
Race Detection cs378h

Pro Forma

• Questions?

• Administrivia:

• Course/Instructor Survey :

https://utdirect.utexas.edu/ctl/ecis/
• Next class: review – send questions!

• Thoughts on exam

• Thoughts on project presentation day

• Agenda

• Linearizability clarification

• Race Detection

• Acknowledgements:

• https://ecksit.wordpress.com/2015/09/07/difference-between-sequential-
consistency-serializability-and-linearizability/

• https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx

• http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition-
and.html

• http://swtv.kaist.ac.kr/courses/cs492b-spring-16/lec6-data-race-bug.pptx

• https://www.cs.cmu.edu/~clegoues/docs/static-analysis.pptx

• http://www.cs.sfu.ca/~fedorova/Teaching/CMPT401/Summer2008/Lectures/Lectur
e8-GlobalClocks.pptx

https://utdirect.utexas.edu/ctl/ecis/
https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition-and.html
http://swtv.kaist.ac.kr/courses/cs492b-spring-16/lec6-data-race-bug.pptx
https://www.cs.cmu.edu/~clegoues/docs/static-analysis.pptx
http://www.cs.sfu.ca/~fedorova/Teaching/CMPT401/Summer2008/Lectures/Lecture8-GlobalClocks.pptx

Change-a-thon 2021 Outreach

In partnering with ACM for Change, we're excited to announce our second Spring event on May 8th,
Change-a-thon 2021!! Change-a-thon aims to promote innovative ideas, implementations, and
conversations centered around positive change. We hope to address cultural issues in the tech space
(projects to improve mental health within the tech environment, ethical computer science idea
proposals, equity solutions, technical solutions to climate change, etc) and use technology to affect
change in the social issues we face.

Change-a-thon aims to create a safe space for people both inside and outside the tech community to
converse and collaborate to make lasting change and a better environment for everyone. If you think
you can make change for the better, SIGN UP NOW!

• REGISTER HERE: https://rb.gy/bevxae

• LEARN MORE: https://freetailhackers.com/changeathon/

• MENTOR SIGNUP: https://rb.gy/zut7yc

https://rb.gy/bevxae?fbclid=IwAR0bGYB9NB7MtAHuidS-N13oYjFMQooMWcsq-ziJZU2uM5zgfWgQpjVyuVE
https://freetailhackers.com/changeathon/
https://rb.gy/zut7yc

Race
Detection
Faux Quiz

Are linearizable objects composable? Why/why not? Is
serializable code composable?

What is a data race? What kinds of conditions make them
difficult to detect automatically?

What is a consistent cut in a distributed causality interaction
graph?

List some tradeoffs between static and dynamic race detection

What are some pros and cons of happens-before analysis for
race detection? Same for lockset analysis?

Why might one use a vector clock instead of a logical clock?

What are some advantages and disadvantages of combined
lock-set and happens-before analysis?

Review: Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

5

Review: Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

5

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the
invocations/responses?

• Start/end impose ordering constraints

Review: Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

5

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the
invocations/responses?

• Start/end impose ordering constraints

Why is this one OK?

Review: Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

5

Linearizability:

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the
invocations/responses?

• Start/end impose ordering constraints

Total Order:
1. Insert(10)
2. Find(20)
3. Insert(20)
• Is consistent with real-time order
• 2, 3 overlap, but return order OK

Why is this one OK?

Review: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

6

Assumptions:
• The set is initially empty
• Return values are meaningful:

• Insert returns true → item wasn’t present
• Insert returns false → item already present
• Delete returns true → item was present

Review: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

6

Why is this one NOT
linearizable?

Assumptions:
• The set is initially empty
• Return values are meaningful:

• Insert returns true → item wasn’t present
• Insert returns false → item already present
• Delete returns true → item was present

Review: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

6

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• Neither is consistent w return values
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT
linearizable?

1. Delete(10)
2. Insert(10)
3. Insert(10)

Assumptions:
• The set is initially empty
• Return values are meaningful:

• Insert returns true → item wasn’t present
• Insert returns false → item already present
• Delete returns true → item was present

Linearizability Properties

7

• non-blocking
• one method is never forced to wait to sync with another.

Linearizability Properties

7

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.

• gives us composability.

•

Linearizability Properties

7

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.

• gives us composability.

• Why is it important?
• Serializability is not composable.

Linearizability Properties

7

Composability

Composability

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

Composability

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

Composability

void move(list s, list d, Obj key){

tmp = s.remove(key);

d.insert(key, tmp);

}

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

Composability

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

void move(list s, list d, Obj key){

LOCK(s);

LOCK(d);

tmp = s.remove(key);

d.insert(key, tmp);

UNLOCK(d);

UNLOCK(s);

}

Composability

• Lock-based code doesn’t compose

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

void move(list s, list d, Obj key){

LOCK(s);

LOCK(d);

tmp = s.remove(key);

d.insert(key, tmp);

UNLOCK(d);

UNLOCK(s);

}

Composability

• Lock-based code doesn’t compose

• If list were a linearizable concurrent data structure, composition OK?

