
GPUs to the left
GPUs to the right

GPUs all day
GPUs all night

Chris Rossbach

cs378h

1

Outline for Today
• Questions?

• Administrivia

• Impending (minor) schedule changes
• FPGA readings

• Moved FPGA Lab Due Date

• Barnes-Hut status change

• Exam next week

• Agenda

• CUDA

• CUDA Performance

• GPU parallel algorithms redux redux

Acknowledgements:

• http://developer.download.nvidia.com/compute/developertrainingmaterials/presen
tations/cuda_language/Introduction_to_CUDA_C.pptx

• http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx

• http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.p
ptx

2

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx
http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx
http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.pptx

Schedule Stuff

3

Schedule Stuff

3

Schedule Stuff

• Midterm Quiz questions posted soon

3

Faux Quiz Questions

• How is occupancy defined (in CUDA nomenclature)?

• What’s the difference between a block scheduler (e.g. Giga-Thread Engine) and a warp scheduler?

• Modern CUDA supports UVM to eliminate the need for cudaMalloc and cudaMemcpy*. Under
what conditions might you want to use or not use it and why?

• What is control flow divergence? How does it impact performance?

• What is a bank conflict?

• What is work efficiency?

• What is the difference between a thread block scheduler and a warp scheduler?

• How are atomics implemented in modern GPU hardware?

• How is __shared__ memory implemented by modern GPU hardware?

• Why is __shared__ memory necessary if GPUs have an L1 cache? When will an L1 cache provide
all the benefit of __shared__ memory and when will it not?

• Is cudaDeviceSynchronize still necessary after copyback if I have just one CUDA stream?

4

Review: Blocks and Threads

• Most kernels use both blockIdx.x and threadIdx.x

• Index an array with one elem. per thread (8 threads/block)

5

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

Review: Blocks and Threads

• Most kernels use both blockIdx.x and threadIdx.x

• Index an array with one elem. per thread (8 threads/block)

5

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

Review: Blocks and Threads

• Most kernels use both blockIdx.x and threadIdx.x

• Index an array with one elem. per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

5

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

Review: Blocks and Threads

• With M threads/block, unique index per thread is :

• Most kernels use both blockIdx.x and threadIdx.x

• Index an array with one elem. per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

5

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

Review: Blocks and Threads

• With M threads/block, unique index per thread is :
int index = threadIdx.x + blockIdx.x * M;

• Most kernels use both blockIdx.x and threadIdx.x

• Index an array with one elem. per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

5

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

Review: Blocks and Threads

• With M threads/block, unique index per thread is :
int index = threadIdx.x + blockIdx.x * M;

• Most kernels use both blockIdx.x and threadIdx.x

• Index an array with one elem. per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

5

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

What if my array
size N % M != 0

!!???

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

Review: Blocks and Threads

• With M threads/block, unique index per thread is :
int index = threadIdx.x + blockIdx.x * M;

• Most kernels use both blockIdx.x and threadIdx.x

• Index an array with one elem. per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

5

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

What if my array
size N % M != 0

!!???

__global__ void add(int *a, int *b, int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}

Update the kernel launch:
add<<<(N + M-1) / M, M>>>(d_a, d_b, d_c, N);

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

Review: Blocks and Threads

• With M threads/block, unique index per thread is :
int index = threadIdx.x + blockIdx.x * M;

• Most kernels use both blockIdx.x and threadIdx.x

• Index an array with one elem. per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

5

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

What if my array
size N % M != 0

!!???

__global__ void add(int *a, int *b, int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}

Update the kernel launch:
add<<<(N + M-1) / M, M>>>(d_a, d_b, d_c, N);

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

Review: Blocks and Threads

• With M threads/block, unique index per thread is :
int index = threadIdx.x + blockIdx.x * M;

• Most kernels use both blockIdx.x and threadIdx.x

• Index an array with one elem. per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

5

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

What if my array
size N % M != 0

!!???

__global__ void add(int *a, int *b, int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}

Update the kernel launch:
add<<<(N + M-1) / M, M>>>(d_a, d_b, d_c, N);

• Why have threads?

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

Review: Blocks and Threads

• With M threads/block, unique index per thread is :
int index = threadIdx.x + blockIdx.x * M;

• Most kernels use both blockIdx.x and threadIdx.x

• Index an array with one elem. per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

5

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

What if my array
size N % M != 0

!!???

__global__ void add(int *a, int *b, int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}

Update the kernel launch:
add<<<(N + M-1) / M, M>>>(d_a, d_b, d_c, N);

• Why have threads?
• Why not just blocks or just threads?

00 11 7722 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66

Review: Blocks and Threads

• With M threads/block, unique index per thread is :
int index = threadIdx.x + blockIdx.x * M;

• Most kernels use both blockIdx.x and threadIdx.x

• Index an array with one elem. per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

5

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index];

}

What if my array
size N % M != 0

!!???

__global__ void add(int *a, int *b, int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}

Update the kernel launch:
add<<<(N + M-1) / M, M>>>(d_a, d_b, d_c, N);

• Why have threads?
• Why not just blocks or just threads?

• Unlike parallel blocks, threads can:
• Communicate
• Synchronize

How many threads/blocks should I use?

