Rust

cs378h
Chris Rossbach

Outline

Administrivia
Midterm 1 results

Technical Agenda

Rust!
Overview
Decoupling Shared, Mutable, and State
Channels and Synchronization

Rust Lab Preview

Acknowledgements:

* https://www.slideshare.net/nikomatsakis/rust-concurrency-tutorial-2015-1202

e Thanks Nikolas Matsakis!

https://www.slideshare.net/nikomatsakis/rust-concurrency-tutorial-2015-1202

I Memory Lane: Zoominutia

I Memory Lane: Zoominutia

* |t may take some practice

I Memory Lane: Zoominutia

* [t may take some practice
* | reserved the right side of the slides for people

I Memory Lane: Zoominutia

* [t may take some practice
* | reserved the right side of the slides for people ‘

I Memory Lane: Zoominutia

* [t may take some practice
* | reserved the right side of the slides for people ‘

* You can raise your hand
* On participants bar/window/widget/thingy

I Memory Lane: Zoominutia

* [t may take some practice
* | reserved the right side of the slides for people ‘

* You can raise your hand
* On participants bar/window/widget/thingy

(:

1
)]

(

I Memory Lane: Zoominutia

* [t may take some practice
* | reserved the right side of the slides for people ‘

* You can raise your hand
* On participants bar/window/widget/thingy
* But | might not hear it
e OK to just speak up (I hope)

(:

1
)]

(

I Midterm Statistics

[

M
i

[

I

[0..50) [50..60) [60..70) [70..80) [80..90) [90..100]

I Midterm Statistics

* Mean: 65

[

M
i

[

I

[0..50) [50..60) [60..70) [70..80) [80..90) [90..100]

I Midterm Statistics

* Mean: 65
e Median: 71

[

(i
I

[

I

[0..50) [50..60) [60..70) [70..80) [80..90) [90..100]

I Midterm Statistics

* Mean: 65
e Median: 71
e STDEV: 18

[

(i
I

[

I

[0..50) [50..60) [60..70) [70..80) [80..90) [90..100]

I Midterm Statistics

* Mean: 65

* Median: 71
 STDEV: 18

* Range: [28..82]

L

IO
I

LI

[l

[0..50) [50..60) [60..70) [70..80) [80..90) [90..100]

I Midterm Statistics

* Mean: 65

* Median: 71
 STDEV: 18

* Range: [28..82]

C B

(il

[50..60)

/;Z LI

IO

[60..70)

HM
>
/

il

Q..SO) [80..90) [90..103

I Midterm Statistics

* Mean: 65

* Median: 71
 STDEV: 18

* Range: [28..82]

Favorite subjects:
Go, GPUs

Least Favorite:
pfxsum, GPUs

C B

Il

[50..60)

/2 [

M

[60..70)

>

[

I

Q..SO) [80..90) [90..109

Exam Q*: Uniprocessors/Concurrency

1. In a uniprocessor system concurrency control is best implemented with

(a) Semaphores
(b

(c
(d
(e) Bus locking

f

Spinlocks
Interrupts
Atomic instructions

)
)
)
)
)
)

Processes and threads

Exam Q*: Uniprocessors/Concurrency

1. In a uniprocessor system concurrency control is best implemented with

@emap&ho@

(b) Spinlocks

<{c) Interrupts >

(d) Atomic instructions

(e) Bus locking

(f) Processes and threads

Exam Q*: Threads and Address Spaces

2. Which of the following are true of threads?

)
)
¢) They have their own stack.
) They must be implemented by the OS.
)

Context switching between them is faster than between processes.

Exam Q*: Threads and Address Spaces

2. Which of the following are true of threads?

(a) They have their own page tables.
b Dafa in their address space can be either shared with or made inaccessible to other threads-
<{c) They have their own stack—>
(d) They must be implemented by the OS.
<te)_Context switching between them is faster than between processes—

Exam Q*: Scaling

4. If a program exhibits strong scaling,

)
)
(c) Its serial phases are short relative to its parallel phases.
) Adding more threads decreases the end-to-end runtime for an input.
)

Adding more threads and more work makes it go about the same speed.

Exam Q*: Scaling

4. If a program exhibits strong scaling,

(a) It gets faster really dramatically with more threads.

(b) Increasing the amount of work does not increase its run time.
<(c]_Its serial phases are short relative to its parallel phases=
<d_Adding more threads decreases the end-to-end runtime for an input=

(e) Adding more threads and more work makes it go about the same speed.

Exam Q*: Barrier generality

5. Barriers can be used to implement

Cross-thread coordination.
Mutual exclusion.
Slow parallel programs.

Task-level parallelism.

Exam Q*: Barrier generality

5. Barriers can be used to implement

< {a) Cross-thread coordination. —>

< (b) Mutual exclusion. >

<(c) Slow parallel programs. >
<(d] Task-level parallelism.

Exam Q*: Formal properties and TM

Paraphrased: Do <safety, liveness, bounded wait, failure atomicity>
suffice to define correctness for TM?

