GPUs going once...
GPUs going twice...
you get the idea

Chris Rossbach
cs378h

LD/ LD/ LD/
1) ST ST SFU

LD/ LD/ LD/
ST ST 1)

D/
3T

Register File (16,384 x 32-bit)

LD
ST

I

Outline for Today

* Questions?
* Administrivia
* Start thinking about Projects!
* Exam not quite done...Tuesday for sure!

* Agenda
* GPU performance
* GPU advanced topics

* Divergence
e Device APIs vs Dataflow

* Coherence
Acknowledgements:

e http://developer.download.nvidia.com/compute/developertrainingmaterials/presentatio
ns/cuda language/Introduction to CUDA C.pptx

e http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx

e http://www.cs.utexas.edu/~pingali/C5378/2015sp/lectures/GPU%20Programming.pptx

. Torﬁlﬁbﬁt’s 2013 paper

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx
http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx
http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU Programming.pptx

Faux Quiz Questions

* How is occupancy defined (in CUDA nomenclature)?
* What's the difference between a block scheduler (e.g. Giga-Thread Engine) and a warp scheduler?

* Modern CUDA supports UVM to eliminate the need for cudaMalloc and cudaMemcpy*. Under
what conditions might you want to use or not use it and why?

* What is control flow divergence? How does it impact performance?

* What is a bank conflict?

* What is work efficiency?

* What is the difference between a thread block scheduler and a warp scheduler?
* How are atomics implemented in modern GPU hardware?

* Howis shared_ memory implemented by modern GPU hardware?

* Whyis shared memory necessary if GPUs have an L1 cache? When will an L1 cache provide
all the benefit of __shared _ memory and when will it not?

* |s cudaDeviceSynchronize still necessary after copyback if | have just one CUDA stream?

Review: How many threads/blocks?

cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice) ;

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;
add<<< >>>(d a, d b, d c);
cudaMemcpy (c, d _c, size, cudaMemcpyDeviceToHost) ;

free(a); free(b); free(c);
cudaFree(d a); cudaFree(d b); cudaFree(d c);
0;

Review: How many threads/blocks?

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice)

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launc i
add<&< >>»(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d _c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);

return 0;

Review: How many threads/blocks?

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice)
cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice)

// Launc on GPU
add<< >>»(d a, d b, d_c);

// Copy result back to host
cudaMemcpy (c, d _c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);

return 0;

» Usually things are correct if grid*block dims >= input size
* Getting good performance is another matter

Review: Internals

_global
void addKernel (float *A d,
float *B d,

__host
void wvecAdd ()

{

dim3 DimGrid = (ceil (n/256,1,1); float *C d,
dim3 DimBlock = (256,1,1); int n) {
addKernel<<<DGrid,DBlock>>>(A d4,B d4,C d,n); int i = blockIdx.x * blockDim.x

+ threadlIdx.x;

}
if(i<n) C_d[i] = A _d[i]+B_dI[i];

Review: Internals

_global

void addKernel (float *A d,
float *B d,
dim3 DimGrid = (ceil(n/256,1,1); float *C d,
dim3 DimBlock = (256,1,1); int n) {

addKernel<<<DGrid,DBlock>>>(A d4,B d4,C d,n); int i = blockIdx.x * blockDim.x
+ threadIdx.x;

if(i<n) C_d[i] = A d[i]+B d[i];

__host
void vecAdd()

{

}

Kernel

Schedule onto multiprocessors

Review: Internals

| _host
void vecAdd()

{

_global

void addKernel (float *A d,
float *B d,
dim3 DimGrid = (ceil(n/256,1,1); float *C d,
dim3 DimBlock = (256,1,1); int n) {

addKernel<<<DGrid,DBlock>>>(A d4,B d4,C d,n); int i = blockIdx.x * blockDim.x
+ threadIdx.x;

if(i<n) C_d[i] = A d[i]+B d[i];

}

Schedule onto multiprocessors

How are threads

scheduled?

I Review: Thread Blocks, Warps, Scheduling

I Review: Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

I Review: Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

Register File

SMs

Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

e SMs split blocks into warps

e Unit of HW scheduling for SM
e 32 threads each

I Review: Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory L1 Cache/Shared Memory

SM_0 SM_1 SM_12

e SMs split blocks into warps

e Unit of HW scheduling for SM
e 32 threads each

I Review: Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory L1 Cache/Shared Memory

SM_0 SM_1 SM_12

e SMs split blocks into warps

e Unit of HW scheduling for SM
e 32 threads each

I Review: Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

%)
(7))

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

SMs split blocks into warps

Unit of HW scheduling for SM
32 threads each

I Review: Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks Remaining TBs are queued

%)
(7))

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

SMs split blocks into warps

Unit of HW scheduling for SM
32 threads each

Review: GPU Performance Metric: Occupancy

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel @Syireas iy
* Enables device-specific online tuning of kernel parameter{ e En el

