GPUs going once... GPUs going twice... you get the idea

Chris Rossbach cs378h

L0 Instruction Cache

Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

Outline for Today

- Questions?
- Administrivia
 - Start thinking about Projects!
 - Exam not quite done...Tuesday for sure!
- Agenda

FP64

FF

- GPU performance
- GPU advanced topics
 - Divergence
 - Device APIs vs Dataflow
 - Coherence

Acknowledgements:

- http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx
- http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx
- http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.pptx
- Tor Aamodt's 2013 paper

Faux Quiz Questions

- How is occupancy defined (in CUDA nomenclature)?
- What's the difference between a block scheduler (e.g. Giga-Thread Engine) and a warp scheduler?
- Modern CUDA supports UVM to eliminate the need for cudaMalloc and cudaMemcpy*. Under what conditions might you want to use or not use it and why?
- What is control flow divergence? How does it impact performance?
- What is a bank conflict?
- What is work efficiency?
- What is the difference between a thread block scheduler and a warp scheduler?
- How are atomics implemented in modern GPU hardware?
- How is __shared__ memory implemented by modern GPU hardware?
- Why is __shared__ memory necessary if GPUs have an L1 cache? When will an L1 cache provide all the benefit of __shared__ memory and when will it not?
- Is cudaDeviceSynchronize still necessary after copyback if I have just one CUDA stream?

Review: How many threads/blocks?

```
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU
add<<<N/THREADS PER BLOCK, THREADS PER BLOCK>>>(d a, d b, d c);
// Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
free(a); free(b); free(c);
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```

Review: How many threads/blocks?

```
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel
add <</li>
add <</li>
And THREADS PER BLOCK, THREADS PER BLOCK>>> (d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
free(a); free(b); free(c);
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```


Review: How many threads/blocks?

```
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel
add <</li>
add <</li>
And THREADS PER BLOCK, THREADS PER BLOCK>>> (d a, d b, d c);

// Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
free(a); free(b); free(c);
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```

Usually things are correct if grid*block dims >= input size

Getting good performance is another matter

Review: Internals

```
__host__
void vecAdd()
{
   dim3 DimGrid = (ceil(n/256,1,1);
   dim3 DimBlock = (256,1,1);
   addKernel<<<<DGrid,DBlock>>>(A_d,B_d,C_d,n);
}
```

Review: Internals

```
__host__
void vecAdd()
{
   dim3 DimGrid = (ceil(n/256,1,1);
   dim3 DimBlock = (256,1,1);
   addKernel<<<DGrid,DBlock>>>(A_d,B_d,C_d,n);
}
```


Review: Internals