6

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

How many threads/blocks should I use?

6

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

How many threads/blocks should I use?

6

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

• Usually things are correct if grid*block dims >= input size
• Getting good performance is another matter

Internals
__global__

void addKernel(float *A_d,

float *B_d,

float *C_d,

int n){

int i = blockIdx.x * blockDim.x

+ threadIdx.x;

if(i<n) C_d[i] = A_d[i]+B_d[i];

}

__host__

void vecAdd()

{

dim3 DimGrid = (ceil(n/256,1,1);

dim3 DimBlock = (256,1,1);

addKernel<<<DGrid,DBlock>>>(A_d,B_d,C_d,n);

}

7

Internals
__global__

void addKernel(float *A_d,

float *B_d,

float *C_d,

int n){

int i = blockIdx.x * blockDim.x

+ threadIdx.x;

if(i<n) C_d[i] = A_d[i]+B_d[i];

}

__host__

void vecAdd()

{

dim3 DimGrid = (ceil(n/256,1,1);

dim3 DimBlock = (256,1,1);

addKernel<<<DGrid,DBlock>>>(A_d,B_d,C_d,n);

}

KernelBlk 0 Blk N-1

• • •

GPU
M0

RAM

Mk• • •

Schedule onto multiprocessors

7

Internals
__global__

void addKernel(float *A_d,

float *B_d,

float *C_d,

int n){

int i = blockIdx.x * blockDim.x

+ threadIdx.x;

if(i<n) C_d[i] = A_d[i]+B_d[i];

}

__host__

void vecAdd()

{

dim3 DimGrid = (ceil(n/256,1,1);

dim3 DimBlock = (256,1,1);

addKernel<<<DGrid,DBlock>>>(A_d,B_d,C_d,n);

}

KernelBlk 0 Blk N-1

• • •

GPU
M0

RAM

Mk• • •

Schedule onto multiprocessors

How are threads
scheduled?

7

Kernel Launch

8

Kernel Launch
• Commands by host issued through streams

8

Kernel Launch
• Commands by host issued through streams

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

8

Kernel Launch
• Commands by host issued through streams

❖ Kernels in the same stream executed sequentially

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

8

Kernel Launch
• Commands by host issued through streams

❖ Kernels in the same stream executed sequentially

❖ Kernels in different streams may be executed concurrently

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

8

Kernel Launch
• Commands by host issued through streams

❖ Kernels in the same stream executed sequentially

❖ Kernels in different streams may be executed concurrently

• Streams mapped to GPU HW queues

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

8

Kernel Launch
• Commands by host issued through streams

❖ Kernels in the same stream executed sequentially

❖ Kernels in different streams may be executed concurrently

• Streams mapped to GPU HW queues
❖ Done by “kernel management unit” (KMU)

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

8

Kernel Launch
• Commands by host issued through streams

❖ Kernels in the same stream executed sequentially

❖ Kernels in different streams may be executed concurrently

• Streams mapped to GPU HW queues
❖ Done by “kernel management unit” (KMU)

❖ Multiple streams mapped to each queue → serializes some kernels

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

8

Kernel Launch
• Commands by host issued through streams

❖ Kernels in the same stream executed sequentially

❖ Kernels in different streams may be executed concurrently

• Streams mapped to GPU HW queues
❖ Done by “kernel management unit” (KMU)

❖ Multiple streams mapped to each queue → serializes some kernels

• Kernel launch distributes thread blocks to SMs

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

8

SIMD vs. SIMT

SISD SIMD

MISD MIMD

Data Streams
In

st
ru

ct
io

n
 S

tr
ea

m
s

Register File

+

Loosely synchronized threads
Multiple threads

Synchronous operation

RFRF RF RF

Single Scalar Thread

SIMT

Flynn Taxonomy

e.g., pthreads

e.g., SSE/AVX

e.g., PTX, HSA

9

GPU Performance Metric: Occupancy

10

GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

10

GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

• Occupancy captures
• which resources can be dynamically shared

• how to reason about resource demands of a CUDA kernel

• Enables device-specific online tuning of kernel parameters

10

GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

• Occupancy captures
• which resources can be dynamically shared

• how to reason about resource demands of a CUDA kernel

• Enables device-specific online tuning of kernel parameters

10

GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

• Occupancy captures
• which resources can be dynamically shared

• how to reason about resource demands of a CUDA kernel

• Enables device-specific online tuning of kernel parameters

10

Shouldn’t we just create as many
threads as possible?

A Taco Bar

11

A Taco Bar

11

A Taco Bar

11

• Where is the parallelism here?

GPU: a multi-lane Taco Bar

12

GPU: a multi-lane Taco Bar

12

GPU: a multi-lane Taco Bar

12

GPU: a multi-lane Taco Bar

12

• Where is the parallelism here?

GPU: a multi-lane Taco Bar

13

GPU: a multi-lane Taco Bar

13

1 Taco,
please

GPU: a multi-lane Taco Bar

13

1 Taco,
please

• Where is the parallelism here?