* The point: TM can violate single-writer invariant
* Not the point: ACID

Exam Q*: CSP models and Go

4. In message-passing systems, channel implementations may or may not use buffering/capacity, and may
support blocking and/or non-blocking semantics. (A) Can a 0-capacity channel support non-blocking
send and receive semantics? Why or why not? (B) How is direct addressing (naming) different from
indirect addressing for message passing systems? List a potential advantage and disadvantage for each.
(C) What constructs enable Go’s channels to support both blocking and non-blocking semantics? (D)
When shouldn’t you close a Go channel from the receiving go routine?

10

Exam Q*: CSP models and Go

4. In message-passing systems, channel implementations may or may not use buffering/capacity, and may
support blocking and/or non-blocking semantics. (A) Can a 0-capacity channel support non-blocking
send and receive semantics? Why or why not? (B) How is direct addressing (naming) different from
indirect addressing for message passing systems? List a potential advantage and disadvantage for each.
(C) What constructs enable Go’s channels to support both blocking and non-blocking semantics? (D)
When shouldn’t you close a Go channel from the receiving go routine?

* A) In general no, but receiver can poll

10

Exam Q*: CSP models and Go

4. In message-passing systems, channel implementations may or may not use buffering/capacity, and may
support blocking and/or non-blocking semantics. (A) Can a 0-capacity channel support non-blocking
send and receive semantics? Why or why not? (B) How is direct addressing (naming) different from
indirect addressing for message passing systems? List a potential advantage and disadvantage for each.
(C) What constructs enable Go’s channels to support both blocking and non-blocking semantics? (D)
When shouldn’t you close a Go channel from the receiving go routine?

* A) In general no, but receiver can poll
* C) Select!

10

Exam Q*: CSP models and Go

4. In message-passing systems, channel implementations may or may not use buffering/capacity, and may
support blocking and/or non-blocking semantics. (A) Can a 0-capacity channel support non-blocking
send and receive semantics? Why or why not? (B) How is direct addressing (naming) different from
indirect addressing for message passing systems? List a potential advantage and disadvantage for each.
(C) What constructs enable Go’s channels to support both blocking and non-blocking semantics? (D)
When shouldn’t you close a Go channel from the receiving go routine?

select {
o case vl := <-c1:
¢ A) In general nO’ but receljver can pO” fmt.Printf("received %v from c1\n", v1)
case v2 := <-c2:
fmt.Printf("received %v from c2\n", v1)
¢ C) SElECt! case c3 <- 23:
fmt.Printf("sent %v to c3\n", 23)
default:
fmt.Printf("no one was ready to communicate\n")

}

10

Exam Q*: P+F

2. (A) How are promises and futures related? As we’ve discussed, there is disagreement on the
nomenclature, so dont worry about which is which; just describe what the different objects are and how
they function. (B,C) Consider the following go-like code:

func main() {
datal := readAndParseFile(options.getPath1())
data2 := readAndParseFile(options.getPath2())
result := computeBoundOperation(datal, data2)
writeResult (options.getOutputPath())

(B) Re-write the code to use asynchronous processing whereever possible, using go func() for each of
the steps and using WaitGroups to enforce the correct ordering amongst them. Don’t worry about
syntax being correct, just focus on the important concurrency-relevant ideas. (C) Suppose WaitGroup
support were not available. Describe at least one approach that can still ensure the proper ordering
between goroutines correctly without requiring WaitGroups. (D) Asynchronous systems are often
decried as prone to “stack-ripping”. What does this mean? Does go suffer these drawbacks? Why/why
not?

13

2. (A) How are promises and futures related? As we’ve discussed, there is disagreement on the
nomenclature, so dont worry about which is which; just describe what the different objects are and how

E Q* . P F they function. (B,C) Consider the following go-like code:
Xdm . P+

func main() {
datal := readAndParseFile(options.getPathl())
data2 := readAndParseFile(options.getPath2())
result := computeBoundOperation(datal, data2)
writeResult (options.getOutputPath())

(B) Re-write the code to use asynchronous processing whereever possible, using go func() for each of
the steps and using WaitGroups to enforce the correct ordering amongst them. Don’t worry about
syntax being correct, just focus on the important concurrency-relevant ideas. (C) Suppose WaitGroup
support were not available. Describe at least one approach that can still ensure the proper ordering
between goroutines correctly without requiring WaitGroups. (D) Asynchronous systems are often
decried as prone to “stack-ripping”. What does this mean? Does go suffer these drawbacks? Why/why
not?