```
__host__
void vecAdd()
{
   dim3 DimGrid = (ceil(n/256,1,1);
   dim3 DimBlock = (256,1,1);
   addKernel<<<<DGrid,DBlock>>>(A_d,B_d,C_d,n);
}
```


How are threads scheduled?

Suppose one TB (threadblock) has 64 threads (2 warps)

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

<u>SMs</u>

SM_1

- SMs split blocks into warps
- Unit of HW scheduling for SM
- 32 threads each

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

<u>SMs</u>

 SM_0

SM_1

- SMs split blocks into warps
- Unit of HW scheduling for SM
- 32 threads each

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

<u>SMs</u>

SM_0 SN

SM_1

- SMs split blocks into warps
- Unit of HW scheduling for SM
- 32 threads each

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

SM_0

SM_1

- SMs split blocks into warps
- Unit of HW scheduling for SM
- 32 threads each

Suppose one TB (threadblock) has 64 threads (2 warps)

Register File

Cache/Shared Memory

Thread Blocks

Remaining TBs are queued

•••••

<u>SMs</u>

SM_0 SM_1

••••

- SMs split blocks into warps
- Unit of HW scheduling for SM
- 32 threads each

- Occupancy = (#Active Warps) /(#MaximumActive Warps)
 - Measures how well concurrency/parallelism is utilized

- Occupancy = (#Active Warps) /(#MaximumActive Warps)
 - Measures how well concurrency/parallelism is utilized
- Occupancy captures
 - which resources can be dynamically shared
 - how to reason about resource demands of a CUDA kernel
 - Enables device-specific online tuning of kernel parameters

- Occupancy = (#Active Warps) /(#MaximumActive Warps)
 - Measures how well concurrency/parallelism is utilized
- Occupancy captures
 - which resources can be dynamically shared
 - how to reason about resource demands of a CUDA kernel
 - Enables device-specific online tuning of kernel parameters

- Occupancy = (#Active Warps) /(#MaximumActive Warps)
 - Measures how well concurrency/parallelism is utilized
- Occupancy captures
 - which resources can be dynamically shared
 - how to reason about resource demands of a CUDA kernel
 - Enables device-specific online tuning of kernel parameters

- Occupancy = (#Active Warps) /(#MaximumActive Warps)
 - Measures how well concurrency/parallelism is utilized
- Occupancy captures
 - which resources can be dynamically shared
 - how to reason about resource demands of a CUDA kernel
 - Enables device-specific online tuning of kernel parameters

- Occupancy = (#Active Warps) /(#MaximumActive Warps)
 - Measures how well concurrency/parallelism is utilized
- Occupancy captures
 - which resources can be dynamically shared
 - how to reason about resource demands of a CUDA kernel
 - Enables device-specific online tuning of kernel parameters

- Occupancy = (#Active Warps) /(#MaximumActive Warps)
 - Measures how well concurrency/parallelism is utilized
- Occupancy captures
 - which resources can be dynamically shared
 - how to reason about resource demands of a CUDA kernel Shouldn't we just create as many
 - Enables device-specific online tuning of kernel parameter, threads as possible?

Shouldn't we just create as many threads as possible?

Occupancy:

- (#Active Warps) /(#MaximumActive Warps)
- Limits on the numerator:
 - Registers/thread
 - Shared memory/thread block
 - Number of scheduling slots: blocks, warps
- Limits on the denominator:
 - Memory bandwidth
 - Scheduler slots

Occupancy:

- (#Active Warps) /(#MaximumActive Warps)
- Limits on the numerator:
 - Registers/thread
 - Shared memory/thread block
 - Number of scheduling slots: blocks, warps
- Limits on the denominator:
 - Memory bandwidth
 - Scheduler slots

What is the performance impact of varying kernel resource demands?

Example: v100:

Example: v100:

max active warps/SM == 64 (limit: warp context)

Example: v100:

- max active warps/SM == 64 (limit: warp context)
- max active blocks/SM == 32 (limit: block control)

Example: v100:

- max active warps/SM == 64 (limit: warp context)
- max active blocks/SM == 32 (limit: block control)
 - With 512 threads/block how many blocks can execute (per SM) concurrently?
 - Max active warps * threads/warp = 64*32 = 2048 threads →

- max active warps/SM == 64 (limit: warp context)
- max active blocks/SM == 32 (limit: block control)
 - With 512 threads/block how many blocks can execute (per SM) concurrently?
 - Max active warps * threads/warp = 64*32 = 2048 threads \rightarrow 4

- max active warps/SM == 64 (limit: warp context)
- max active blocks/SM == 32 (limit: block control)
 - With 512 threads/block how many blocks can execute (per SM) concurrently?
 - Max active warps * threads/warp = 64*32 = 2048 threads \rightarrow 4
 - With 128 threads/block? →

- max active warps/SM == 64 (limit: warp context)
- max active blocks/SM == 32 (limit: block control)
 - With 512 threads/block how many blocks can execute (per SM) concurrently?
 - Max active warps * threads/warp = 64*32 = 2048 threads \rightarrow 4
 - With 128 threads/block? → 16

- max active warps/SM == 64 (limit: warp context)
- max active blocks/SM == 32 (limit: block control)
