
Consistency
Transactions

Transactional Memory
Chris Rossbach

cs378h

Picking up where we left off…

• Questions?

• Agenda
• Transactions

• Parallel Architectures

Two-phase commit

• N participants agree or don’t (atomicity)

• Phase 1: everyone “prepares”

• Phase 2: Master decides and tells everyone to actually commit

• What if the master crashes in the middle?

2PC: Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator
Example—move: C→S1: delete foo from /, C→S2: add foo to /

Failure case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 decides permission problem
S2 writes/sends VOTE_ABORT

Success case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 writes add foo to /
S2 writes/sends VOTE_COMMIT

2PC: Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log

• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log

• send GLOBAL_COMMIT to participants

• Participants receive decision, write GLOBAL_* to log

2PC corner cases
Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Phase 2

• Case 1: receive VOTE_ABORT or timeout

• Write GLOBAL_ABORT to log

• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all

• Write GLOBAL_COMMIT to log

• send GLOBAL_COMMIT to participants

• Participants recv decision, write GLOBAL_* to log

• What if participant crashes at X?
• Coordinator crashes at Y?
• Participant crashes at Z?
• Coordinator crashes at W?

Z

X
Y

W

2PC limitation(s)

2PC limitation(s)

• Coordinator crashes at W, never wakes up

2PC limitation(s)

• Coordinator crashes at W, never wakes up

• All nodes block forever!

2PC limitation(s)

• Coordinator crashes at W, never wakes up

• All nodes block forever!

• Can participants ask each other what happened?

2PC limitation(s)

• Coordinator crashes at W, never wakes up

• All nodes block forever!

• Can participants ask each other what happened?

• 2PC: always has risk of indefinite blocking

2PC limitation(s)

• Coordinator crashes at W, never wakes up

• All nodes block forever!

• Can participants ask each other what happened?

• 2PC: always has risk of indefinite blocking

• Solution: (yes) 3 phase commit!
• Reliable replacement of crashed “leader”

• 2PC often good enough in practice

Nested Transactions

Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of:
• actions on unprotected objects
• protected actions that my be undone or redone
• real actions that may be deferred but not undone
• nested transactions that may be undone

Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of:
• actions on unprotected objects
• protected actions that my be undone or redone
• real actions that may be deferred but not undone
• nested transactions that may be undone

3 basic flavors:
* Flat: subsume inner transactions
* Closed: subsume w partial rollback
* Open: pause transactional context

Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of:
• actions on unprotected objects
• protected actions that my be undone or redone
• real actions that may be deferred but not undone
• nested transactions that may be undone

• Open Nesting details:
• Nested transaction returns name and parameters of compensating transaction
• Parent includes compensating transaction in log of parent transaction
• Invoke compensating transactions from log if parent transaction aborted
• Consistent, atomic, durable, but not isolated

3 basic flavors:
* Flat: subsume inner transactions
* Closed: subsume w partial rollback
* Open: pause transactional context

Transactional Memory: ACI

Transactional Memory :

• Make multiple memory accesses atomic

• All or nothing – Atomicity

• No interference – Isolation

• Correctness – Consistency

• No durability, for obvious reasons

• Keywords : Commit, Abort, Speculative
access,

Checkpoint

Transactional Memory: ACI

Transactional Memory :

• Make multiple memory accesses atomic

• All or nothing – Atomicity

• No interference – Isolation

• Correctness – Consistency

• No durability, for obvious reasons

• Keywords : Commit, Abort, Speculative
access,

Checkpoint

remove(list, x) {

lock(list);

pos = find(list, x);

if(pos)

erase(list, pos);

unlock(list);

}

Transactional Memory: ACI

Transactional Memory :

• Make multiple memory accesses atomic

• All or nothing – Atomicity

• No interference – Isolation

• Correctness – Consistency

• No durability, for obvious reasons

• Keywords : Commit, Abort, Speculative
access,

Checkpoint

remove(list, x) {

lock(list);

pos = find(list, x);

if(pos)

erase(list, pos);

unlock(list);

}

remove(list, x) {

TXBEGIN();

pos = find(list, x);

if(pos)

erase(list, pos);

TXEND();

}

The Real Goal remove(list, x) {

lock(list);

pos = find(list, x);

if(pos)

erase(list, pos);

unlock(list);