GPU: a multi-lane Taco Bar

13

1 Taco,
please

• Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

13

1 Taco,
please

• Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

14

• Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

14

• Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

14

• Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

14

• Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

14

• Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

14

• Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

14

• Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU Performance Metric: Occupancy

15

GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

15

GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

• Occupancy captures
• which resources can be dynamically shared

• how to reason about resource demands of a CUDA kernel

• Enables device-specific online tuning of kernel parameters

15

GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

• Occupancy captures
• which resources can be dynamically shared

• how to reason about resource demands of a CUDA kernel

• Enables device-specific online tuning of kernel parameters

15

GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

• Occupancy captures
• which resources can be dynamically shared

• how to reason about resource demands of a CUDA kernel

• Enables device-specific online tuning of kernel parameters

15

GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

• Occupancy captures
• which resources can be dynamically shared

• how to reason about resource demands of a CUDA kernel

• Enables device-specific online tuning of kernel parameters

15

GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

• Occupancy captures
• which resources can be dynamically shared

• how to reason about resource demands of a CUDA kernel

• Enables device-specific online tuning of kernel parameters

15

GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

• Occupancy captures
• which resources can be dynamically shared

• how to reason about resource demands of a CUDA kernel

• Enables device-specific online tuning of kernel parameters

15

Shouldn’t we just create as many
threads as possible?

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

SM – Stream Multiprocessor

SP – Stream Processor

16

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

Limits the #thread blocks

SM – Stream Multiprocessor

SP – Stream Processor

16

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

Limits the #thread blocks

Limits the #threads

SM – Stream Multiprocessor

SP – Stream Processor

16

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

Limits the #thread blocks

Limits the #threads

Limits the #threads

SM – Stream Multiprocessor

SP – Stream Processor

16

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

Limits the #thread blocks

Limits the #threads

Limits the #thread blocks

Limits the #threads

SM – Stream Multiprocessor

SP – Stream Processor

16

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

Limits the #thread blocks

Limits the #threads

Limits the #thread blocks

Limits the #threads

SM – Stream Multiprocessor

SP – Stream Processor

16

Occupancy:

• (#Active Warps) /(#MaximumActive Warps)

• Limits on the numerator:
• Registers/thread
• Shared memory/thread block
• Number of scheduling slots: blocks, warps

• Limits on the denominator:
• Memory bandwidth
• Scheduler slots

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

Limits the #thread blocks

Limits the #threads

Limits the #thread blocks

Limits the #threads

SM – Stream Multiprocessor

SP – Stream Processor

16

Occupancy:

• (#Active Warps) /(#MaximumActive Warps)

• Limits on the numerator:
• Registers/thread
• Shared memory/thread block
• Number of scheduling slots: blocks, warps

• Limits on the denominator:
• Memory bandwidth
• Scheduler slots What is the performance impact of varying kernel resource demands?

Impact of Thread Block Size

17

Impact of Thread Block Size

Example: v100:

17

Impact of Thread Block Size

Example: v100:
• max active warps/SM == 64 (limit: warp context)

17

Impact of Thread Block Size

Example: v100:
• max active warps/SM == 64 (limit: warp context)
• max active blocks/SM == 32 (limit: block control)

17

Impact of Thread Block Size

Example: v100:
• max active warps/SM == 64 (limit: warp context)
• max active blocks/SM == 32 (limit: block control)

• With 512 threads/block how many blocks can execute (per SM) concurrently?
• Max active warps * threads/warp = 64*32 = 2048 threads →

17

Impact of Thread Block Size

Example: v100:
• max active warps/SM == 64 (limit: warp context)
• max active blocks/SM == 32 (limit: block control)

• With 512 threads/block how many blocks can execute (per SM) concurrently?
• Max active warps * threads/warp = 64*32 = 2048 threads →

17

4

Impact of Thread Block Size

Example: v100:
• max active warps/SM == 64 (limit: warp context)
• max active blocks/SM == 32 (limit: block control)

• With 512 threads/block how many blocks can execute (per SM) concurrently?
• Max active warps * threads/warp = 64*32 = 2048 threads →
• With 128 threads/block? →

17

4

Impact of Thread Block Size

Example: v100:
• max active warps/SM == 64 (limit: warp context)
• max active blocks/SM == 32 (limit: block control)

• With 512 threads/block how many blocks can execute (per SM) concurrently?
• Max active warps * threads/warp = 64*32 = 2048 threads →
• With 128 threads/block? →

17

4
16

Impact of Thread Block Size

Example: v100:
• max active warps/SM == 64 (limit: warp context)
• max active blocks/SM == 32 (limit: block control)

• With 512 threads/block how many blocks can execute (per SM) concurrently?
• Max active warps * threads/warp = 64*32 = 2048 threads →
• With 128 threads/block? →

• Consider HW limit of 32 thread blocks/SM @ 32 threads/block:
• Blocks are maxed out, but max active threads = 32*32 = 1024
• Occupancy = .5 (1024/2048)

17

4
16

Impact of Thread Block Size

Example: v100:
• max active warps/SM == 64 (limit: warp context)
• max active blocks/SM == 32 (limit: block control)

• With 512 threads/block how many blocks can execute (per SM) concurrently?
• Max active warps * threads/warp = 64*32 = 2048 threads →
• With 128 threads/block? →

• Consider HW limit of 32 thread blocks/SM @ 32 threads/block:
• Blocks are maxed out, but max active threads = 32*32 = 1024
• Occupancy = .5 (1024/2048)

• To maximize utilization, thread block size should balance
• Limits on active thread blocks vs.
• Limits on active warps

17

4
16

Impact of #Registers Per Thread

18

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!