 - With 512 threads/block how many blocks can execute (per SM) concurrently?
 - Max active warps * threads/warp = 64*32 = 2048 threads \rightarrow 4
 - With 128 threads/block? → 16
- Consider HW limit of 32 thread blocks/SM @ 32 threads/block:
 - Blocks are maxed out, but max active threads = 32*32 = 1024
 - Occupancy = .5 (1024/2048)

- max active warps/SM == 64 (limit: warp context)
- max active blocks/SM == 32 (limit: block control)
 - With 512 threads/block how many blocks can execute (per SM) concurrently?
 - Max active warps * threads/warp = 64*32 = 2048 threads \rightarrow 4
 - With 128 threads/block? → 16
- Consider HW limit of 32 thread blocks/SM @ 32 threads/block:
 - Blocks are maxed out, but max active threads = 32*32 = 1024
 - Occupancy = .5(1024/2048)
- To maximize utilization, thread block size should balance
 - Limits on active thread blocks vs.
 - Limits on active warps

Registers/thread can limit number of active threads!

Registers/thread can limit number of active threads! V100:

Registers/thread can limit number of active threads! V100:

Registers per thread max: 255

Registers/thread can limit number of active threads! V100:

- Registers per thread max: 255
- 64K registers per SM

Registers/thread can limit number of active threads! V100:

- Registers per thread max: 255
- 64K registers per SM

Registers/thread can limit number of active threads! V100:

- Registers per thread max: 255
- 64K registers per SM

- Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
 - Uses all 2048 thread slots (8 blocks * 256 threads/block)
 - 8192 regs/block * 8 block/SM = 64k registers
 - FULLY Occupied!

Registers/thread can limit number of active threads! V100:

- Registers per thread max: 255
- 64K registers per SM

- Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
 - Uses all 2048 thread slots (8 blocks * 256 threads/block)
 - 8192 regs/block * 8 block/SM = 64k registers
 - FULLY Occupied!
- What is the impact of increasing number of registers by 2?

Registers/thread can limit number of active threads! V100:

- Registers per thread max: 255
- 64K registers per SM

- Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
 - Uses all 2048 thread slots (8 blocks * 256 threads/block)
 - 8192 regs/block * 8 block/SM = 64k registers
 - FULLY Occupied!
- What is the impact of increasing number of registers by 2?
 - Recall: granularity of management is a thread block!

Registers/thread can limit number of active threads! V100:

- Registers per thread max: 255
- 64K registers per SM

- Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
 - Uses all 2048 thread slots (8 blocks * 256 threads/block)
 - 8192 regs/block * 8 block/SM = 64k registers
 - FULLY Occupied!
- What is the impact of increasing number of registers by 2?
 - Recall: granularity of management is a thread block!
 - Loss of concurrency of 256 threads!
 - 34 regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,
 - 8 blocks would over-subscribe register file
 - Occupancy drops to .875!

Impact of Shared Memory

- Shared memory is allocated per thread block
 - Can limit the number of thread blocks executing concurrently per SM
 - Shared mem/block * # blocks <= total shared mem per SM
- gridDim and blockDim parameters impact demand for
 - shared memory
 - number of thread slots
 - number of thread block slots

Balance

- Navigate the tradeoffs
 - maximize core utilization and memory bandwidth utilization
 - Device-specific
- Goal: Increase occupancy until one or the other is saturated

Balance

template < class T >

_host__ <u>cudaError_t</u> cudaOccupancyMaxActiveBlocksPerMultiprocessor (int* numBlocks, T func, int_blockSize, size_t dynamicSMemSize) [inline]

Returns occupancy for a device function.

Parameters

numBlocks

- Returned occupancy

func

- Kernel function for which occupancy is calulated

blockSize

- Block size the kernel is intended to be launched with

dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes
 - Navigate the tradeoffs
 - maximize core utilization and memory bandwidth utilization
 - Device-specific
 - Goal: Increase occupancy until one or the other is saturated

Parallel Memory Accesses

- Coalesced main memory access (16/32x faster)
 - HW combines multiple warp memory accesses into a single coalesced access
- Bank-conflict-free shared memory access (16/32)
 - No alignment or contiguity requirements
 - CC 1.3: 16 different banks per half warp or same word
 - CC 2.x+3.0 : 32 different banks + 1-word broadcast each

CUDA Optimization Tutorial 13

Parallel Memory Architecture

- In a parallel machine, many threads access memory
 - Therefore, memory is divided into banks
 - Essential to achieve high bandwidth
- Each bank can service one address per cycle
 - A memory can service as many simultaneous accesses as it has banks
- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized

Coalesced Main Memory Accesses

NVIDIA

single coalesced access

NVIDIA

one and two coalesced accesses*

Bank Addressing Examples

Bank Addressing Examples

Linear Addressing

Given:

```
__shared__ float shared[256];
float foo =
   shared[baseIndex + s *
   threadIdx.x];
```

- This is only bank-conflict-free if s shares no common factors with the number of banks
 - 16 on G80, so s must be odd

Race conditions —

- Traditional locks: avoid!
- How do we synchronize?

Read-Modify-Write – atomic

```
atomicAdd()
atomicSub()
atomicMin()
atomicMax()
atomicMax()
atomicCAS()
```

Implemented as write-through to L2

"Fire-and-forget"

Race conditions —

- Traditional locks: avoid!
- How do we synchronize?

Read-Modify-Write – atomic

```
atomicAdd()
atomicSub()
atomicMin()
atomicMax()
atomicMax()
atomicCAS()
```

Implemented as write-through to L2

"Fire-and-forget"

Race conditions -

- Traditional locks: avoid!
- How do we synchronize?

Read-Modify-Write – atomic

```
atomicAdd()
atomicSub()
atomicMin()
atomicMax()
atomicMax()
atomicCAS()
```

Implemented as write-through to L2

"Fire-and-forget"

Race conditions —

- Traditional locks: avoid!
- How do we synchronize?

Read-Modify-Write – atomic

```
atomicInc()
atomicAdd()
atomicSub()
                                        atomicDec()
а
                                                       _device__ void example(bool condition)
                    Warp of Threads
                                                          if(condition)
   All active
  Some active
                                                              run_this_first();
                                                          else
                                                              then_run_this();
 Others active
   All active
                                                          converged_again();
```

Race conditions -

- Traditional locks: avoid!
- How do we synchronize?

Read-Modify-Write – atomic

```
atomicAdd()
atomicSub()
atomicMin()
atomicMax()
atomicMax()
atomicCAS()
```

Implemented as write-through to L2

"Fire-and-forget"

Race conditions -

- Traditional locks: avoid!
- How do we synchronize?

Read-Modify-Write – atomic

at at at But only one succeeds

Im

Unlock

Every thread tries to lock

Locking thread continues

Locking thread threads idle until unlock

Unlock

Race conditions —

- Traditional locks: avoid!
- How do we synchronize?

Read-Modify-Write – atomic

```
atomicAdd()
atomicSub()
atomicMin()
atomicMax()
```

Implemented as write-throug

"Fire-and-forget"

Advanced Topic: GPU Programming Models

Layered abstractions

Layered abstractions

Layered abstractions

Applications

Layered abstractions

Layered abstractions

- * 1:1 correspondence between OS-level and user-level abstractions
- * Diverse HW support enabled HAL

No OS support \rightarrow No isolation

GPU benchmark throughput

- Image-convolution in CUDA
- Windows 7 x64 8GB RAM
- Intel Core 2 Quad 2.66GHz
- nVidia GeForce GT230

3/25/2021

No OS support \rightarrow No isolation

GPU benchmark throughput

CPU+GPU schedulers not integrated! ...other pathologies abundant

ge-convolution in CUDA dows 7 x64 8GB RAM I Core 2 Quad 2.66GHz dia GeForce GT230

- Requires OS mediation
- High data rates
- Abundant data parallelism ...use GPUs!

What We'd Like To Do