}

remove(list, x) {

TXBEGIN();

pos = find(list, x);

if(pos)

erase(list, pos);

TXEND();

}

The Real Goal remove(list, x) {

lock(list);

pos = find(list, x);

if(pos)

erase(list, pos);

unlock(list);

}

remove(list, x) {

TXBEGIN();

pos = find(list, x);

if(pos)

erase(list, pos);

TXEND();

}

The Real Goal remove(list, x) {

lock(list);

pos = find(list, x);

if(pos)

erase(list, pos);

unlock(list);

}

remove(list, x) {

TXBEGIN();

pos = find(list, x);

if(pos)

erase(list, pos);

TXEND();

}

remove(list, x) {

atomic {

pos = find(list, x);

if(pos)

erase(list, pos);

}

}

The Real Goal remove(list, x) {

lock(list);

pos = find(list, x);

if(pos)

erase(list, pos);

unlock(list);

}

remove(list, x) {

TXBEGIN();

pos = find(list, x);

if(pos)

erase(list, pos);

TXEND();

}

remove(list, x) {

atomic {

pos = find(list, x);

if(pos)

erase(list, pos);

}

}

• Transactions: super-awesome
• Transactional Memory: also super-awesome, but:
• Transactions != TM
• TM is an implementation technique
• Often presented as programmer abstraction
• Remember Optimistic Concurrency Control

A Simple TM

A Simple TM

remove(list, x) {

begin_tx();

pos = find(list, x);

if(pos)

erase(list, pos);

end_tx();

}

A Simple TM

remove(list, x) {

begin_tx();

pos = find(list, x);

if(pos)

erase(list, pos);

end_tx();

}

Actually, this
works fine…

But how can we
improve it?

Concurrency Control Revisited

Concurrency Control Revisited

Consider a hash-table

Concurrency Control Revisited

Consider a hash-table

Concurrency Control Revisited

ht.add();

if(ht.contains())

ht.del();

thread T1
ht.add();

if(ht.contains())

ht.del();

thread T2

Concurrency Control Revisited

ht.add();

if(ht.contains())

ht.del();

thread T1
ht.add();

if(ht.contains())

ht.del();

thread T2

Concurrency Control Revisited

ht.lock()

ht.add();

if(ht.contains())

ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())

ht.del();

ht.unlock();

thread T2
lock

Pessimistic concurrency control

ht.lock();

ht.add();

if(ht.contains())

ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())

ht.del();

ht.unlock();

thread T2
lock

Pessimistic concurrency control

ht.lock();

ht.add();

if(ht.contains())

ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())

ht.del();

ht.unlock();

thread T2
lock

Optimistic concurrency control

ht.lock();

ht.add();

if(ht.contains())

ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())

ht.del();

ht.unlock();

thread T2
lock

Optimistic concurrency control

ht.add();

if(ht.contains())

ht.del();

thread T1

ht.add();

if(ht.contains())

ht.del();

thread T2

Optimistic concurrency control

ht.add();

if(ht.contains())

ht.del();

thread T1

ht.add();

if(ht.contains())

ht.del();

thread T2

What do we do when
same data is accessed?

Key Ideas:

 Critical sections
execute concurrently

 Conflicts are
detected dynamically

 If conflict
serializability is
violated, rollback

Key Abstractions:

• Primitives
• xbegin, xend, xabort

• Conflict
• Φ != {W_A} {W_B U W_R}

• Contention Manager
• Need flexible policy

TM Primer

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 0

TM basics: example

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0

TM basics: example

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0PC: 1

TM basics: example

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set

R{ }

W{}
A

TM basics: example

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set

R{ }

W{}
A

PC: 2

Working Set

R{ }

W{}
A

TM basics: example

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set

R{ }

W{}
A

PC: 2

Working Set

R{ }

W{}
A

PC: 3

Working Set

R{ }

W{}
A,B

TM basics: example

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set

R{ }

W{}
A

PC: 2

Working Set

R{ }

W{}
A

PC: 3

Working Set

R{ }

W{}
A,B

PC: 3

Working Set

R{ }

W{}
A,B

TM basics: example

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set

R{ }

W{}
A

PC: 2

Working Set

R{ }

W{}
A

PC: 3

Working Set

R{ }

W{}
A,B

PC: 3

Working Set

R{ }

W{}
A,B

PC: 6

TM basics: example

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set

R{ }

W{}
A

PC: 2

Working Set

R{ }

W{}
A

PC: 3

Working Set

R{ }

W{}
A,B

PC: 3

Working Set

R{ }

W{}
A,B

PC: 6 PC: 4

TM basics: example

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set

R{ }

W{}
A

PC: 2

Working Set

R{ }

W{}
A

PC: 3

Working Set

R{ }

W{}
A,B

PC: 3

Working Set

R{ }

W{}
A,B

PC: 6 PC: 4PC: 7

Working Set

R{ }

W{}
A,B,C

TM basics: example

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set

R{ }

W{}
A

PC: 2

Working Set

R{ }

W{}
A

PC: 3

Working Set

R{ }

W{}
A,B

PC: 3

Working Set

R{ }

W{}
A,B

PC: 6 PC: 4PC: 7

Working Set

R{ }

W{}
A,B,C

PC: 7

Working Set

R{ }

W{ }
A,B

C

CONFLICT:

C is in the read set of

cpu0, and in the write

set of cpu1

TM basics: example

0: xbegin

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

cpu 0 cpu 1

0: xbegin;

1: read A

2: read B

3: if(cpu % 2)

4: write C

5: else

6: read C

7: …

8: xend

PC: 0

Working Set

R{}

W{}

PC: 0

Working Set

R{}

W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set

R{ }

W{}
A

PC: 2

Working Set

R{ }

W{}
A

PC: 3

Working Set

R{ }

W{}
A,B

PC: 3

Working Set

R{ }

W{}
A,B

PC: 6 PC: 4PC: 7

Working Set

R{ }

W{}
A,B,C

PC: 7

Working Set

R{ }

W{ }
A,B

C

Assume contention

manager decides cpu1

wins:

cpu0 rolls back

cpu1 commits

PC: 0

Working Set

R{}

W{}

PC: 8

Working Set

R{}

W{}

TM basics: example

TM Implementation

TM Implementation

Data Versioning
• Eager Versioning
• Lazy Versioning

TM Implementation

Data Versioning
• Eager Versioning
• Lazy Versioning

Conflict Detection and Resolution
• Pessimistic Concurrency Control
• Optimistic Concurrency Control

TM Implementation

Data Versioning
• Eager Versioning
• Lazy Versioning

Conflict Detection and Resolution
• Pessimistic Concurrency Control
• Optimistic Concurrency Control

Conflict Detection Granularity
• Object Granularity
• Word Granularity
• Cache line Granularity

TM Design Alternatives
• Hardware (HTM)

• Caches track RW set, HW speculation/checkpoint

• Software (STM)
• Instrument RW

• Inherit TX Object

Hardware

Memory

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Hardware

Memory

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

STM

Hardware Transactional Memory

• Idea: Track read / write sets in HW
• commit / rollback in hardware as well

• Cache coherent hardware already manages much of this

• Basic idea: cache == speculative storage
• HTM ~= smarter cache

• Can support many different TM paradigms
• Eager, lazy

• optimistic, pessimistic

Hardware TM

• “Small” modification to cache

Hardware TM

• “Small” modification to cache

Core

Regular
Accesses

L1 $

Ta
g

D
at

a

L1 $

Hardware TM

• “Small” modification to cache

Core

Regular
Accesses

L1 $

Ta
g

D
at

a

L1 $

Core

Regular
Accesses

Transactional $L1 $

Ta
g

D
at

a

Ta
g

A
d

d
l.

Ta
g

O
ld

 D
at

a

N
ew

 D
at

a

Transactional
Accesses

L1 $

Hardware TM

• “Small” modification to cache

Core

Regular
Accesses

L1 $

Ta
g

D
at

a

L1 $

Core

Regular
Accesses

Transactional $L1 $

Ta
g

D
at

a

Ta
g

A
d

d
l.

Ta
g

O
ld

 D
at

a

N
ew

 D
at

a

Transactional
Accesses

L1 $

Key ideas

• Checkpoint architectural state

• Caches: ‘versioning’ for memory

• Change coherence protocol

• Conflict detection in hardware

• ‘Commit’ transactions if no conflict

• ‘Abort’ on conflict (or special cond)

• ‘Retry’ aborted transaction

Hardware TM

• “Small” modification to cache

Core

Regular
Accesses

L1 $

Ta
g

D
at

a

L1 $

Core

Regular
Accesses

Transactional $L1 $

Ta
g

D
at

a

Ta
g

A
d

d
l.