18

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!

V100:

18

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!

V100:

• Registers per thread max: 255

18

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!

V100:

• Registers per thread max: 255

• 64K registers per SM

18

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!

V100:

• Registers per thread max: 255

• 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

18

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!

V100:

• Registers per thread max: 255

• 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

• Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
• Uses all 2048 thread slots (8 blocks * 256 threads/block)
• 8192 regs/block * 8 block/SM = 64k registers
• FULLY Occupied!

18

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!

V100:

• Registers per thread max: 255

• 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

• Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
• Uses all 2048 thread slots (8 blocks * 256 threads/block)
• 8192 regs/block * 8 block/SM = 64k registers
• FULLY Occupied!

• What is the impact of increasing number of registers by 2?

18

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!

V100:

• Registers per thread max: 255

• 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

• Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
• Uses all 2048 thread slots (8 blocks * 256 threads/block)
• 8192 regs/block * 8 block/SM = 64k registers
• FULLY Occupied!

• What is the impact of increasing number of registers by 2?
• Recall: granularity of management is a thread block!

18

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!

V100:

• Registers per thread max: 255

• 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

• Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
• Uses all 2048 thread slots (8 blocks * 256 threads/block)
• 8192 regs/block * 8 block/SM = 64k registers
• FULLY Occupied!

• What is the impact of increasing number of registers by 2?
• Recall: granularity of management is a thread block!
• Loss of concurrency of 256 threads!
• 34 regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,
• 8 blocks would over-subscribe register file
• Occupancy drops to .875!

18

Impact of Shared Memory

• Shared memory is allocated per thread block
• Can limit the number of thread blocks executing concurrently per SM

• Shared mem/block * # blocks <= total shared mem per SM

• gridDim and blockDim parameters impact demand for
• shared memory

• number of thread slots

• number of thread block slots

19

Balance
#Threads/Bl

ock

#Thread
Blocks

Shared
memory/Th
read block

#Registers/T
hread

• Navigate the tradeoffs

❖ maximize core utilization and memory bandwidth utilization

❖ Device-specific

• Goal: Increase occupancy until one or the other is saturated

20

Balance
#Threads/Bl

ock

#Thread
Blocks

Shared
memory/Th
read block

#Registers/T
hread

• Navigate the tradeoffs

❖ maximize core utilization and memory bandwidth utilization

❖ Device-specific

• Goal: Increase occupancy until one or the other is saturated

20

Parallel Memory Accesses

• Coalesced main memory access (16/32x faster)
• HW combines multiple warp memory accesses into a single coalesced access

• Bank-conflict-free shared memory access (16/32)
• No alignment or contiguity requirements

• CC 1.3: 16 different banks per half warp or same word

• CC 2.x+3.0 : 32 different banks + 1-word broadcast each

CUDA Optimization Tutorial 21

22

Parallel Memory Architecture

• In a parallel machine, many threads access memory
• Therefore, memory is divided into banks
• Essential to achieve high bandwidth

• Each bank can service one address per cycle
• A memory can service as many simultaneous

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict
• Conflicting accesses are serialized

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Coalesced Main Memory Accesses

single coalesced access one and two coalesced accesses*

NVIDIA NVIDIA

23

24

Bank Addressing Examples
• No Bank Conflicts

• Linear addressing
stride == 1

• No Bank Conflicts
• Random 1:1 Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

25

Bank Addressing Examples
• 2-way Bank Conflicts

• Linear addressing
stride == 2

• 8-way Bank Conflicts
• Linear addressing

stride == 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

26

Linear Addressing
• Given:

__shared__ float shared[256];

float foo =

shared[baseIndex + s *

threadIdx.x];

• This is only bank-conflict-free if s
shares no common factors with the
number of banks
• 16 on G80, so s must be odd

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=3

s=1

Layered abstractions

CPU I/O dev DISK NIC

H
W

3/22/2021

Layered abstractions

CPU I/O dev DISK NIC

H
W

Hardware
interface

3/22/2021

Layered abstractions

CPU I/O dev DISK NIC

Applications

H
W

Hardware
interface

3/22/2021

Layered abstractions

vendor driver vendor driver vendor driver

CPU I/O dev DISK NIC

process files pipes

LIBC/CLR

process files pipes

Applications

u
ser

kern
el

H
W

OS-level
abstractions

HAL

user-mode
Runtimes/libs

3/22/2021

Layered abstractions

vendor driver vendor driver vendor driver

CPU I/O dev DISK NIC

process files pipes

LIBC/CLR

process files pipes

Applications

u
ser

kern
el

H
W

OS-level
abstractions

HAL

user-mode
Runtimes/libs

programmer-
visible interface

OS interface

* 1:1 correspondence between OS-level and user-level abstractions
* Diverse HW support enabled HAL