* A) something about futures and promises

13

Exam Q*: P+F

2. (A) How are promises and futures related? As we’ve discussed, there is disagreement on the
nomenclature, so dont worry about which is which; just describe what the different objects are and how
they function. (B,C) Consider the following go-like code:

func main() {
datal := readAndParseFile(options.getPathl())
data2 := readAndParseFile(options.getPath2())
result := computeBoundOperation(datal, data2)
writeResult (options.getOutputPath())

(B) Re-write the code to use asynchronous processing whereever possible, using go func() for each of
the steps and using WaitGroups to enforce the correct ordering amongst them. Don’t worry about
syntax being correct, just focus on the important concurrency-relevant ideas. (C) Suppose WaitGroup
support were not available. Describe at least one approach that can still ensure the proper ordering
between goroutines correctly without requiring WaitGroups. (D) Asynchronous systems are often
decried as prone to “stack-ripping”. What does this mean? Does go suffer these drawbacks? Why/why
not?

* A) something about futures and promises
e B) pretty much anything with go func()

13

Exam Q*: P+F

2. (A) How are promises and futures related? As we’ve discussed, there is disagreement on the
nomenclature, so dont worry about which is which; just describe what the different objects are and how
they function. (B,C) Consider the following go-like code:

func main() {
datal := readAndParseFile(options.getPathl())
data2 := readAndParseFile(options.getPath2())
result := computeBoundOperation(datal, data2)
writeResult (options.getOutputPath())

(B) Re-write the code to use asynchronous processing whereever possible, using go func() for each of
the steps and using WaitGroups to enforce the correct ordering amongst them. Don’t worry about
syntax being correct, just focus on the important concurrency-relevant ideas. (C) Suppose WaitGroup
support were not available. Describe at least one approach that can still ensure the proper ordering
between goroutines correctly without requiring WaitGroups. (D) Asynchronous systems are often
decried as prone to “stack-ripping”. What does this mean? Does go suffer these drawbacks? Why/why
not?

* A) something about futures and promises
e B) pretty much anything with go func()

e C) Channels!

13

2. (A) How are promises and futures related? As we’ve discussed, there is disagreement on the
nomenclature, so dont worry about which is which; just describe what the different objects are and how

E Q* . P F they function. (B,C) Consider the following go-like code:
Xdm . P+

func main() {
datal := readAndParseFile(options.getPathl())

data2 := readAndParseFile(options.getPath2())
result := computeBoundOperation(datal, data2)
writeResult (options.getOutputPath())

}

(B) Re-write the code to use asynchronous processing whereever possible, using go func() for each of
the steps and using WaitGroups to enforce the correct ordering amongst them. Don’t worry about
syntax being correct, just focus on the important concurrency-relevant ideas. (C) Suppose WaitGroup
support were not available. Describe at least one approach that can still ensure the proper ordering
between goroutines correctly without requiring WaitGroups. (D) Asynchronous systems are often
decried as prone to “stack-ripping”. What does this mean? Does go suffer these drawbacks? Why/why
not?

* A) something about futures and promises
e B) pretty much anything with go func()
C) Channels!

D) Stack-ripping = some creative responses
e (next slide)

13

Stack-Ripping

I PROGRAM MyProgram {

2 E TASK ReadFileAsync(name, callback) {

3 ReadFileSync (name) ;

4 Call (callback) ;

5 ¢ }

: CALLBACK FinishOpeningFile() {
LoadFile(file) ;
RedrawScreen() ;

-]
(1]
L1

B }

10 = OnOpenFile () {

11 FILE file;

12 char szName [BUFSIZE]

13 InitFileName (szName) ;

14 EnqueueTask (ReadFileAsync (szName, FinishOpeningFile));
15 + }

16 OnPaint () ;

Stack-Ripping

I PROGRAM MyProgram {

2 E TASK ReadFileAsync(name, callback) {
3 ReadFileSync (name) ;

4 Call (callback) ;

B }

= CALLBACK FinishOpeningFile() {

! LoadFile(file) ;

8 RedrawScreen() ;

. - }

10 = OnOpenFile () {

11 FILE file;

12 char szName [BUFSIZE

13 ' ZName) ;

14 EnqueueTask (ReadFileAsync (szName, FinishOpeningFile));
15 + }

16 OnPaint () ;

Stack-Ripping

I PROGRAM MyProgram {

2 E TASK ReadFileAsync(name, callback) {
3 ReadFileSync (name) ;

4 Call (callback) ;

B }

= CALLBACK FinjlskOpeningFile() {

7 LoadFil

8 RedrawScreer ;

. - }

10 = OnOpenFile () {

11 FILE file;

12 char szName [BUFSIZ

13 ' ZName) ;

14 EnqueueTask (ReadFileAsync (szName, FinishOpeningFile));
15 + }

16 OnPaint () ;

Stack-Ripping

I PROGRAM MyProgram {

2 E TASK ReadFileAsync(name, callback) {

3 ReadFileSync (name) ;

4 Call (callback) ;

B }

6 B CALLBACK FinjishkbpeningFile () {

7 LoadFil

8 RedrawScreer ;

12 - } o Stack-based state out-of-scope!
= OnOpenkFile () {

11 FILE file: Requests must carry state

12 char szName [BUFSIZ

13 In1EtrFTietam{szName) ;

14 EnqueueTask (ReadFileAsync (szName, FinishOpeningFile));

15 + }

16 OnPaint () ;

17 L}

Exam Q*: Transactions

Exam Q*: Transactions

i1 Transactions

Suppose a systemn allows nested transactions. Recall that when transactions nest, it means that currently executing "outer” transactions can begin and end new
“inner" transactions before the current one completes, allowing transactional code to be composed. Consider the following example, in which transactions are

started and ended using [txbegin(parent—txid)] and ftxcarmit()] operations respectively, and transactions read and write values using write(key, value)
methods on the transaction object returned by | txbegin .