Hardware Resources Are Finite

l

Kernel , Thread Block Control
Distributor =
J TB O JJJ
SM '
Scheduler I,’I Warp Schedulers

‘L ‘L ‘1' ‘1' I/l Warp Context

1
1
SM SM SM SM
| | | [\ sp || sp || sp || sP
\
.2 ' sp || sp|]sp|]spP
\
' sp || sp || sp || sP
DRAM \
\
sp || sp || sp || sP

Register File

SM — Stream Multiprocessor

SP — Stream Processor Y L1/Shared Memory

Hardware Resources Are Finite
|

Kernel
Distributor

v

SM
Scheduler

v v

v

Thread Block Control

Limits the #thread blocks

TBO

)

Warp Schedulers

Warp Context

SM SM

SM

v

DRAM

SM — Stream Multiprocessor

SP — Stream Processor

SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP

Register File

L1/Shared Memory

>

Hardware Resources Are Finite
|

Kernel
Distributor

v

SM
Scheduler

v v

v

Thread Block Control

Limits the #thread blocks

TBO

)

Warp Schedulers

Warp Context

SM SM

SM

v

DRAM

SM — Stream Multiprocessor

SP — Stream Processor

SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP
Register File

L1/Shared Memory

>

Limits the #threads
S

Hardware Resources Are Finite
|

Kernel ,’I Thread Block Control
Distributor .- Limits the #thread blocks
J T8O JJJ >
SM
Scheduler / Warp Schedulers

Limits the #threads

‘L ‘L ‘1' ‘1' ,'I | Warp Context -|-_|

1

SM SM SM SM '
| | | [\ sp || sp || sPp || sP
.2 ' sp || sp|]sp|]spP
DRAM \ SP SP SP SP
" sp |[sp || sp][sp

Limits the #threads
| Register File -_>
SM — Stream Multiprocessor \

SP — Stream Processor Y L1/Shared Memory

l

Kernel
Distributor

v

SM
Scheduler

Hardware Resources Are Finite

Thread Block Control

Limits the #thread blocks

TBO

)

Warp Schedulers

v

v

v

v

Warp Context

SM

SM

SM

SM

I I I |
v

DRAM

SM — Stream Multiprocessor

SP — Stream Processor

SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP
Register File

L1/Shared Memory

>

Limits the #threads
S

Limits the #threads
—

Limits the #thread blocks

>

Hardware Resources Are Finite

l

Distributor ;

SM ;
Scheduler)

v v v v/

Occupancy:
* (#Active Warps) /(#MaximumActive Warps)

e Limits on the numerator:

* Registers/thread
* Shared memory/thread block
* Number of scheduling slots: blocks, warps

e Limits on the denominator:
* Memory bandwidth
e Scheduler slots

Kernel ;

Thread Block Control

Limits the #thread blocks
>

TBO

)

Warp Schedulers

Warp Context

Limits the #threads

'|—>

SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP
Register File

L1/Shared Memory

Limits the #threads
—>

Limits the #thread blocks
>

Hardware Resources Are Finite

Kernel ,’I Thread Block Control
Distributor A Limits the #thread blocks
/ . >
J ,' TB O J—'J
SM
Scheduler ; Warp Schedulers
‘1’ ‘1’ \1’ \1’ Warp Context .|_ Limits the #threads
II L -| ﬁ
[| | | | | | | C
Occupancy: SP SP SP SP
* (#Active Warps) /(#MaximumActive Warps) o 1 1= 15

SP SP SP SP

e Limits on the numerator:
* Registers/thread

SP SP SP SP

Limits the #threads

* Shared memory/thread block —
* Number of scheduling slots: blocks, warps Register File]
' ’ Limits the #thread blocks
L1/Shared Memory >

e Limits on the denominator:
* Memory bandwidth
e Scheduler slots

What is the performance impact of varying kernel resource demands?

Impact of Thread Block S

1Z€

l

Kernel
Distributor

y

SM
Scheduler

v__¥

Thread Block Control

Limits the #thread blocks

TBO

Warp Schedulers

Warp Context

Limits the #threads

[sm][sm][sm
| | | |
¥

DRAM

SM — Stream Multiprocessor

SP— Stream Processor

[sw]

I

:

Register File

L1/Shared Memory

>

Limits the #threads

|+—>

Limits the #thread blocks

—

Impact of Thread Block S

Example: v100:

1Z€

l

Kernel
Distributor

y

SM
Scheduler

v__¥

Thread Block Control

Limits the #thread blocks

TBO

Warp Schedulers

Warp Context

Limits the #threads

[sm][sm][sm
| | | |
¥

DRAM

SM — Stream Multiprocessor

SP— Stream Processor

[sw]

I

:

Register File

L1/Shared Memory

>

Limits the #threads

|+—>

Limits the #thread blocks

+—

Impact of Thread Block Size

Example: v100:
* max active warps/SM == 64 (limit: warp context)

l

Kernel
Distributor

y

SM
Scheduler

Thread Block Control

Limits the #thread blocks

TBO

Warp Schedulers

Warp Context

Limits the #threads

T

I

[sm]|[sm][sm]][sm |

DRAM

SM — Stream Multiprocessor

SP— Stream Processor

.
:

L1/Shared Memory

>

Limits the #threads
| Register File I——)

Limits the #thread blocks

+—

Impact of Thread Block Size

Example: v100:
* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)

rrrrrrrrrrrrrrrrrr

Kernel
Distributor Limits the #thread blocks
l TBO i
SM
Schedule Warp Schedulers |
»L I ; Warp Context l.n_l Lirnits the #ithreads
sm|[sm]|]sm]|[sm K
Lsw] [sm] [sw] [sm]
‘
DRAM

SM — Stream Multiprocessor

rrrrrrrrrrrrrrrrrr

Register File

Limits the #threads

+—

Limits the #thread blocks

L1/Shared Memory

+—

Thread Block Control

TBO

| Warp Schedulers |

Limits the #thread blocks

Limits the #threads

Warp Context
1|
T

Impact of Thread Block Size

ISM||SM||SM||SM|;

DRAM

SM — Stream Multiprocessor

Example: v100:
* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)

rrrrrrrrrrrrrrrrrr

HEEE
EEEE
BjaEEE
EEEE

Limits the #threads

Register File |+—

* With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads 2>

Limits the #thread blocks

Thread Block Control

TBO

| Warp Schedulers |

Limits the #thread blocks

Limits the #threads

Warp Context
1|
T

Impact of Thread Block Size

ISM||SM||SM||SM|;

DRAM

SM — Stream Multiprocessor

Example: v100:
* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)

rrrrrrrrrrrrrrrrrr

HEEE
EEEE
BjaEEE
EEEE

Limits the #threads

Register File |+—

* With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads 2>

Limits the #thread blocks

Thread Block Control

TBO

| Warp Schedulers |

Limits the #thread blocks

Limits the #threads

Warp Context
1|
T

Impact of Thread Block Size

ISM||SM||SM||SM|;

DRAM

SM — Stream Multiprocessor

Example: v100:
* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)

rrrrrrrrrrrrrrrrrr

HEEE
EEEE
BjaEEE
EEEE

Limits the #threads

Register File |+—

* With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads 2>
* With 128 threads/block? =

Limits the #thread blocks

Thread Block Control

TBO

| Warp Schedulers |

Limits the #thread blocks

Limits the #threads

Warp Context
1|
T

Impact of Thread Block Size

ISM||SM||SM||SM|;

DRAM

SM — Stream Multiprocessor

Example: v100:
* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)

rrrrrrrrrrrrrrrrrr

HEEE
EEEE
BjaEEE
EEEE

Limits the #threads

Register File |+—

* With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads 2>
* With 128 threads/block? =

Limits the #thread blocks

Kernel Thread Block Control
Distributor § Limits the #thread blocks
] / T80 -
SM /
° Scheduler | Warp Schedulers |
Im Pa ct of Thread Block Size e g mper B) W T EE
sm|[sm]|]sm]|[sm K
\
¥
DRAM |
Limits the #threads
. I Register File I——)
Exa m | e . V 100 * SM —Stream Multiprocessor Limits the #thread blocks
. . SP— Stream Processor 2| Lisharedmemory | 4—>

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads 2>

* With 128 threads/block? =

e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:
* Blocks are maxed out, but max active threads = 32*32 = 1024
e Occupancy =.5(1024/2048)

Impact of Thread Block Size

Example: v100:

* max active warps/SM == 64 (limit: warp context)
* max active blocks/SM == 32 (limit: block control)

Thread Block Control

Limits the #thread blocks

TBO

| Warp Schedulers

| Warp Context

Limits the #threads

ISM||SM||SM||SM|;

DRAM

SM — Stream Multiprocessor

rrrrrrrrrrrrrrrrrr

:
HEEE
EEEE
BjaEEE
EEEE

I Register File

* With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads 2>

* With 128 threads/block? =

e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:

* Blocks are maxed out, but max active threads = 32*32 = 1024

e Occupancy =.5(1024/2048)

 To maximize utilization, thread block size should balance

e Limits on active thread blocks vs.
* Limits on active warps

Limits the #threads

Limits the #thread blocks

Impact of

Registers Per Thread

)

Kernel
Distributor

!

SM
Scheduler

SM - Stream Multiprocessor

SP— Stream Processor

Thread Block Control

Limits the #thread blocks

TBO

Warp Schedulers

>

Limits the #threads

Warp Context g

\ Register File b
L1/Shared Memory B E—

Limits the #threads

Limits the #thread blocks

10

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!

)

Kernel
Distributor

!

SM
Scheduler

SM — Stream Multiprocessor

SP— Stream Processor

Thread Block Control

Limits the #thread blocks

TBO

‘Warp Schedulers

>

Limits the #threads

Warp Context g

\ Register File b
L1/Shared Memory B E—

Limits the #threads

Limits the #thread blocks

10

Impact of

Registers Per Thread

Registers/thread can limit number of active threads!

