootlin.com/linux/v3.13/C/ident/WRITE_LOCK_SUB
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PTR_REG
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/write
https://elixir.bootlin.com/linux/v3.13/C/ident/RW_LOCK_BIAS
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_write_lock
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_rwlock_t
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/volatile
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PREFIX
https://elixir.bootlin.com/linux/v3.13/C/ident/WRITE_LOCK_SUB
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PTR_REG
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/write
https://elixir.bootlin.com/linux/v3.13/C/ident/RW_LOCK_BIAS
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Transactions and Transactional Memory

* 3 Programming Model Dimensions:
* How to specify computation
* How to specify communication
* How to specify coordination/control transfer

communication

Coordingtiop,

©
 Threads, Futures, Events etc.
* Mostly about how to express control

* Transactions
* Mostly about how to deal with shared state



Transactions

Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) { create(file, dir) {

delete(file, old-dir) alloc-disk(file, header, data)
add(file, new-dir) write(header)
} add (file, dir)
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Transactions

Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) { create(file, dir) {

delete(file, old-dir) alloc-disk(file, header, data)
add(file, new-dir) write(header)
} add (file, dir)
}

Problems: crash in the middle / visibility of intermediate state
* Modified data in memory/caches
* Even if in-memory data is durable, multiple disk updates
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* Two generals on separate mountains
e Can only communicate via messengers
* Messengers can get lost or captured

* Need to coordinate attack
 attack at same time good, different times bad!

General A 2 General B: let’s attack at dawn
General B =2 General A: OK, dawn.

General A 2 General B: Check. Dawn it is.
General B 2 General A: Alright already—dawn.




* Even if all messages
delivered, can’t assume—

General’s paradox maybe some message
didn’t get through.
* Two generals on separate mountains * No solution: one of the

few CS impossibility

e Can only communicate via messengers
results.

* Messengers can get lost or captured

* Need to coordinate attack
 attack at same time good, different times bad!

General A 2 General B: let’s attack at dawn
General B =2 General A: OK, dawn.

General A 2 General B: Check. Dawn it is.
General B 2 General A: Alright already—dawn.
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Transactions can help

(but can’t solve it)

* Solves weaker problem:
2 things will either happen or not
* not necessarily at the same time

* Core idea: one entity has the power to say yes or no for all

* Local txn: one final update (TXEND) irrevocably triggers several
e Distributed transactions
e 2 phase commit

* One machine has final say for all machines
e Other machines bound to comply

What is the role of
synchronization here?
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begin transaction;
X = read(“x-values”, ....);
v = read(“y-values”, ....);
Z = XtY;
write(“z-values”, z, ....);

commit transaction;



Transactional Programming Model

begin transaction;
X = read(“x-values”, ....);
v = read(“y-values”, ....);
Z = XtY;
write(“z-values”, z, ....);

commit transaction;

What has changed from
previous programming
models?
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ACID Semantics

e Atomic — all updates happen or none do

* Consistent — system invariants maintained across updates
* |solated — no visibility into partial updates

* Durable — once done, stays done

* Are subsets ever appropriate?
 When would ACI be useful?
 ACD?

* |solation only?

begin transaction;

4

Z = Xty,

write(“z-values”, z, ....);

commit transaction;

X = read(“x-values’, ....);

y = read(“y-values”, ....);
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* Key idea: turn multiple updates into a single one

* Many implementation Techniques
* Two-phase locking
* Timestamp ordering
* Optimistic Concurrency Control
* Journaling
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* Speculation-rollback
* Single global lock
* Compensating transactions

Key problems:
* output commit
* synchronization




Implementing Transactions

BEGIN TXN();
X = read(“x-values”, ....);
v = read(“y-values”, ....);
Z = Xty,
write(“z-values”, z, ....);
COMMIT_TXN();



Implementing Transactions

BEGIN_TXN(); BEGIN_TXN() {

X = read(“x-values”, ....); }
vy = read(“y-values’, ....);

Z=X+y;

write(“z-values”, z, ....);

COMMIT_TXN(); COMMIT_TXN() {

}
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BEGIN TXN();
X = read(“x-values”, ....);
v = read(“y-values”, ....);
Z = Xty,
write(“z-values”, z, ....);
COMMIT_TXN();
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COMMIT_TXN() {
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Implementing Transactions

BEGIN_TXN(); SEGIL N0 |
_ , LOCK(single-global-lock);

x = read(“x-values”, ....); }
vy = read(“y-values’, ....);

Z = X+y;
write(“z-values”, z, ....);
COMMIT_TXN(); COMMIT_TXN() {
UNLOCK(single-global-lock);
}

Pros/Cons?
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* Phase 2: unlock at commit rwset = Union(rset, wset);
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forall x in rwset

e avoids deadlock

LOCK(x);
BEGIN TXN(); }
Lock X
X = % + )1/ COMMIT_TXN() {
y =y -1 forall x in rwset
unlock y, x UNLOCK(x);
COMMIT_TXN(); }

Pros/Cons?