3/22/2021

GPU abstractions

GPU

H
W

3/22/2021

GPU abstractions

GPU

H
W

Hardware
interface

3/22/2021

GPU abstractions

Vendor-specific

driver

GPU

ioctl

GPU Runtime (e.g. OpenCL)

GPGPU
APIs

shaders
kernels

language
integration

Applications

u
ser

kern
el

H
W

Runtime
support

3/22/2021

GPU abstractions

Vendor-specific

driver

GPU

ioctl

GPU Runtime (e.g. OpenCL)

GPGPU
APIs

shaders
kernels

language
integration

Applications

u
ser

kern
el

H
W

Runtime
support

programmer-
visible interface

3/22/2021

GPU abstractions

Vendor-specific

driver

GPU

ioctl

GPU Runtime (e.g. OpenCL)

GPGPU
APIs

shaders
kernels

language
integration

Applications

u
ser

kern
el

H
W

Runtime
support

programmer-
visible interface

1 OS-level
abstraction! mmap

Fat driver,
proprietary
interfaces

3/22/2021

GPU abstractions

Vendor-specific

driver

GPU

ioctl

GPU Runtime (e.g. OpenCL)

GPGPU
APIs

shaders
kernels

language
integration

Applications

u
ser

kern
el

H
W

Runtime
support

programmer-
visible interface

1 OS-level
abstraction! mmap

1. No kernel-facing API
2. OS resource-management limited
3. Poor composability

Fat driver,
proprietary
interfaces

3/22/2021

No OS support → No isolation

• Image-convolution in CUDA
• Windows 7 x64 8GB RAM
• Intel Core 2 Quad 2.66GHz
• nVidia GeForce GT230

Higher is
better

0

200

400

600

800

1000

1200

no CPU load high CPU load

GPU benchmark throughput

3/22/2021

No OS support → No isolation

• Image-convolution in CUDA
• Windows 7 x64 8GB RAM
• Intel Core 2 Quad 2.66GHz
• nVidia GeForce GT230

Higher is
better

0

200

400

600

800

1000

1200

no CPU load high CPU load

GPU benchmark throughput

CPU+GPU schedulers not integrated!
…other pathologies abundant

3/22/2021

Composition: Gestural Interface

capture

filterxform

“Hand”
events

Raw images

detect

noisy point cloud

3/22/2021

Composition: Gestural Interface

capture

filterxform

“Hand”
events

Raw images

detect

noisy point cloud
capture camera

images

3/22/2021

Composition: Gestural Interface

capture

filterxform

“Hand”
events

Raw images

detect

noisy point cloud

geometric
transformation

3/22/2021

Composition: Gestural Interface

capture

filterxform

“Hand”
events

Raw images

detect

noisy point cloud

noise filtering

3/22/2021

Composition: Gestural Interface

capture

filterxform

“Hand”
events

Raw images

detect

noisy point cloud

detect gestures

3/22/2021

Composition: Gestural Interface

capture

filterxform

“Hand”
events

Raw images

detect

noisy point cloud

3/22/2021

Composition: Gestural Interface

capture

filterxform

“Hand”
events

Raw images

detect

 Requires OS mediation

 High data rates

 Abundant data parallelism

…use GPUs!

noisy point cloud

3/22/2021

What We’d Like To Do

#> capture | xform | filter | detect &

 Modular design

 flexibility, reuse

 Utilize heterogeneous hardware

 Data-parallel components →GPU

 Sequential components →CPU

 Using OS provided tools

 processes, pipes

3/22/2021

What We’d Like To Do

#> capture | xform | filter | detect &

 Modular design

 flexibility, reuse

 Utilize heterogeneous hardware

 Data-parallel components →GPU

 Sequential components →CPU

 Using OS provided tools

 processes, pipes

CPU CPUGPU GPU

3/22/2021

▪ GPUs cannot run OS:
 different ISA

 Memories have different coherence guarantees

 (disjoint, or require fence instructions)

▪ Host CPU must “manage” GPU execution
 Program inputs explicitly transferred/bound at runtime

 Device buffers pre-allocated

GPU Execution model

CPUMain
memory

GPU
memory

GPU

Copy inputs Copy outputs Send commands

3/22/2021

▪ GPUs cannot run OS:
 different ISA

 Memories have different coherence guarantees

 (disjoint, or require fence instructions)

▪ Host CPU must “manage” GPU execution
 Program inputs explicitly transferred/bound at runtime

 Device buffers pre-allocated

GPU Execution model

CPUMain
memory

GPU
memory

GPU

Copy inputs Copy outputs Send commands

User-mode apps
must implement

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform filter detect

HIDdrv

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform filter detect

HIDdrv

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform filter detect

HIDdrv

read()

capture

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform filter detect

HIDdrv

read()

capture

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform filter detect

HIDdrv

read() write()

capture

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform filter detect

HIDdrv

read() write() read()

xform

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform

copy
to

GPU

filter detect

HIDdrv

read() write() read()

xform

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

Run!