V100:

)

Kernel
Distributor

!

SM
Scheduler

SM — Stream Multiprocessor

SP— Stream Processor

Thread Block Control

Limits the #thread blocks

TBO

‘Warp Schedulers

>

Limits the #threads

Warp Context g

\ Register File b
L1/Shared Memory B E—

Limits the #threads

Limits the #thread blocks

10

rnel J | Thread Block Control
Hbutor / Limits the #thread blocks

SM
Schedul

Impact of #Registers Per Thread

DRAM

Limits the #threads

Limits the #threads

MMMMM X
sssssssssssssssssss Limits the #thread blocks

—>

Registers/thread can limit number of active threads!
V100:
* Registers per thread max: 255

10

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!
V100:

* Registers per thread max: 255

* 64K registers per SM

SM
Schedul

DRAM

SM — Stream Multiprocessor

oooooooooooooooooo

Limits the #thread blocks

Limits the #threads

Limits the #threads

Limits the #thread blocks

—>

10

|

Kernel
Distributor

Scheduler i

Impact of #Registers Per Thread @z@e

SM — Stream Multiprocessor

SP— Stream Processor

Registers/thread can limit number of active threads!
V100:
* Registers per thread max: 255

* 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256

L1/Shared Memory -

Thread Block Control

Limits the #thread blocks

Limits the #threads

\ Register File b

Limits the #threads

Limits the #thread blocks
—

10

Kernel ; Thread Block Control
Distributor / Limits the #thread blocks
l . TBO -
SM]
] imi
X I IE2 -sp 2]
DRAM
Limits the #threads
| N rrr—
SM - Stream Multiprocessor “_‘ Limits the #thread blocks
5o Seam procesor 4=

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

|

," [l
Kernel ; Thread Block Control

Distributor / Limits the #thread blocks

smitnuler N
Impact of #Registers Per Thread &@de
o |\ N
stream Multiprocessor ““‘-‘ ‘ L::L:St:]::tthhr;eaadd:)\ocks
Registers/thread can limit number of active threads! R (e J5—
V100:

* Registers per thread max: 255
* 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?

Kernel ; Thread Block Control
Distributor / Limits the #thread blocks
l i TBO -
SM]
] imi
X I IE2 -sp 2]
DRAM
Limits the #threads
| N rrr—
SM - Stream Multiprocessor “_‘ Limits the #thread blocks
5o Seam procesor 4=

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?
* Recall: granularity of management is a thread block!

)

," [l
Kernel ; Thread Block Control

Distributor / Limits the #thread blocks

I i TBO
] Schatuler ——
Impact of #Registers Per Thread @@z
o |\ N
‘ ::::: : :::::Z locks
Registers/thread can limit number of active threads! e (e J5—
V100:

* Registers per thread max: 255
* 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?
* Recall: granularity of management is a thread block!
e Loss of concurrency of 256 threads!
34 regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,
8 blocks would over-subscribe register file
* Occupancy drops to .875!

Impact of Shared Memory

e Shared memory is allocated per thread block
* Can limit the number of thread blocks executing concurrently per SM
* Shared mem/block * # blocks <= total shared mem per SM

e gridDim and blockDim parameters impact demand for
* shared memory
* number of thread slots
* number of thread block slots

Balance

Shared
memory/Th
read block

#Threads/Bl|
ock

#Thread HRegisters/T
Blocks hread

« Navigate the tradeoffs
maximize core utilization and memory bandwidth utilization
Device-specific

 Goal: Increase occupancy until one or the other is saturated

Balance

template < class T >
__host__

RN RN

cudaOccupancyMaxActiveBlocksPerMultiprocessor (int* numBlocks, T func, int blockSize, size_t dynamicSMemSize) [inline]

Returns occupancy for a device function.

Parameters

numBlocks

- Returned occupancy
func

- Kernel function for which occupancy is calulated
blockSize

- Block size the kernel is intended to be launched with
dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes

« Navigate the tradeoffs

maximize core utilization and memory bandwidth utilization
Device-specific

Goal: Increase occupancy until one or the other is saturated

12

Parallel Memory Accesses

* Coalesced main memory access (16/32x faster)
* HW combines multiple warp memory accesses into a single coalesced access

* Bank-conflict-free shared memory access (16/32)

* No alignment or contiguity requirements
* CC1.3: 16 different banks per half warp or same word
 CC2.x+3.0: 32 different banks + 1-word broadcast each

Parallel Memory Architecture

In a parallel machine, many threads access memory
 Therefore, memory is divided into banks
* Essential to achieve high bandwidth