Two-phase locking

* Phase 1: only acquire locks in order BEGIN_TXN() {

* Phase 2: unlock at commit rwset = Union(rset, wset);
rwset = sort(rwset);

forall x in rwset

e avoids deadlock

LOCK(x);
BEGIN TXN(); }
Lock x
X = X + )1/ COMMIT_TXN() {
y =y -1 forall x in rwset
unlock y, x UNLOCK(x);
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Two-phase locking

* Phase 1: only acquire locks in order
 Phase 2: unlock at commit
e avoids deadlock

A: grab locks
BEGIN TXN(); A modiyxy,
Lock X, y A: unlock y, x
X = X + 1 B: grab locks
y ; yk_ 1 B: update x, y
unlock y, x .
COMMIT TXN(); O unlocky, x

B: COMMIT

A: CRASH

BEGIN_TXN() {

)

rwset = Union(rset, wset);
rwset = sort(rwset);
forall x in rwset

LOCK(x);

COMMIT_TXN() {

}

forall x in rwset
UNLOCK(x);

Pros/Cons?

What happens on failures?



Two-phase locking

B commits

* Phase 1: only acquire locks in changes that BEGIN_TXN() {
* Phase 2: unlock at commit  depend on A’s rwset = Union(rset, wset);
* avoids deadlock updates rwset = sort(rwset);
forall x in rwset
A: grab locks LOCK(x);
BEGIN TXN(); A modiyxy, }
Lock X, vy A: unlock y, x
X = X + 1 B: grab locks CI?M';;”T__TXN() {
y =y -1 5 st orall x in rwset
unlock y, x B uZIocky Xy UNLOCK(x);
COMMIT TXN(); ' / }
B: COMMIT
A: CRASH Pros/Cons?

What happens on failures?



Two-phase commit

* N participants agree or don’t (atomicity)

* Phase 1: everyone “prepares”

* Phase 2: Master decides and tells everyone to actually commit
* What if the master crashes in the middle?



2PC: Phase 1

Coordinator sends REQUEST to all participants
Participants receive request and

Execute locally
Write VOTE_COMMIT or VOTE_ABORT to local log
Send VOTE_COMMIT or VOTE_ABORT to coordinator

Example—move: C>S1: delete foo from /, C=>S2: add foo to /

Al S

Failure case: Success case:

S1 writes rm /foo, VOTE_COMMIT to log S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT S1 sends VOTE_COMMIT

S2 decides permission problem S2 writes add foo to /

S2 writes/sends VOTE_ABORT S2 writes/sends VOTE_COMMIT



2PC: Phase 2

* Case 1: receive VOTE_ABORT or timeout

* Write GLOBAL_ABORT to log
* send GLOBAL_ABORT to participants

e Case 2: receive VOTE_COMMIT from all

* Write GLOBAL_COMMIT to log
* send GLOBAL_COMMIT to participants

* Participants receive decision, write GLOBAL_* to log



2PC corner cases

Phase 1 Phase 2

. Coordinator sends REQUEST to all participants Y° Case 1: receive VOTE_ABORT or timeout
* Write GLOBAL_ABORT to log
* send GLOBAL_ABORT to participants

=

X 2.  Participants receive request and

3.  Execute locally

_ * Case 2: receive VOTE_COMMIT from all
4.  Write VOTE_COMMIT or VOTE_ABORT to local log + Write GLOBAL COMMIT to log
5.  Send VOTE_COMMIT or VOTE_ABORT to coordinator * send GLOBAL_COMMIT to participants

Z' Participants recv decision, write GLOBAL_* to log

What if participant crashes at X?
Coordinator crashes at Y?
Participant crashes at Z?

e Coordinator crashes at W?



2PC limitation(s)
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2PC limitation(s)

* Coordinator crashes at W, never wakes up

* All nodes block forever!

e Can participants ask each other what happened?
e 2PC: always has risk of indefinite blocking

* Solution: (yes) 3 phase commit!
» Reliable replacement of crashed “leader”
* 2PC often good enough in practice



Questions?