txidl = txbegin(NULL); { {/f NULL parent transaction

txidl.write(keyl, valuel); // Write the value valuel to the entry
&4 whose key is keyl

txid2 = txbegin(txidl); ff txidl is the parent transaction
txid2.write(key2, value2);
txcommit(tid2);
txidl.read(key2);

}

txcommit(txidl);

this case the "inner” transaction is txid2, the "outer” is txid1. Consider the relationship between "inner” transactions (e.g., tid2 and the "outer" transaction (e.g.,
11). A read() in an outer transaction should return a value that includes the result of all preceding writes in the outer transaction as well as all writes in preceding,
immitted inner transactions. A read() in an inner transaction should return a value that includes the result of all preceding writes in the outer transaction, all
eceding writes in that inner transaction, and all writes in preceding, committed inner transactions. Implementing these semantics can be tricky.

) One strategy is for the inner transaction to commit normally, but alse produce an "undo” list of updated values that can be used to restore the original values if
e outer transaction aborts. Which ACID condition(s) does this approach relax? Why?
) Another strategy is for each inner transaction to produce a list

deferred updates/actions that the the outer transaction commits for it when the outer transaction commits. For any data item written in any transaction, all
nsactions read the last update value from this list. Which ACID condition(s) does this approach relax?

) If the only data flow is that the inner transaction reads from the outer transaction (meaning txid2 reads txid1's writes but txid1 never reads txid2's writes), do wi
Il need to relax ACID? Why?

Exam Q*: Transactions

* A) Isolation, Atomicity, Durability
* A) I: other tx see “in-flight” state

* A) A: some of outer is available without
all being available

e A) D: other tx see state that rolls back

Transactions

Suppose a system allows nested transactions. Recall that when transactions nest. it means that currently executing "outer” transactions can begin and end new
“inner" transactions before the current one completes, allowing transactional code to be composed. Consider the following example, in which transactions are
started and ended usi

2 | txbegin(parent-txid) and| txcommit() | operations respectively, and transactions read and write values using |write(key, value)
methods on the transaction object returned by | txbegin .

txidl = txbegin(NULL); { f/ NULL parent transaction
txidl.write(keyl, valuel); // Write the value valuel to the entry
(il whose key is keyl
txid2 = txbegin(txidl); ff txidl is the parent transaction
txid2.write(key2, value2);
txcommit(tid2);

txidl.read(key2);
txcommit(txidl);

this case the "inner” transaction is txid2, the "outer" is txid1. Consider the relationship between "inner” transactions (e.g., tid2 and the "outer" transaction (e.g.,

11). A read() in an outer transaction should return a value that includes the result of all preceding writes in the outer transaction as well as all writes in preceding,
immitted inner transactions. A read() In an inner transaction should return a value that includes the result of all preceding writes in the outer transaction, all
eceding writes in that inner transaction, and all writes in preceding, committed inner transactions. Implementi

g these semantics can be tricky.

J One strategy is for the inner transaction to commit normally, but also produce an "undo” list of updated values that can be used to restore the original values if
e outer transaction aborts. Which ACID condition(s) does this approach relax? Why?

) Another strategy is for each inner transaction to produce a list
deferred updates/actions that the the outer transaction commits for it when the outer transaction commits. For any data item written in any transaction, all
ansactions read the last update value from this list. Which ACID condition(s) does this approach relax?

) If the only data flow is that the inner transaction reads from the outer transaction (meaning txid2 reads txid1's writes but txid1 never reads txid2's writes), do we
ill need to relax ACID? Why?

Exam Q*: Transactions

* A) Isolation, Atomicity, Durability
* A) I: other tx see “in-flight” state

* A) A: some of outer is available without
all being available

* A) D: other tx see state that rolls back

* B) Isolation — all txs see writes of
deferred actions (text is subtle)

* B) Not C — all txs see writes in order

Transactions

Suppose a system allows nested transactions. Recall that when transactions nest, it means that currently executing "outer” transactions can begin and end new
“inner" transactions before the current one completes, allowing transactional code to be composed. Consider the following example, in which transactions are
started and ended using | txbegin(parent-txid) land| txcommit() | operations respectively, and transactions read and write values using | write(key, value)

methods on the transaction object returned by | txbegin .

txidl = txbegin(NULL); { f/ NULL parent transaction
txidl.write(keyl, valuel); // Write the value valuel to the entry
(il whose key is keyl
txid2 = txbegin(txidl); ff txidl is the parent transaction
txid2.write(key2, value2);
txcommit(tid2);

txidl.read(key2);
txcommit(txidl);

this case the "inner” transaction is txid2, the "outer" is txid1. Consider the relationship between "inner” transactions (e.g., tid2 and the "outer" transaction (e.g.,
11). A read() in an outer transaction should return a value that includes the result of all preceding writes in the outer transaction as well as all writes in preceding,
ymmitted inner transactions. A read() in an inner transaction should return a value that includes the result of all preceding writes in the outer transaction, all

eceding writes in that inner transaction, and all writes in preceding, committed inner transactions. Implementing these semantics can be tricky.