Ta
g

O
ld

 D
at

a

N
ew

 D
at

a

Transactional
Accesses

L1 $

Key ideas

• Checkpoint architectural state

• Caches: ‘versioning’ for memory

• Change coherence protocol

• Conflict detection in hardware

• ‘Commit’ transactions if no conflict

• ‘Abort’ on conflict (or special cond)

• ‘Retry’ aborted transaction

Pros/Cons?

Case Study: SUN Rock

• Major challenge: diagnosing cause of Transaction aborts
• Necessary for intelligent scheduling of transactions

• Also for debugging code

• debugging the processor architecture / µarchitecture

• Many unexpected causes of aborts

• Rock v1 diagnostics unable to distinguish distinct failure modes

Case Study: SUN Rock

• Major challenge: diagnosing cause of Transaction aborts
• Necessary for intelligent scheduling of transactions

• Also for debugging code

• debugging the processor architecture / µarchitecture

• Many unexpected causes of aborts

• Rock v1 diagnostics unable to distinguish distinct failure modes

A Simple STM

A Simple STM

remove(list, x) {

begin_tx();

pos = find(list, x);

if(pos)

erase(list, pos);

end_tx();

}

A Simple STM

remove(list, x) {

begin_tx();

pos = find(list, x);

if(pos)

erase(list, pos);

end_tx();

}

Is this
Transactional

Memory?

A Simple STM

remove(list, x) {

begin_tx();

pos = find(list, x);

if(pos)

erase(list, pos);

end_tx();

}

Is this
Transactional

Memory?

TM is a deep area:
consider it for your

project!

A Better STM: System Model

Memory

A Better STM: System Model

System == <threads, memory>
Memory

A Better STM: System Model

System == <threads, memory>

Memory cell support 4 operations:
Memory

A Better STM: System Model

System == <threads, memory>

Memory cell support 4 operations:
▪ Writei(L,v) - thread i writes v to L

Memory

A Better STM: System Model

System == <threads, memory>

Memory cell support 4 operations:
▪ Writei(L,v) - thread i writes v to L

▪ Readi(L,v) - thread i reads v from L

Memory

A Better STM: System Model

System == <threads, memory>

Memory cell support 4 operations:
▪ Writei(L,v) - thread i writes v to L

▪ Readi(L,v) - thread i reads v from L

▪ LLi(L,v) - thread i reads v from L, marks L read by I

Memory

A Better STM: System Model

System == <threads, memory>

Memory cell support 4 operations:
▪ Writei(L,v) - thread i writes v to L

▪ Readi(L,v) - thread i reads v from L

▪ LLi(L,v) - thread i reads v from L, marks L read by I

▪ SCi(L,v) - thread i writes v to L
▪ returns success if L is marked as read by i.

▪ Otherwise it returns failure.

Memory

STM Design Overview

Memory

Ownerships

status

version

size

locs[]

oldValues[]

Rec1

status

version

size

locs[]

oldValues[]

Rec2

status

version

size

locs[]

oldValues[]

Recn

STM Design Overview

Memory

Ownerships

status

version

size

locs[]

oldValues[]

Rec1

status

version

size

locs[]

oldValues[]

Rec2

status

version

size

locs[]

oldValues[]

Recn

This is the

shared memory,

(STM Object)

STM Design Overview

Memory

Ownerships

status

version

size

locs[]

oldValues[]

Rec1

status

version

size

locs[]

oldValues[]

Rec2

status

version

size

locs[]

oldValues[]

Recn

This is the

shared memory,

(STM Object)

Pointers to

threads

(Rec

Objects)

Threads: Rec Objects

class Rec {

boolean stable = false;

boolean, int status= (false,0); //can have two values…

boolean allWritten = false;

int version = 0;

int size = 0;

int locs[] = {null};

int oldValues[] = {null};

}

Each thread →

instance of Rec class

(short for record).