camdrv GPU driver

copy/xfer

xform

copy
to

GPU

filter detect

HIDdrv

read() write() read()

xform

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

copy-xfer

xform

copy
from
GPU

filter detect

HIDdrv

read() write() read()

xform

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

copy-xfer

xform

copy
from
GPU

filter detect

HIDdrv

read() write() read() write()

xform

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform filter detect

HIDdrv

read() write() read() write() read()

filter

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform filter detect

HIDdrv

read()

copy
to

GPU

write() read() write() read()

filter

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

Run!

camdrv GPU driver

xform

copy-xfer

filter detect

HIDdrv

read()

copy
to

GPU

write() read() write() read()

filter

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform

copy-xfer

filter

copy
from
GPU

detect

HIDdrv

read() write() read() write() read()

filter

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform

copy-xfer

filter

copy
from
GPU

detect

HIDdrv

read() write() read() write() read() write()

filter

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform filter detect

HIDdrv

read() write() read() write() read() write() read()

detect

#> capture | xform | filter | detect &

3/22/2021

OS executive

capture

GPU

Data migration

camdrv GPU driver

xform filter detect

IRP

HIDdrv

read() write() read() write() read() write() read()

#> capture | xform | filter | detect &

3/22/2021

Device-centric APIs considered harmful

Matrix
gemm(Matrix A, Matrix B) {

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

3/22/2021

Device-centric APIs considered harmful

What happens if I want the following?
Matrix D = A x B x C

Matrix
gemm(Matrix A, Matrix B) {

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

3/22/2021

Composed matrix multiplication

Matrix
AxBxC(Matrix A, B, C) {

Matrix AxB = gemm(A,B);
Matrix AxBxC = gemm(AxB,C);
return AxBxC;

}

3/22/2021

Composed matrix multiplication

Matrix
gemm(Matrix A, Matrix B) {

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(Matrix A, B, C) {

Matrix AxB = gemm(A,B);
Matrix AxBxC = gemm(AxB,C);
return AxBxC;

}

3/22/2021

Composed matrix multiplication

Matrix
gemm(Matrix A, Matrix B) {

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(Matrix A, B, C) {

Matrix AxB = gemm(A,B);

Matrix AxBxC = gemm(AxB,C);
return AxBxC;

}

AxB copied from
GPU memory…

3/22/2021

Composed matrix multiplication

Matrix
gemm(Matrix A, Matrix B) {

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(Matrix A, B, C) {

Matrix AxB = gemm(A,B);

Matrix AxBxC = gemm(AxB,C);
return AxBxC;

} …only to be copied
right back!

3/22/2021

What if I have many GPUs?

Matrix
gemm(Matrix A, Matrix B) {

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

3/22/2021

What if I have many GPUs?

Matrix
gemm(GPU dev,Matrix A, Matrix B) {

copyToGPU(dev, A);
copyToGPU(dev, B);
invokeGPU(dev);
Matrix C = new Matrix();
copyFromGPU(dev, C);
return C;

}

3/22/2021

What if I have many GPUs?

What happens if I want the following?
Matrix D = A x B x C

Matrix
gemm(GPU dev,Matrix A, Matrix B) {

copyToGPU(dev, A);
copyToGPU(dev, B);
invokeGPU(dev);
Matrix C = new Matrix();
copyFromGPU(dev, C);
return C;

}

3/22/2021

Composition with many GPUs
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(Matrix A,B,C) {

Matrix AxB = gemm(???, A,B);
Matrix AxBxC = gemm(???, AxB,C);
return AxBxC;

}

3/22/2021

Composition with many GPUs
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(GPU dev, Matrix A,B,C) {

Matrix AxB = gemm(dev, A,B);
Matrix AxBxC = gemm(dev, AxB,C);
return AxBxC;

}

3/22/2021

Composition with many GPUs
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(GPU dev, Matrix A,B,C) {

Matrix AxB = gemm(dev, A,B);
Matrix AxBxC = gemm(dev, AxB,C);
return AxBxC;

}

Rats…now I can
only use 1 GPU.
How to partition

computation?

3/22/2021

Composition with many GPUs
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(GPU devA, GPU devB, Matrix A,B,C) {

Matrix AxB = gemm(devA, A,B);
Matrix AxBxC = gemm(devB, AxB,C);
return AxBxC;

}

3/22/2021

Composition with many GPUs
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(GPU devA, GPU devB, Matrix A,B,C) {

Matrix AxB = gemm(devA, A,B);
Matrix AxBxC = gemm(devB, AxB,C);
return AxBxC;

}

This will never be
manageable for many GPUs.

Programmer implements
scheduling using static view!

3/22/2021

Composition with many GPUs
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(GPU devA, GPU devB, Matrix A,B,C) {

Matrix AxB = gemm(devA, A,B);
Matrix AxBxC = gemm(devB, AxB,C);
return AxBxC;

}

This will never be
manageable for many GPUs.

Programmer implements
scheduling using static view!

Why don’t we have this problem with CPUs?

3/22/2021

▪ nodes → computation

▪ edges → communication

▪ Expresses parallelism explicitly

▪ Minimal specification of data movement: runtime does it.

▪ asynchrony is a runtime concern (not programmer concern)

▪ No specification of compute→device mapping: like threads!