J One strategy is for the inner transaction to commit normally, but also produce an "undo” list of updated values that can be used to restore the original values if
e outer transaction aborts. Which ACID condition(s) does this approach relax? Why?

) Another stra is for each inner transaction to produce a list

deferred updates/actions that the the outer transaction commits for it when the outer transaction commits. For any data item written in any transaction, all
ansactions read the last update value from this list. Which ACID condition(s) does this approach relax?

) If the only data flow is that the inner transaction reads from the outer transaction (meaning txid2 reads txid1's writes but txid1 never reads txid2's writes), do wi
ill need to relax ACID? Why?

Exam Q*: Transactions

* A) Isolation, Atomicity, Durability
* A) I: other tx see “in-flight” state

* A) A: some of outer is available without
all being available

* A) D: other tx see state that rolls back

* B) Isolation — all txs see writes of
deferred actions (text is subtle)

* B) Not C — all txs see writes in order

* C) No relaxation required

 data only flows outer = inner
* no uncommitted inner writes observed

Transactions

Suppose a system allows nested transactions. Recall that when transactions nest, it means that currently executing "outer” transactions can begin and end new
“inner" transactions before the current one completes, allowing transactional code to be composed. Consider the following example, in which transactions are
started and ended using | txbegin(parent-txid) land| txcommit() | operations respectively, and transactions read and write values using | write(key, value)
methods on the transaction object returned by | txbegin .

txidl = txbegin(NULL); { f/ NULL parent transaction
txidl.write(keyl, valuel); // Write the value valuel to the entry
(il whose key is keyl
txid2 = txbegin(txidl); ff txidl is the parent transaction
txid2.write(key2, value2);
txcommit(tid2);

txidl.read(key2);

txcommit(txidl);

this case the "inner” transaction is txid2, the "outer" is txid1. Consider the relationship between "inner” transactions (e.g., tid2 and the "outer" transaction (e.g.,
11). A read() in an outer transaction should return a value that includes the result of all preceding writes in the outer transaction as well as all writes in preceding,
ymmitted inner transactions. A read() in an inner transaction should return a value that includes the result of all preceding writes in the outer transaction, all

eceding writes in that inner transaction, and all writes in preceding, committed inner transactions. Implementing these semantics can be tricky.

J One strategy is for the inner transaction to commit normally, but also produce an "undo” list of updated values that can be used to restore the original values if
e outer transaction aborts. Which ACID condition(s) does this approach relax? Why?

) Another stra is for each inner transaction to produce a list

deferred updates/actions that the the outer transaction commits for it when the outer transaction commits. For any data item written in any transaction, all
ansactions read the last update value from this list. Which ACID condition(s) does this approach relax?

) If the only data flow is that the inner transaction reads from the outer transaction (meaning txid2 reads txid1's writes but txid1 never reads txid2's writes), do wi
ill need to relax ACID? Why?

I Rust Motivation

I Rust Motivation

Locks’ litany of problems:

I Rust Motivation

Locks’ litany of problems:
* Deadlock

I Rust Motivation

Locks’ litany of problems:
* Deadlock
* Priority inversion

I Rust Motivation

Locks’ litany of problems:
* Deadlock

* Priority inversion

* Convoys

I Rust Motivation

Locks’ litany of problems:
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

I Rust Motivation

Locks’ litany of problems:
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

I Rust Motivation

Locks’ litany of problems:
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

I Rust Motivation

Locks’ litany of problems:
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

* Poor composability...

I Rust Motivation

Locks’ litany of problems:
* Deadlock
* Priority inversion

* Convoys

_ Solution: don’t use locks
* Fault Isolation + non-blocking
* Preemption Tolerance * Data-structure-centric

* HTM

* Performance * blah, blah, blah..

* Poor composability...

I Rust Motivation

Locks’ litany of problems:
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

* Poor composability...

I Rust Motivation

Locks’ litany of problems:
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

. —~~ At ct+ i ntrin
* Preemptlon Toleran Shared mutable state requires locks

e Performance * So...separate sharing and mutability

- * Use type system to make concurrency safe
* Poor composability. !