Each bank can service one address per cycle

e A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

* Conflicting accesses are serialized

14

Coalesced Main Memory Accesses

single coalesced access

NVIDIA

Address 132

Address 136

Address 156

Thread 10

Thread 11

Thread 11

| |

‘ » Address 172 ‘ + Address 172
‘ Thread 12 v Address 176 ‘ Thread 12 L Address 176
‘ Thread 13 y Address 180 ‘ Thread 13 Address 180
‘ Thread 14 v Address 184 ‘ Thread 14 + Address 184
‘ Thread 15 y Address 188 ‘ Thread 15 + Address 188

NVIDIA

one and two coalesced accesses™

Address 128

% Address 132

Address 136

b Address 140

b Address 144

b Address 148

* Address 152

h Address 156

b Address 160

f Address 164

h Address 168

P Address 172

Thread 12

k Address 176

Thread 13 Address 180
Thread 14 Address 184
Thread 15 Address 188

VLSS LSS S S S S S

15

Bank Addressing Examples

* No Bank Conflicts No Bank Conflicts
 Linear addressing e Random 1:1 Permutation
stride ==

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

Bank 15

Thread 0
Thread 1
Thread 2

Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

Bank 15

Bank Addressing Examples

* 2-way Bank Conflicts .

 Linear addressing
stride ==

Thread 0
Thread 1
Thread 2

e A,
Thread 4 "'1

Thread 8 /

Thread 9
Thread 10
Thread 11

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

8-way Bank Conflicts

 Linear addressing
stride ==

{
2\
N\

x8

17

Linear Addressing

e Q@Given:

~ _shared float shared[256];
float foo =

shared|[baselndex + s *
threadIdx.x];

* This is only bank-conflict-free if s
shares no common factors with the
number of banks

e 16 0on G80, so s must be odd

18

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 i

Bank 15

IGPU Atomics & Divergence

19

IGPU Atomics & Divergence

Race conditions —
 Traditional locks: avoid!
* How do we synchronize?

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
* “Fire-and-forget”

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(&locked, 1) !=)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

 Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
* “Fire-and-forget”

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(&locked, 1) != @)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

 Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
* “Fire-and-forget”

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(&locked, 1) != @)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

 Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()

__device_ void example(bool condition)

44— Warp of Threads ————» {

¥ atacve (TTITTITTIIIIIIT] $#(condition)

Some active %%Zﬂﬂﬂ%%........ run_this_first();

I else

hthersactive | | | | | | | | PAAAAAAZAA7 then_run_this();

Atactve [TTTTTTTTTTTTITTT] converged_again();

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(&locked, 1) != @)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

 Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
* “Fire-and-forget”

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(&locked, 1) != @)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

 Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

Every thread
tries to lock

But only one
succeeds

Locking thread Non-locked

continues threads idle
until unlock

(" Unlock J

~— -

double atomicAdd(double *data, double val)

{

J

IGPU Atomics & Diver while(atomicExch(&locked, 1) != @)

double old = *data;

Race conditions — *data = old + val;
locked = 0;

 Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd ()

' everyhved TTTTTTTTTITTITTT1T]
atomicSub () tries to lock
atomicMin 4t only one

| 0 st antyone [T T T T T TTTTTTT]
atomicMax () lmmmmmd

idles

Implemented as write-throug l
 “Fire-and-forget” Urlock Never

Happens

Non-locked
threads
retry first

Advanced Topic: GPU Programming Models

Layered abstractions

3/25/2021

Layered abstractions

Hardware

interface ~ -

/O dev DISK

U

e

MH

3/25/2021

Layered abstractions

Hardware

interface —

C /O dev

3/25/2021

Layered abstractions

process files user-mode

LIBC/CLR Runtimes/libs

_ _ OS-level
process files pipes abstractions

vendor driver | vendor driver | vendor driver :}

Jasn

EIIEY

3/25/2021

Layered abstractions

programmer-

visible interface process files user-mode

LIBC/CLR Runtimes/libs

OS interface OS-level

vendor driver | vendor driver | vendor driver }

* 1:1 correspondence between OS-level and user-level abstractions
* Diverse HW support enabled HAL

Jasn

uJo

E

3/25/2021

GPU abstractions

MH

3/25/2021

GPU abstractions

Hardware
interface

/V\I—‘ill

3/25/2021

GPU abstractions

GPGPU shaders language
APls kernels integration

GPU Runtime (e.g. OpenCL)

Jasn

— Runtime
support

3/25/2021

GPU abstractions

programmer-
visible interface

GPU Runtime (e.g. OpenCL)