Dataflow: a better abstraction

gemm

gemm

Matrix: C

Matrix: A Matrix: B

3/22/2021

Advanced topics: Prefix-Sum

• in: 3 1 7 0 4 1 6 3

• out: 0 3 4 11 11 14 16 22

44

Trivial Sequential Implementation

void scan(int* in, int* out, int n)

{
out[0] = 0;

for (int i = 1; i < n; i++)

out[i] = in[i-1] + out[i-1];

}

45

Parallel Scan

for(d = 1; d < log2n; d++)

for all k in parallel

if(k >= 2d)

x[out][k] = x[in][k – 2d-1] + x[in][k]

else

x[out][k] = x[in][k]

Complexity O(nlog2n)

46

A work efficient parallel scan

• Goal is a parallel scan that is O(n) instead of O(nlog2n)

• Solution:
• Balanced Trees: Build a binary tree, sweep it to and from the root.

• Binary tree with n leaves has
• d=log2n levels,

• each level d has 2d nodes

* One add is performed per node → O(n) add on a single traversal of the tree.

47

O(n) unsegmented scan

• Reduce/Up-Sweep
for(d = 0; d < log2n-1; d++)

for all k=0; k < n-1; k+=2d+1 in parallel

x[k+2d+1-1] = x[k+2d-1] + x[k+2d+1-1]

• Down-Sweep
x[n-1] = 0;

for(d = log2n – 1; d >=0; d--)

for all k = 0; k < n-1; k += 2d+1 in parallel

t = x[k + 2d – 1]

x[k + 2d - 1] = x[k + 2d+1 -1]

x[k + 2d+1 - 1] = t + x[k + 2d+1 – 1]

48

Tree analogy

x0 ∑(x0..x1) ∑(x0..x3)x2 x4 ∑(x4..x5) x6 ∑(x0..x7)

x0 ∑(x0..x1) ∑(x0..x3)x2 x4 ∑(x4..x5) x6 0

x0 ∑(x0..x1) 0x2 x4 ∑(x4..x5) x6 ∑(x0..x3)

x0 0 ∑(x0..x1)x2 x4 ∑(x0..x3) x6 ∑(x0..x5)

0 ∑(x0..x2) ∑(x0..x4) ∑(x0..x6)x0 ∑(x0..x1) ∑(x0..x3) ∑(x0..x5)
49

Tree analogy

x0 ∑(x0..x1) ∑(x0..x3)x2 x4 ∑(x4..x5) x6 ∑(x0..x7)

x0 ∑(x0..x1) ∑(x0..x3)x2 x4 ∑(x4..x5) x6 0

x0 ∑(x0..x1) 0x2 x4 ∑(x4..x5) x6 ∑(x0..x3)

x0 0 ∑(x0..x1)x2 x4 ∑(x0..x3) x6 ∑(x0..x5)

0 ∑(x0..x2) ∑(x0..x4) ∑(x0..x6)x0 ∑(x0..x1) ∑(x0..x3) ∑(x0..x5)
49

Tree analogy

x0 ∑(x0..x1) ∑(x0..x3)x2 x4 ∑(x4..x5) x6 ∑(x0..x7)

x0 ∑(x0..x1) ∑(x0..x3)x2 x4 ∑(x4..x5) x6 0

x0 ∑(x0..x1) 0x2 x4 ∑(x4..x5) x6 ∑(x0..x3)

x0 0 ∑(x0..x1)x2 x4 ∑(x0..x3) x6 ∑(x0..x5)

0 ∑(x0..x2) ∑(x0..x4) ∑(x0..x6)x0 ∑(x0..x1) ∑(x0..x3) ∑(x0..x5)
49

O(n) Segmented Scan

Up-Sweep

50

• Down-Sweep

51

Features of segmented scan

• 3 times slower than unsegmented scan

• Useful for building broad variety of applications which are not
possible with unsegmented scan.

52

Primitives built on scan

• Enumerate
• enumerate([t f f t f t t]) = [0 1 1 1 2 2 3]

• Exclusive scan of input vector

• Distribute (copy)
• distribute([a b c][d e]) = [a a a][d d]

• Inclusive scan of input vector

• Split and split-and-segment
Split divides the input vector into two pieces, with all the elements marked false on the left side of

the output vector and all the elements marked true on the right.