Ownership

Immutability

Careful library support for sync primitives

I Rust Goals

Multi-paradigm language modeled after C and C++
Functional, Imperative, Object-Oriented

Primary Goals:
Safe Memory Management
Safe Concurrency and Concurrent Controls

I Rust Goals

Multi-paradigm language modeled after C and C++
Functional, Imperative, Object-Oriented

Primary Goals:
Safe Memory Management
Safe Concurrency and Concurrent Controls

Be Fast: systems programming

Be Safe: don’t crash

IMemory Management

IMemory Management

Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

IMemory Management

Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

Objects are immutable by default
User has more explicit control over mutability

IMemory Management

Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

Objects are immutable by default
User has more explicit control over mutability

Declared variables must be initialized prior to execution
A bit of a pain for static/global state

I Unsafe

Credit: http://www.skiingforever.com/ski-tricks/ = .

http://www.skiingforever.com/ski-tricks/

I Unsafe

Functions determined unsafe via specific behavior
e Deference null or raw pointers
* Data Races
* Type Inheritance

Credit: http://www.skiingforever.com/ski-tricks/ =

http://www.skiingforever.com/ski-tricks/

I Unsafe

Functions determined unsafe via specific behavior
e Deference null or raw pointers
* Data Races
* Type Inheritance

Using “unsafe” keyword = bypass compiler enforcement
 Don’tdoit. Not for the lab, anyway

Credit: http://www.skiingforever.com/ski-tricks/ =

http://www.skiingforever.com/ski-tricks/

I Unsafe

Functions determined unsafe via specific behavior
e Deference null or raw pointers
* Data Races
* Type Inheritance

Using “unsafe” keyword = bypass compiler enforcement
 Don’tdoit. Not for the lab, anyway

The user deals with the integrity of the code

http://www.skiingforever.com/ski-tricks/

IOther Relevant Features

First-Class Functions and Closures
Similar to Lua, Go, ...

Algebraic data types (enums)

Class Traits
Similar to Java interfaces
Allows classes to share aspects

IOther Relevant Features

First-Class Functions and Closures
Similar to Lua, Go, ...

Algebraic data types (enums)

Class Traits
Similar to Java interfaces
Allows classes to share aspects

Hard to use/learn without

awareness of these issues

IConcurrency

IConcurrency

Tasks = Rust’s threads

IConcurrency

Tasks = Rust’s threads

Each task = stack and a heap
Stack Memory Allocation — A Slot
Heap Memory Allocation — A Box

IConcurrency

Tasks = Rust’s threads

Each task = stack and a heap
Stack Memory Allocation — A Slot
Heap Memory Allocation — A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

IConcurrency

Tasks = Rust’s threads

Each task = stack and a heap
Stack Memory Allocation — A Slot
Heap Memory Allocation — A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

Task States: Running, Blocked, Failing, Dead
Failing task: interrupted by another process
Dead task: only viewable by other tasks

IConcurrency

Tasks = Rust’s threads

Each task = stack and a heap
Stack Memory Allocation — A Slot
Heap Memory Allocation — A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

Task States: Running, Blocked, Failing, Dead
Failing task: interrupted by another process
Dead task: only viewable by other tasks

Scheduling
Each task = finite time-slice
If task doesn’t finish, deferred until later
“M:N scheduler”

IHeIIo World

fn main() {
println!("Hello, world!")

IOwnership

IOwnership

Ownership
n. The act, state, or right of possessing something

IOwnership

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

IOwnership

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership/Borrowing =
No need for a runtime
Memory safety (GC)
Data-race freedom

IOwnership

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership/Borrowing =
No need for a runtime
Memory safety (GC)
Data-race freedom

MM Options:
Managed languages: GC
Native languages: manual

management
Rust: 3" option: track
ownership

IOwnership

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership/Borrowing =
No need for a runtime
Memory safety (GC)
Data-race freedom

MM Options:
Managed languages: GC
Native languages: manual

e Each value in Rust has a variable called its owner.
 There can only be one owner at a time.
* Owner goes out of scope—>value will be dropped.

management
Rust: 3" option: track
ownership

IOwnership/Borrowing

fn main() {
let name = format!("...");

helper(name);

}

IOwnership/Borrowing

fn main() {
let name = format!("...");

helper(name);

}

IOwnership/Borrowing

fn main() { fn helper(name: String) {

let name = format!("..."); printlnl(“{}”, name);

helper(name); }
}

IOwnership/Borrowing

fn main() { fn helper(name: String) {
let name = format!("..."); println! (“{}”, name);
helper(name); }
helper(name);

}

IOwnership/Borrowing

fn main() { fn helper(name: String) {
let name = format!("..."); println! (“{}”, name);
helper(name); }
helper(name);

N

Error: use of moved value: name’

IOwnership/Borrowing

fn main() { fn helper(name: String) {
let name = format!("..."); println! (“{}", name);
helper(name); }
helper(name);

} \ Take ownership of a String

Error: use of moved value: name’

IOwnership/Borrowing

fn main() { fn helper(name: String) {

let name = format!("..."); println! (“{}", name);

helper(name); ¥

helper(name);

} \ Take ownership of a String

Error: use of moved value: name’

: use of moved value: name

play.rs:28:12

let name = format!("..."1;

helperiname);

helperiname) ;

IOwnership/Borrowing

fn main() { fn helper(name: String) {

let name = format!("..."); println! (“{}", name);

helper(name); ¥

helper(name);

} \ Take ownership of a String

Error: use of moved value: name’

: use of moved value: name

play.rs:28:12

let name = format!("..."1;

helperiname);

helperiname) ;

What kinds of problems might this prevent?