GPGPU shaders language
APIs kernels integration

3/25/2021

— Runtime
support

GPU abstractions

GPGPU shaders language
APIs kernels integration

GPU Runtime (e.g. OpenCL)
1 OS-level

programmer-
visible interface

abstraction! \@-
<

] 2
Fat driver, >

— Runtime
support

—_—

interfaces

3/25/2021

GPU abstractions

programmer- — —
visible interface slheilens g
kernels integratjan
1 OS-level L Runtime
abstraction! \T i support
o
Fat driver, >
proprietary ——

interfaces

No kernel-facing API

OS resource-management limited
Poor composability

3/25/2021

No OS support > No isolation

GPU benchmark throughput

- 1200

o=

S

o 1000

(Va]

g 800

c

O 600

4+

O

c>) 400

=

200

. . 0
Higher is no CPU load high CPU load
better

* Image-convolution in CUDA
* Windows 7 x64 8GB RAM

* Intel Core 2 Quad 2.66GHz
* nVidia GeForce GT230

3/25/2021

No OS support > No isolation

GPU benchmark throughput

1200

=
c
S 000
S 1
g 800
2
O 600
—
O
c>) 400
=
200
. . 0
Higher is no CPU load high CPU load

better

ge-convolution in CUDA
dows 7 x64 8GB RAM

| Core 2 Quad 2.66GHz
dia GeForce GT230
3/25/2021

CPU+GPU schedulers not integrated!
...other pathologies abundant

Composition: Gestural Interface

Raw images
“*Hand"”

events

filter

xform

3/25/2021

Composition: Gestural Interface

Raw images
“*Hand"”

events

noisy point cloud
capture camera

images filter

3/25/2021

Composition: Gestural Interface

Raw images
“*Hand"”

events

noisy point cloud

xform filter

geometric i,

transformation

3/25/2021

Composition: Gestural Interface

Raw images
“*Hand"”

events

noisy point cloud

filter ‘

xform

3/25/2021

Composition: Gestural Interface

Raw images
“*Hand"”

events

noisy point cloud

xform

3/25/2021

Composition: Gestural Interface

Raw images
“*Hand"”

events

filter

xform

3/25/2021

Composition: Gestural Interface

Raw images
“*Hand"”

events

noisy point cloud

xform ~ filter

» Requires OS mediation

» High data rates _

» Abundant data parallelism
...use GPUs!

3/25/2021

What We’d Like To Do

#> capture | xform | filter | detect &

» Modular design
» flexibility, reuse
» Utilize heterogeneous hardware
» Data-parallel components 2 GPU
» Sequential components - CPU
» Using OS provided tools
» processes, pipes

3/25/2021

What We’d Like To Do

#> capture | xform | filter | detect &
CPU CPU

» Modular design
» flexibility, reuse
» Utilize heterogeneous hardware
» Data-parallel components 2 GPU
» Sequential components - CPU
» Using OS provided tools
» processes, pipes

3/25/2021

GPU Execution model

= GPUs cannot run OS:
= different ISA
* Memories have different coherence guarantees

- (disjoint, or require fence instructions)

= Host CPU must "manage” GPU execution

= Program inputs explicitly transferred/bound at runtime
= Device buffers pre-allocated

Main
memory

Copy inputs Copy outputs Send commands

GPU

3/25/2021

GPU
memory

GPU Execution model

= GPUs cannot run OS:
= different ISA
* Memories have different coherence guarantees

- (disjoint, or require fence instructions)

= Host CPU must "manage” GPU execution

= Program inputs explicitly transferred/bound at runtime
= Device buffers pre-allocated

Main

memory

Copy inputs T Copy outputs lSend commands

GPU

3/25/2021

memory

user

kernel

HW

Data migration

#> capture |

| detect &

camdrv GPU driver

detect

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture |

| detect &

camdrv GPU driver

detect

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture |

capture

camdrv

| detect &

GPU driver

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture | |

capture

| detect &

camdrv GPU driver

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture | | | detect &

capture

)S executive

camdrv GPU driver

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

)S executive

camdrv GPU driver

detect

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture | |

capture

read() write()

— -
2 =2
= =

| detect &

filter

detect

camdrv GPU driver

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture | | | detect &

capture filter detect

read() wrltﬁ() %_

- -~
Z E
Z SIE

—
-
-~
3

camdrv ' HIDdrv

copy/xfer

3/25/2021

user

kernel

HW

Data migration

#> capture | |

| detect &

capture

camdrv

N 7 E—

filter

GPU driver

copy-xfer

detect

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture |

capture

read() wri

camdrv

| detect &

N 7 E—

GPU driver

copy-xfer

filter

detect

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture | | | detect &

capture filter detect

read() wrltﬁ()

1te()

il
A

HIDdrv

camdrv GPU driver

3/25/2021

user

kernel

HW

Data migration

#> capture | | | detect &

capture fﬂtgr

Ee()

<2
o
Sl

camdrv GPU driver

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture |

capture

camdrv

| detect &

GPU driver

copy-xfer

filter

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture | |

capture

| detect &

filter

camdrv GPU driver

YV I—

copy-xfer

detect

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture | |

capture

| detect &

filter

camdrv GPU driver

copy-xfer

detect

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture | |

capture

| detect &

filter

camdrv GPU driver

detect

HIDdrv

3/25/2021

user

kernel

HW

Data migration

#> capture | |

capture

camdrv

| detect &

filter

detect

3/25/2021

Device-centric APIs considered harmful

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
1nvokeGPU() ;
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

3/25/2021

Device-centric APIs considered harmful

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
1nvokeGPU() ;
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