53

Applications

• Quicksort

• Sparse Matrix-Vector Multiply

• Tridiagonal Matrix Solvers and Fluid Simulation

• Radix Sort

• Stream Compaction

• Summed-Area Tables

54

Quicksort

55

Sparse Matrix-Vector Multiplication

56

Stream Compaction

Definition:
• Extracts the ‘interest’ elements from an array of elements

and places them continuously in a new array

• Uses:
• Collision Detection
• Sparse Matrix Compression

A B A D D E C

A B A C

F B

B

57

Stream Compaction

58

Stream Compaction

A B A D D E C F B Input: We want to
preserve the gray
elements

58

Stream Compaction

A B A D D E C F B

1 1 1 0 0 0 1 0 1

Input: We want to
preserve the gray
elements

Set a ‘1’ in each gray input

58

Stream Compaction

A B A D D E C F B

1 1 1 0 0 0 1 0 1

0 1 2 3 3 3 3 4 4

Input: We want to
preserve the gray
elements

Set a ‘1’ in each gray input

Scan

58

Stream Compaction

A B A D D E C

A B A C

F B

B

A B A D D E C F B

1 1 1 0 0 0 1 0 1

0 1 2 3 3 3 3 4 4

0 1 2 3 4

Input: We want to
preserve the gray
elements

Set a ‘1’ in each gray input

Scan

Scatter gray inputs to
output using scan result as
scatter address

58

Radix Sort Using Scan

100 111 010 110 011 101 001 000 Input Array

59

Radix Sort Using Scan

100 111 010 110 011 101 001 000 Input Array

0 1 0 0 1 1 1 0 b = least significant bit

59

Radix Sort Using Scan

100 111 010 110 011 101 001 000 Input Array

1 0 1 1 0 0 0 1
e = Insert a 1 for all
false sort keys

0 1 0 0 1 1 1 0 b = least significant bit

59

Radix Sort Using Scan

100 111 010 110 011 101 001 000 Input Array

1 0 1 1 0 0 0 1
e = Insert a 1 for all
false sort keys

0 1 1 2 3 3 3 f = Scan the 1s3

0 1 0 0 1 1 1 0 b = least significant bit

59

Radix Sort Using Scan

100 111 010 110 011 101 001 000 Input Array

1 0 1 1 0 0 0 1
e = Insert a 1 for all
false sort keys

0 1 1 2 3 3 3 f = Scan the 1s

Total Falses = e[n-1] + f[n-1]

3

0 1 0 0 1 1 1 0 b = least significant bit

59

Radix Sort Using Scan

100 111 010 110 011 101 001 000 Input Array

1 0 1 1 0 0 0 1
e = Insert a 1 for all
false sort keys

0 1 1 2 3 3 3 f = Scan the 1s

0-0+4
= 4

1-1+4
= 4

2-1+4
= 5

3-2+4
= 5

4-3+4
= 5

5-3+4
= 6

6-3+4
= 7

7-3+4
= 8 t = index – f + Total Falses

Total Falses = e[n-1] + f[n-1]

3

0 1 0 0 1 1 1 0 b = least significant bit

59

Radix Sort Using Scan

100 111 010 110 011 101 001 000 Input Array

1 0 1 1 0 0 0 1
e = Insert a 1 for all
false sort keys

0 1 1 2 3 3 3 f = Scan the 1s

0-0+4
= 4

1-1+4
= 4

2-1+4
= 5

3-2+4
= 5

4-3+4
= 5

5-3+4
= 6

6-3+4
= 7

7-3+4
= 8 t = index – f + Total Falses

Total Falses = e[n-1] + f[n-1]

3

0 4 1 2 5 6 7 d = b ? t : f3

0 1 0 0 1 1 1 0 b = least significant bit

59

Radix Sort Using Scan

100 111 010 110 011 101 001 000 Input Array

1 0 1 1 0 0 0 1
e = Insert a 1 for all
false sort keys

0 1 1 2 3 3 3 f = Scan the 1s

0-0+4
= 4

1-1+4
= 4

2-1+4
= 5

3-2+4
= 5

4-3+4
= 5

5-3+4
= 6

6-3+4
= 7

7-3+4
= 8 t = index – f + Total Falses

Total Falses = e[n-1] + f[n-1]

3

0 4 1 2 5 6 7 d = b ? t : f3

0 1 0 0 1 1 1 0 b = least significant bit

100 111 010 110 011 101 001 000

100 010 110 000 111 011 101 001

Scatter input using d
as scatter address

59

Specialized Libraries

• CUDPP: CUDA Data Parallel Primitives Library
• CUDPP is a library of data-parallel algorithm primitives such as parallel prefix-

sum (”scan”), parallel sort and parallel reduction.

60

http://en.wikipedia.org/wiki/Prefix_sum

CUDPP_DLL CUDPPResult cudppSparseMatrixVectorMultiply(CUDPPH
andle sparseMatrixHandle,void * d_y,const void * d_x)

Perform matrix-vector multiply y = A*x for arbitrary sparse matrix A
and vector x.

61

http://www.gpgpu.org/static/developer/cudpp/rel/cudpp_1.0a/html/cudpp_8h.html#4a73ab815831334b5a7649e538ac1d0a

CUDPPScanConfig config;

config.direction = CUDPP_SCAN_FORWARD; config.exclusivity =
CUDPP_SCAN_EXCLUSIVE; config.op = CUDPP_ADD;

config.datatype = CUDPP_FLOAT; config.maxNumElements = numElements;
config.maxNumRows = 1;

config.rowPitch = 0;

cudppInitializeScan(&config);

cudppScan(d_odata, d_idata, numElements, &config);

62

CUFFT

• No. of elements<8192 slower than fftw

• >8192, 5x speedup over threaded fftw

and 10x over serial fftw.

63

CUBLAS

• Cuda Based Linear Algebra Subroutines

• Saxpy, conjugate gradient, linear solvers.

• 3D reconstruction of planetary nebulae.
• http://graphics.tu-bs.de/publications/Fernandez08TechReport.pdf

64

http://graphics.tu-bs.de/publications/Fernandez08TechReport.pdf