IOwnership/Borrowing

fn main() { fn helper(name: String) {

let name = format!("..."); println! (“{}", name);

helper(name); ¥

helper(name);

} \ Take ownership of a String

Error: use of moved value: name’

: use of moved value: name

play.rs:28:12

let name = format!("..."1;

helperiname);

helperiname) ;

What kinds of problems might this prevent?

Pass by reference takes “ownership implicitly” in other languages like Java

IShared Borrowing

fn main() { fn helper(name: &String) {
let name = format!("..."); printlnl(“{}”, name);
helper(&name); }
helper(&name);

}

IShared Borrowing

fn main() { fn helper(name: &String) {
let name = format!("..."); printlnl(“{}”, name);
helper(&name); }
helper(&name);

|

Lend the string

IShared Borrowing

fn main() {
let name = format!("...");
helper(&name);
helper(&name);

]

Lend the string

fn helper(name: &String) {

println! (“{}’], name);

Take a reference to a String

IShared Borrowing

fn main() { fn helper(name: &String) {
let name = format!("..."); printlnl(“{}"], name);
helper(&name); }
helper(&name);

} / Take a reference to a String

Lend the string

Why does this fix the problem?

IShared Borrowing with Concurrency

fn main() { fn helper(name: &String) {
let name = format!("..."); thread: :spawn(| |{
helper(&name); println! ("{}", name);
helper(&name); })s

} }

IShared Borrowing with Concurrency

fn main() {
let name = format!("...");
helper(&name);
helper(&name);

}

fn helper(name: &String) {
thread: :spawn(| |{
println! ("{}", name);
1)
}

Lifetime “static’ required

IShared Borrowing with Concurrency

fn main() { fn helper(name: &String) {
let name = format!("..."); thread: :spawn(| |{
helper(&name); println! ("{}", name);

helper(&name); 1)

Lifetime “static’ required

= explicit lifetime required in the type of na
play.rs:11:18

frn helperiname: &Stringl - thread::JoinHandle<(): {

let handle = thread::spawnimove | |4

IShared Borrowing with Concurrency

fn main() { fn helper(name: &String) {
let name = format!("..."); thread: :spawn(| |{
helper(&name); println! ("{}", name);

helper(&name); 1)

Lifetime “static’ required

= explicit lifetime required in the type of na
play.rs:11:18

frn helperiname: &Stringl - thread::JoinHandle<(): {

let handle = thread::spawnimove | |4

Does this prevent the exact same class of problems?

ICIone, Move

fn main() {

let name = format!("..

helper(name.clone());

helper(name);

")

fn helper(name: String) {
thread: :spawn(move || {

println! ("{}", name);
});

ICIone, Move

fn main() { fn helper(name: String) {

let name = format!("...");
helper(name.clone());

helper(name);

Explicitly take ownership

ICIone, Move

fn main() { fn helper(name: String) {
let name = format!("..."); thr‘ead::spa | £
helper(name; println! ("{}", name);

helper(name); 1)

Explicitly take ownership

Ensure concurrent owners
Work with different copies

ICIone, Move

fn main() { fn helper(name: String) {
let name = format!("..."); thr‘ead::spa | £
helper(name; println! ("{}", name);

helper(name); 1)

Explicitly take ownership

Ensure concurrent owners
Work with different copies

Is this better?

ICIone, Move

fn main() {

let name = format!("...");

helper(name;

helper(name);

Ensure concurrent owners
Work with different copies

Is this better?

thread: :spa

})s

fn helper(name: String) {

Qmove>

println! ("{}"/, name);

Copy versus Clone:

Default: Types cannot be copied

* Values move from place to place
 E.g. file descriptor

Clone: Type is expensive to copy

* Make it explicit with clone call
 e.g. Hashtable

Copy: type implicitly copy-able

e e.g.u32,i32, 132, ..
#[derive(Clone, Debug)]

IMutabiIity

struct Structure {
id: 132,
map: HashMap<String, 32>,

impl Structure {
fn mutate(&self, name: String, value: f32) {

self.map.insert(name, value);

IMutabiIity

struct Structure {
id: 132,
map: HashMap<String, 32>,

impl Structure { Error: cannot be borrowed as mutable
fn mutate(&sgelf, name: String, value: f32) {

self.map.insert(name, value);

II\/IutabiIity

struct Structure {
id: 132,
map: HashMap<String, 32>,

. Error: cannot be borrowed as mutable
impl Structure {

fn mutate(&sgelf, name: String, value: f32) {

self.map.insert(name, value);