What happens if | want the following?
Matrix D=AxBxC

3/25/2021

Composed matrix multiplication

Matrix
AxBxC(Matrix A, B, C) {
Matrix AxXB = gemm(A,B);
Matrix AXBxXC = gemm(AxB,C);
AXBXC;

3/25/2021

Composed matrix multiplication

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();

Matrix CcopyFromGPU(C) ;
. C;
AXBxC(Matrix A, B, C) { }
Matrix AxXB = gemm(A,B);
Matrix AXBxXC = gemm(AxB,C);
AXBXC;

3/25/2021

Composed matrix multiplication

Matrix
] gemm(Matrix A, Matrix B) {
AxB copied from COpYTOGPU(A) ;
copyToGPU(B) ;
GPU memory... invokeGPU(Q);

. Matrix C = new-Matrix(Q);
Matrix " '
AXBxC(Matrix*A, B, C) { }

Matrix = gemm(A,B);
Matrix AXBXxC = gemm(AxB,C);

AXBXC,

3/25/2021

Composed matrix multiplication

Matrix
gemm{vatrix A, Matrix B) {

copyToGPU(B) ;
invokeiPUu(Q);
Matrix C = new Matrix();

Mat r"i X copyFromGPU(C) ;
AXBXC(Matrix A, B, C) { } -
Matrix AxXB = gemm(A,B);
Matrix AXBXC = gemm(,C);
AXBXC;
¥ ...only to be copied
right back!

3/25/2021

What if I have many GPUs?

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
1nvokeGPU() ;
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

3/25/2021

What if I have many GPUs?

Matrix

gemm(GPU dev),Matrix A, Matrix B) {
copyToGPU(dev, A);
copyToGPU(dev, B);
1nvokeGPU(dev) ;
Matrix C = new Matrix();
copyFromGPU(dev, C);

C;

3/25/2021

What if I have many GPUs?

Matrix

gemm(GPU dev),Matrix A, Matrix B) {
copyToGPU(dev, A);
copyToGPU(dev, B);
1nvokeGPU(dev) ;
Matrix C = new Matrix();
copyFromGPU(dev, C);

C;

What happens if | want the following?
Matrix D=AxBxC

3/25/2021

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;

copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix(Q);
copyFromGPU(C) ;

C;

Matrix
AxBxC(Matrix A,B,C) {
Matrix AxB = gemm/(, A,B);
Matrix AXBXC = gemm(, AXB,C);
AXBXC;

3/25/2021

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;

copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix(Q);
copyFromGPU(C) ;

C;

Matrix
AXBXC(GPU dev, Matrix A,B,C) {
Matrix AxB = gemm(dev, A,B);
Matrix AxXBxXC = gemm(dev, AXB,C);
AXBXC;

3/25/2021

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)
{
copyToGPU(A) ;

Rats...now | can CopyToGPU(B) ;

only use 1 GPU. invokeGPUQ) ;

Howtopartition Matrix C = new Matrix();

, copyFromGPU(C) ;
computation? C:

}

Matrix
AXBXC(GPU dev, Matrix A,B,C) {
Matrix AxB = gemm(dev, A,B);
Matrix AxXBxXC = gemm(dev, AXB,C);
AXBXC;

3/25/2021

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;

copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix(Q);
copyFromGPU(C) ;

C;

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AxB = gemm(devA, A,B);
Matrix AxXBxC = gemm(devB, AxB,C);
AXBXC;

3/25/2021

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{

This will never be COPyPgEﬂ Egg ;
copylo 5
manageable for many GPUs. invokeGPU() :
Programmer implements Matrix C = new Matrix();
scheduling using static view! copyFromGPU(C) ;
G,

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AxB = gemm(devA, A,B);
Matrix AxXBxC = gemm(devB, AxB,C);
AXBXC;

3/25/2021

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{

This will never be COPYPEEﬂ Egg ;
copyTo ;
manageable for many GPUs. invokeGPU() :
Programmer implements Matrix C = new Matrix();
scheduling using static view! copyFromGPU(C) ;
G,

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AxB = gemm(devA, A,B);
Matrix AxXBxC = gemm(devB, AxB,C);
AXBXC;

¥ Why don’t we have this problem with CPUs?

3/25/2021

Dataftlow: a better abstraction

Matrix: A Matrix: B

Matrix: C

= nodes = computation
= edges = communication

= Expresses parallelism explicitly
= Minimal specification of data movement: runtime does it.

= asynchrony is a runtime concern (not programmer concern)
= No specification of compute—>device mapping: like threads!