Rec instance defines

current transaction on thread

Memory: STM Object

public class STM {

int memory[];

Rec ownerships[];

public boolean, int[] startTranscation(Rec rec, int[] dataSet){...};

private void initialize(Rec rec, int[] dataSet)

private void transaction(Rec rec, int version, boolean isInitiator) {...};

private void acquireOwnerships(Rec rec, int version) {...};

private void releaseOwnershipd(Rec rec, int version) {...};

private void agreeOldValues(Rec rec, int version) {...};

private void updateMemory(Rec rec, int version, int[] newvalues) {...};

}

Flow of a transaction
ThreadsSTM

Flow of a transaction

Thread i

ThreadsSTM

Flow of a transaction

Thread i

ThreadsSTM

Flow of a transaction

startTransaction Thread i

ThreadsSTM

Flow of a transaction

startTransaction Thread i

ThreadsSTM

Flow of a transaction

startTransaction Thread i

initialize

ThreadsSTM

Flow of a transaction

startTransaction Thread i

initialize

ThreadsSTM

Flow of a transaction

startTransaction Thread i

initialize

transaction

ThreadsSTM

Flow of a transaction

startTransaction Thread i

initialize

transaction

ThreadsSTM

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

updateMemory

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

updateMemory

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

updateMemory

release

Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

updateMemory

release

Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

updateMemory

release

Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Success

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

updateMemory

release

Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Success

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

updateMemory

release

Ownerships

release

Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Success

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

updateMemory

release

Ownerships

release

Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Success

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

updateMemory

release

Ownerships

release

Ownerships

isInitiator?

ThreadsSTM

(Failure,failed loc)

FT

(Null, 0)

Success

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

updateMemory

release

Ownerships

release

Ownerships

isInitiator?

ThreadsSTM

(Failure,failed loc)

FT

Initiate

helping

transaction

to failed loc

(isInitiator:=F)

(Null, 0)

Success

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire

Ownerships
agreeOldValues

calcNewValues

updateMemory

release

Ownerships

release

Ownerships

isInitiator?

ThreadsSTM

(Failure,failed loc)

FT

Initiate

helping

transaction

to failed loc

(isInitiator:=F)

(Null, 0)

Success

Failure

Implementation

public boolean, int[] startTranscation(Rec rec, int[] dataSet) {

initialize(rec, dataSet);

rec.stable = true;

transaction(rec, rec.version, true);

rec.stable = false;

rec.version++;

if (rec.status) return (true, rec.oldValues);

else return false;

}

Implementation

public boolean, int[] startTranscation(Rec rec, int[] dataSet) {

initialize(rec, dataSet);

rec.stable = true;

transaction(rec, rec.version, true);

rec.stable = false;

rec.version++;

if (rec.status) return (true, rec.oldValues);

else return false;

}

rec – The thread that

executes this

transaction.

dataSet – The

location in memory it

needs to own.

Implementation

public boolean, int[] startTranscation(Rec rec, int[] dataSet) {

initialize(rec, dataSet);

rec.stable = true;

transaction(rec, rec.version, true);

rec.stable = false;

rec.version++;

if (rec.status) return (true, rec.oldValues);

else return false;

}

This notifies

other threads

that I can be

helped

rec – The thread that

executes this

transaction.

dataSet – The

location in memory it

needs to own.

Implementation

private void transaction(Rec rec, int version, boolean isInitiator) {

acquireOwnerships(rec, version); // try to own locations

(status, failedLoc) = LL(rec.status);

if (status == null) { // success in acquireOwnerships

if (versoin != rec.version) return;

SC(rec.status, (true,0));

}

(status, failedLoc) = LL(rec.status);

if (status == true) { // execute the transaction

agreeOldValues(rec, version);

int[] newVals = calcNewVals(rec.oldvalues);

updateMemory(rec, version);

releaseOwnerships(rec, version);

}

else { // failed in acquireOwnerships

releaseOwnerships(rec, version);

if (isInitiator) {

Rec failedTrans = ownerships[failedLoc];

if (failedTrans == null) return;

else { // execute the transaction that owns the location you want

int failedVer = failedTrans.version;

if (failedTrans.stable) transaction(failedTrans, failedVer, false);

}

}

}

}

Implementation

private void transaction(Rec rec, int version, boolean isInitiator) {

acquireOwnerships(rec, version); // try to own locations

(status, failedLoc) = LL(rec.status);

if (status == null) { // success in acquireOwnerships

if (versoin != rec.version) return;

SC(rec.status, (true,0));

}

(status, failedLoc) = LL(rec.status);

if (status == true) { // execute the transaction

agreeOldValues(rec, version);

int[] newVals = calcNewVals(rec.oldvalues);

updateMemory(rec, version);

releaseOwnerships(rec, version);

}

else { // failed in acquireOwnerships

releaseOwnerships(rec, version);

if (isInitiator) {

Rec failedTrans = ownerships[failedLoc];

if (failedTrans == null) return;

else { // execute the transaction that owns the location you want

int failedVer = failedTrans.version;

if (failedTrans.stable) transaction(failedTrans, failedVer, false);

}

}

}

}

rec – The thread that

executes this

transaction.

version – Serial

number of the

transaction.

isInitiator – Am I the

initiating thread or

the helper?