```
#> capture | xform | filter | detect &
```

- Modular design
 - flexibility, reuse
- Utilize heterogeneous hardware
 - ▶ Data-parallel components → GPU
 - ▶ Sequential components → CPU
- Using OS provided tools
 - processes, pipes

What We'd Like To Do

- Modular design
 - flexibility, reuse
- Utilize heterogeneous hardware
 - ▶ Data-parallel components → GPU
 - ▶ Sequential components → CPU
- Using OS provided tools
 - processes, pipes

GPU Execution model

- GPUs cannot run OS:
 - different ISA
 - Memories have different coherence guarantees
 - (disjoint, or require fence instructions)
- Host CPU must "manage" GPU execution
 - Program inputs explicitly transferred/bound at runtime
 - Device buffers pre-allocated

GPU Execution model

- GPUs cannot run OS:
 - different ISA
 - Memories have different coherence guarantees
 - (disjoint, or require fence instructions)
- Host CPU must "manage" GPU execution
 - Program inputs explicitly transferred/bound at runtime
 - Device buffers pre-allocated

Data migration

Data migration

Device-centric APIs considered harmful

```
Matrix
gemm(Matrix A, Matrix B) {
   copyToGPU(A);
   copyToGPU(B);
   invokeGPU();
   Matrix C = new Matrix();
   copyFromGPU(C);
   return C;
}
```

Device-centric APIs considered harmful

```
Matrix
gemm(Matrix A, Matrix B) {
    copyToGPU(A);
    copyToGPU(B);
    invokeGPU();
    Matrix C = new Matrix();
    copyFromGPU(C);
    return C;
}
```

What happens if I want the following? Matrix $D = A \times B \times C$

```
Matrix
AxBxC(Matrix A, B, C) {
    Matrix AxB = gemm(A,B);
    Matrix AxBxC = gemm(AxB,C);
    return AxBxC;
}
```

Matrix

```
Matrix
                                        gemm(Matrix A, Matrix B) {
                AxB copied from
                                          copyToGPU(A);
                                          copyToGPU(B);
                 GPU memory...
                                          invokeGPU();
                                          Matrix C = new Matrix();
                                          copyFromGPU(C);
Matrix
                                          return C;
AxBxC(Matrix A, B, C) {
    Matrix(AXB) = gemm(A,B);
    Matrix AxBxC = gemm(AxB,C);
    return AxBxC;
```

```
gemm(Matrix A, Matrix B) {
                                           copyToGPU(A);
                                          copyToGPU(B):
                                           invoke (PU();
                                           Matrix C = new Matrix();
Matrix
                                           copyFromGPU(C);
                                                C;
                                           retur
AxBxC(Matrix A, B, C) {
    Matrix AxB = gemm(A,B);
    Matrix AxBxC = gemm(AxB,C);
    return AxBxC;
                                       ...only to be copied
                                       right back!
```

Matrix

What if I have many GPUs?

```
Matrix
gemm(Matrix A, Matrix B) {
   copyToGPU(A);
   copyToGPU(B);
   invokeGPU();
   Matrix C = new Matrix();
   copyFromGPU(C);
   return C;
}
```

What if I have many GPUs?

```
Matrix
gemm(GPU dev, Matrix A, Matrix B) {
   copyToGPU(dev, A);
   copyToGPU(dev, B);
   invokeGPU(dev);
   Matrix C = new Matrix();
   copyFromGPU(dev, C);
   return C;
}
```

What if I have many GPUs?

```
Matrix
gemm(GPU dev, Matrix A, Matrix B) {
   copyToGPU(dev, A);
   copyToGPU(dev, B);
   invokeGPU(dev);
   Matrix C = new Matrix();
   copyFromGPU(dev, C);
   return C;
}
```

What happens if I want the following? Matrix $D = A \times B \times C$

```
gemm(GPU dev, Matrix A, Matrix B)
                                      copyToGPU(A);
                                      copyToGPU(B);
                                      invokeGPU();
                                      Matrix C = new Matrix();
                                      copyFromGPU(C);
                                      return C;
Matrix
AxBxC(Matrix A,B,C) {
   Matrix AxB = gemm(???, A,B);
   Matrix AxBxC = gemm(????, AxB,C);
    return AxBxC;
```

Matrix