: cannot borrow self.map as mutable, as it is behind a reference
play.rs:le: 9

fn mutatel(&self, name: String, walue: f32) {

self.map.insertiname, wvalue);

IMutabiIity

struct Structure {
id: 132,
map: HashMap<String, 32>,

impl Structure {
fn mutate(&mut self, name: String, value: 32){

self.map.insert(name, value);

IMutabiIity

struct Structure {
id: 132,
map: HashMap<String, 32>,

impl Structure
n mutate name: String, value: f32){

self.map.insert(name, value);

IMutabiIity

struct Structure {
id: 132,
map: HashMap<String, 32>,

impl Structure
n mutate name: String, value: f32){

self.map.insert(name, value);

Key idea:
* Force mutation and ownership to be explicit

* Fixes MM *and* concurrency in fell swoop!

ISharing State: Channels

ISharing State: Channels

fn main() {

ISharing State: Channels

fn main() {
let (tx@, rx@) = channel();

ISharing State: Channels

fn main() {

let (tx@, rx@) = channel();

thread: :spawn(move || {
let (tx1, rx1) = channel();
tx0.send((format! ("yo"), tx1)).unwrap();
let response = rxl.recv().unwrap();
println!("child got {}", response);

1)

ISharing State: Channels

fn main() {

let (tx@, rx@) = channel();

thread: :spawn(move || {
let (tx1, rx1) = channel();
tx0.send((format! ("yo"), tx1l)).unwrap();
let response = rxl.recv().unwrap();
println!("child got {}", response);

1)

let (message, tx1l) = rx@.recv().unwrap();

txl.send(format! ("what up!")).unwrap();

println("parent received {}", message);

1

}

Sharing State: Channels

- -\.

let (message, tx1) = rx@.recv().unwrap();

tx1l.send(format! ("what up!")).unwrap();

println("parent received {}", message);

ISharing State: Channels

let (message, tx1) = rx@.recv().unwrap();

tx1l.send(format! ("what up!")).unwrap();

println("parent received {}", message);

}

ISharing State: Channels

b

let (message, tx1l) = rx@.recv().unwrap();
tx1l.send(format! ("what up!")).unwrap();

println("parent received {}", message);

}

ISharing State: Channels

fn main() {

let (tx@, rx@) = channel();

thread: :spawn(move || {
let (tx1, rx1) = channel();
tx0.send((format! ("yo"), tx1l)).unwrap();
let response = rxl.recv().unwrap();
println!("child got {}", response);

1)

let (message, tx1l) = rx@.recv().unwrap();

txl.send(format! ("what up!")).unwrap();

println("parent received {}", message);

ISharing State: Channels

fn main() {

let (tx@, rx@) = channel();

thread: :spawn(move || {
let (tx1, rx1) = channel();
tx0.send((format! ("yo"), tx1l)).unwrap();
let response = rxl.recv().unwrap();
println!("child got {}", response);

1)

let (message, tx1l) = rx@.recv().unwr

txl.send(format! ("what up!")).unwrap

println("parent received {}", message);

APIs return Option<T>

ISharing State

fn main() {
let var = Structure::new();
for 1 in @..N {
thread: :spawn(move || {

// ok to mutate var?

});

ISharing State

fn main()

W () ;

I Sharing State: Arc and Mutex

fn main() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for 1 in @..N {

thread: :spawn(move || {

let ldata = Arc::clone(&var_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

})s

I Sharing State: Arc and Mutex

fn main() {
let var = Structure::new();
le Mutex: :new(var);

let var_arc = Arc::new(var_lock);
for 1 in @..N {
thread: :spawn(move || {
let ldata = Arc::clone(&var_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

})s

I Sharing State: Arc and Mutex

fn main() {

let var = Structure::new();

let vg a = Mutex: :new(var);

le Arc::new(var_lock);

for 1 in ©..N {

thread: :spawn(move || {

let ldata = Arc::clone(&var_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

})s

I Sharing State: Arc and Mutex

fn main() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for 1 in @..N {

thread: : spawn(move

let ldata = .
let vdata = ldata.lock();
// ok to mutate var (vdata)!

})s

I Sharing State: Arc and Mutex

fn main() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for 1 in @..N {

thread: :spawn(move || {

let ldata = Arc:.:clone(&var_arc);
let vdata =(ldata.lockj);
// ok to mutate var (vdata)!

})s

I Sharing State: Arc and Mutex

fn main() {

let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for 1 in @..N {

thread: :spawn(move || {

let ldata = Arc::clone(&var_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

1)

} Key ideas:
e Use reference counting wrapper to pass refs

e Use scoped lock for mutual exclusion
* Actually compiles =2 works 1%t time!

ISummary

Rust: best of both worlds
systems vs productivity language

Separate sharing, mutability, concurrency
Type safety solves MM and concurrency
Have fun with the lab!