Implementation

private void transaction(Rec rec, int version, boolean isInitiator) {

acquireOwnerships(rec, version); // try to own locations

(status, failedLoc) = LL(rec.status);

if (status == null) { // success in acquireOwnerships

if (versoin != rec.version) return;

SC(rec.status, (true,0));

}

(status, failedLoc) = LL(rec.status);

if (status == true) { // execute the transaction

agreeOldValues(rec, version);

int[] newVals = calcNewVals(rec.oldvalues);

updateMemory(rec, version);

releaseOwnerships(rec, version);

}

else { // failed in acquireOwnerships

releaseOwnerships(rec, version);

if (isInitiator) {

Rec failedTrans = ownerships[failedLoc];

if (failedTrans == null) return;

else { // execute the transaction that owns the location you want

int failedVer = failedTrans.version;

if (failedTrans.stable) transaction(failedTrans, failedVer, false);

}

}

}

}

rec – The thread that

executes this

transaction.

version – Serial

number of the

transaction.

isInitiator – Am I the

initiating thread or

the helper?

Another thread own

the locations I need

and it hasn’t finished

its transaction yet.

So I go out and

execute its

transaction in order

to help it.

Implementation
private void acquireOwnerships(Rec rec, int version) {

for (int j=1; j<=rec.size; j++) {

while (true) do {

int loc = locs[j];

if LL(rec.status) != null return; // transaction completed by some other thread

Rec owner = LL(ownerships[loc]);

if (rec.version != version) return;

if (owner == rec) break; // location is already mine

if (owner == null) { // acquire location

if (SC(rec.status, (null, 0))) {

if (SC(ownerships[loc], rec)) {

break;

}

}

}

else {// location is taken by someone else

if (SC(rec.status, (false, j))) return;

}

}

}

}

If I’m not the last one to

read this field, it means that

another thread is trying to

execute this transaction.

Try to loop until I succeed

or until the other thread

completes the transaction

Implementation

private void agreeOldValues(Rec rec, int version) {

for (int j=1; j<=rec.size; j++) {

int loc = locs[j];

if (LL(rec.oldvalues[loc]) != null) {

if (rec.version != version) return;

SC(rec.oldvalues[loc], memory[loc]);

}

}

}

private void updateMemory(Rec rec, int version, int[] newvalues) {

for (int j=1; j<=rec.size; j++) {

int loc = locs[j];

int oldValue = LL(memory[loc]);

if (rec.allWritten) return; // work is done

if (rec.version != version) return;

if (oldValue != newValues[j]) SC(memory[loc], newValues[j]);

}

if (! LL(rec.allWritten)) {

if (rec.version != version) SC(rec.allWritten, true);

}

}

Copy the dataSet

to my private

space

Selectively update

the shared

memory

HTM vs. STM

Hardware Software

Fast (due to hardware operations) Slow (due to software validation/commit)

Light code instrumentation Heavy code instrumentation

HW buffers keep amount of metadata low Lots of metadata

No need of a middleware Runtime library needed

Only short transactions allowed (why?) Large transactions possible

HTM vs. STM

Hardware Software

Fast (due to hardware operations) Slow (due to software validation/commit)

Light code instrumentation Heavy code instrumentation

HW buffers keep amount of metadata low Lots of metadata

No need of a middleware Runtime library needed

Only short transactions allowed (why?) Large transactions possible

How would you get the best of both?

Hybrid-TM

• Best-effort HTM (use STM for long trx)

• Possible conflicts between HW,SW and HW-SW Trx
• What kind of conflicts do SW-Trx care about?

• What kind of conflicts do HW-Trx care about?

• Some initial proposals:
• HyTM: uses an ownership record per memory location

(overhead?)

• PhTM: HTM-only or (heavy) STM-only, low instrumentation

Questions?