3/25/2021

Advanced Topic: GPU Coherence

Review: Cache Coherence

IO devices

Review: Cache Coherence

Rg. T i Tag State Data Tag State Data

%
PrRdd- 1[
Bu;lnli ||I I|II E'LF!'-LIJI.-'FIu-,h

11 I
|

Bu-'.ﬂd:l:f! hush

S "‘/ L

|

| |::' Ij ey | ces

Review: Cache Coherence

Tag State Cata Tag State Cata Tag State Cata

|
. /
vl

I

IO devices el BusRAaX/[lush

Each cache line has astate (M, E, S, 1)

Review: Cache Coherence

Tag State Cata Tag State Cata Tag State Cata

|
. /
vl

I

IO devices el BusRAaX/[lush

PrRel-

5 i !
BusRdifhssh | /

Each cache line has astate (M, E, S, 1)
= Processors “snoop” bus to maintain states

Review: Cache Coherence

Tag State Cata Tag State Cata Tag State Cata

I
/

‘-. I

!
KON

I

Bu-'.ﬂd:l:f! hush

!J'

5 i !
BusRdifhssh | /

Each cache line has astate (M, E, S, 1)
= Processors “snoop” bus to maintain states
= Initially = 'I' = Invalid

Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

I
/

‘.I f

!
KON

I

Bu-'.ﬂd:l:f! hush

!J'

5 i !
BusRdifhssh | /

Each cache line has astate (M, E, S, 1)
= Processors “snoop” bus to maintain states
= Initially = 'I' = Invalid
= Readone =2 'E' 2 exclusive

Review: Cache Coherence

Tag State Cata Tag State Cata Tag State Cata

IO devices

Each cache line has a state (M, E, S, |)
= Processors “snoop” bus to maintain states
= Initially = 'I' = Invalid
= Readone =2 'E' 2 exclusive
= Reads =2 'S’ = multiple copies possible

Review: Cache Coherence

Tag State Cata Tag State Cata Tag State Cata

IO devices

Each cache line has astate (M, E, S, 1)
= Processors “snoop” bus to maintain states

= Initially = 'I' = Invalid

= Readone 2 'E' =2 exclusive

= Reads =2 'S’ = multiple copies possible

= Write = ‘M’ = single copy = lots of cache coherence traffic

Review: Cache Coherence

Tag State Cata Tag State Cata Tag State Cata

IO devices

Each cache line has astate (M, E, S, 1)
= Processors “snoop” bus to maintain states

= Initially = 'I' = Invalid

= Readone 2 'E' =2 exclusive

= Reads =2 'S’ = multiple copies possible

= Write = ‘M’ = single copy = lots of cache coherence traffic

GPU Cache Coherence Challenges

« Challenge 1: Coherence traffic

No coherence

] MESI

GPU-VI

Q
=
—

@

—_
-—
©

ml

c

c

o

Q

—

Q
—
=

o

-

-
n

Do not require
coherence

Recalls

Load C
Load D
Load E
Load F
Load C

Load O
Load P
Load Q
Load R

40

GPU Cache Coherence Challenges

« Challenge 2: Tracking in-flight requests
« Significant % of L2

Background: Directory Protocol

[| FO r e a C h b | OC k: Ce nt ra | | Ze C P presence bits: indicate whether processor

hasline in its cache

“directory” for state in caches I9RsSr

Dirty bit: indicates block is dirty
in one of the processors’ caches

= Directory is co-located with Local Cache
some global view of memory

Onedirectoryentryper — |0 [T T T T T T 1]

cache line of memory

- Requests are no Ionger seen
by eve ryone One cache line of memory —————J

Writes are serialized through

directory

3/25/2021

GPU-VI

GPU-VI Coherence

= Directory-Based c1 | pir jc2

Different from snoop-model ﬁ*dﬁ P

Global directory metadata at L2

= Two states
Valid
Invalid

S
o
a
o
=
c
@
=
@
o
e

= Writes invalidate other copies

3/25/2021

Temporal Coherence (TC)

GPU-VI Coherence Temporal Coherence

- c1jf L2 Jc2

o load,
predict|R, Local Timestamp
predict

read-only epoch

‘ T=20 > Global Time - VALID
R ore 1 '
invalid-ate I—m |
o i

Interconnect

read-only epoch

invalidate

Global Timestamp

~ S
v |G
whet

L2 Bank

lﬁ < Global Time =>

NO L1 COPIES

TC-Strong vs TC-Weak

D Write stalling at L2 (TC-Strong)

“]]m Fence waiting for pending requests (both)
D Fence waiting for GWCT (TC-Weak)

TC-Strong TC-Weak

c1jf L2 fJc2 c1jf L2 fc2

051 flag data flag data
9F1 ~ NULL | 60| | OLD | 30 NULL | 60| | OLD | 30

ENO-L1 @&NO-COH OMESI ®sGPU-VI sGPU-VIni mTCW

FLTEETTTTTTTTTTTTTTTTL TS
FFF T T TFFFFFIFFIFFIFFIFFIFIFF T

I o -4 mm Z =
m O O Jd Fk
o n *

self-
invalidate

(a) Inter-workgroup comm. (b) Intra-workgroup comm.

C1's requests C2's private cache C1's requests C2's private cache
blocks state blocks state
(value | timestamp) (value | timestamp)

45