```
Matrix
                                   gemm(GPU dev, Matrix A, Matrix B)
                                      copyToGPU(A);
                                      copyToGPU(B);
                                      invokeGPU();
                                     Matrix C = new Matrix();
                                      copyFromGPU(C);
                                     return C:
Matrix
AxBxC(GPU dev, Matrix A,B,C) {
   Matrix AxB = gemm(dev, A,B);
   Matrix AxBxC = gemm(dev, AxB,C);
    return AxBxC;
```



```
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{
    copyToGPU(A);
    copyToGPU(B);
    invokeGPU();
    Matrix C = new Matrix();
    copyFromGPU(C);
    return C;
}
```

```
Matrix
AxBxC(GPU dev, Matrix A,B,C) {
    Matrix AxB = gemm(dev, A,B);
    Matrix AxBxC = gemm(dev, AxB,C);
    return AxBxC;
}
```

```
gemm(GPU dev, Matrix A, Matrix B)
                                     copyToGPU(A);
                                     copyToGPU(B);
                                     invokeGPU();
                                    Matrix C = new Matrix();
                                     copyFromGPU(C);
                                    return C;
Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
   Matrix AxB = gemm(devA, A,B);
   Matrix AxBxC = gemm(devB, AxB,C);
    return AxBxC;
```

Matrix

This will never be manageable for many GPUs.

Programmer implements scheduling using static view!

```
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{
    copyToGPU(A);
    copyToGPU(B);
    invokeGPU();
    Matrix C = new Matrix();
    copyFromGPU(C);
    return C;
}
```

```
Matrix
AxBxC(GPU devA, GPU devB, Matrix A,B,C) {
    Matrix AxB = gemm(devA, A,B);
    Matrix AxBxC = gemm(devB, AxB,C);
    return AxBxC;
}
```

This will never be manageable for many GPUs.

Programmer implements scheduling using static view!

```
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{
    copyToGPU(A);
    copyToGPU(B);
    invokeGPU();
    Matrix C = new Matrix();
    copyFromGPU(C);
    return C;
}
```

```
Matrix
AxBxC(GPU devA, GPU devB, Matrix A,B,C) {
   Matrix AxB = gemm(devA, A,B);
   Matrix AxBxC = gemm(devB, AxB,C);
   return AxBxC;
}

Why don't we have this problem with CPUs?
```

Dataflow: a better abstraction

- asynchrony is a runtime concern (not programmer concern)

 No specification of compute Adovise mapping, like threads!
- No specification of compute → device mapping: like threads!

Advanced Topic: GPU Coherence

Each cache line has a state (M, E, S, I)

Processors "snoop" bus to maintain states

- Processors "snoop" bus to maintain states
- Initially → 'I' → Invalid

- Processors "snoop" bus to maintain states
- Initially → 'I' → Invalid
- Read one \rightarrow 'E' \rightarrow exclusive

- Processors "snoop" bus to maintain states
- Initially → 'I' → Invalid
- Read one \rightarrow 'E' \rightarrow exclusive
- Reads → 'S' → multiple copies possible

- Processors "snoop" bus to maintain states
- Initially → 'I' → Invalid
- Read one \rightarrow 'E' \rightarrow exclusive
- Reads → 'S' → multiple copies possible
- Write \rightarrow 'M' \rightarrow single copy \rightarrow lots of cache coherence traffic

- Processors "snoop" bus to maintain states
- Initially → 'I' → Invalid
- Read one \rightarrow 'E' \rightarrow exclusive
- Reads → 'S' → multiple copies possible
- Write \rightarrow 'M' \rightarrow single copy \rightarrow lots of cache coherence traffic

GPU Cache Coherence Challenges

GPU Cache Coherence Challenges

Background: Directory Protocol

- For each block: centralized"directory" for state in caches
- Directory is co-located with some global view of memory
- Requests are no longer seen by everyone
 - Writes are serialized through directory

GPU-VI

- Directory-Based
 - Different from snoop-model
 - Global directory metadata at L2
- Two states
 - Valid
 - Invalid
- Writes invalidate other copies

Temporal Coherence (TC)

TC-Strong vs TC-Weak