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

void move(list s, list d, Obj key){

LOCK(s);

LOCK(d);

tmp = s.remove(key);

d.insert(key, tmp);

UNLOCK(d);

UNLOCK(s);

}

Composability

• Lock-based code doesn’t compose

• If list were a linearizable concurrent data structure, composition OK?

T * list::remove(Obj key){

LOCK(this);

tmp = __do_remove(key);

UNLOCK(this);

return tmp;

}

void list::insert(Obj key, T * val){

LOCK(this);

__do_insert(key, val);

UNLOCK(this);

}

void move(list s, list d, Obj key){

LOCK(s);

LOCK(d);

tmp = s.remove(key);

d.insert(key, tmp);

UNLOCK(d);

UNLOCK(s);

}

Painting with a very broad brush
Composition with linearizability is really
about composed schedules

More on Composability and Compositionality

More on Composability and Compositionality

• High level /informal meaning:
• Can you compose codes that provide property P

• …and expect the composition to preserve P?

More on Composability and Compositionality

• High level /informal meaning:
• Can you compose codes that provide property P

• …and expect the composition to preserve P?

• More nuanced meanings:
• Can you compose codes

• Can you compose schedules

More on Composability and Compositionality

• High level /informal meaning:
• Can you compose codes that provide property P

• …and expect the composition to preserve P?

• More nuanced meanings:
• Can you compose codes

• Can you compose schedules

• These are related but differ in subtle ways

More on Composability and Compositionality

• High level /informal meaning:
• Can you compose codes that provide property P

• …and expect the composition to preserve P?

• More nuanced meanings:
• Can you compose codes

• Can you compose schedules

• These are related but differ in subtle ways

• Non-composability of serializability is really about composing
schedules

Consider A Concurrent Register

Consider A Concurrent Register

• Threads A, B write integers to a register R

Consider A Concurrent Register

• Threads A, B write integers to a register R

• Because it’s concurrent, method invocations overlap

Consider A Concurrent Register

• Threads A, B write integers to a register R

• Because it’s concurrent, method invocations overlap

Two Concurrent Registers

Two Concurrent Registers

• Register value is initially zero

Two Concurrent Registers

• Register value is initially zero

• The following operations occur:
• Thread A:

• write r1 = 1
• read r2 → ?

• Thread B:
• B: write r2 -> 2
• B: read r1 → ?

Two Concurrent Registers

• Register value is initially zero

• The following operations occur:
• Thread A:

• write r1 = 1
• read r2 → ?

• Thread B:
• B: write r2 -> 2
• B: read r1 → ?

Two Concurrent Registers

• Register value is initially zero

• The following operations occur:
• Thread A:

• write r1 = 1
• read r2 → ?

• Thread B:
• B: write r2 -> 2
• B: read r1 → ?

• Serializability:
• Execution equivalent to some serial order
• All see same order

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

A sees r2 → 2

A sees r2 → 0

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

A sees r2 → 2

A sees r2 → 0

Both are serializable histories
from the perspective of A

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

• Call them “sub-histories”: from A, B “perspective”

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

• Call them “sub-histories”: from A, B “perspective”

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

• Call them “sub-histories”: from A, B “perspective”

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

• Call them “sub-histories”: from A, B “perspective”

…

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

• Call them “sub-histories”: from A, B “perspective”

Sub-History Outcome

H1a A writes r1=1, reads r2 → 0

H2a A writes r1=1, reads r2 → 2

H1b B writes r2=2, reads r1 → 0

H2b B writes r2=2, reads r1 → 1

…

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

• Call them “sub-histories”: from A, B “perspective”

Sub-History Outcome

H1a A writes r1=1, reads r2 → 0

H2a A writes r1=1, reads r2 → 2

H1b B writes r2=2, reads r1 → 0

H2b B writes r2=2, reads r1 → 1

From the perspective threads A, B, all sub-histories are serializable
• They respect program order for each of A, B
• And are equivalent to *some* serial execution
• If we “compose” these histories, some composed histories not serializable

…

Histories for multiple concurrent registers

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories

Sub-History Outcome

H1a A writes r1=1, reads r2 → 0

H2a A writes r1=1, reads r2 → 2

H1b B writes r2=2, reads r1 → 0

H2b B writes r2=2, reads r1 → 1

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories

Sub-History Outcome

H1a A writes r1=1, reads r2 → 0

H2a A writes r1=1, reads r2 → 2

H1b B writes r2=2, reads r1 → 0

H2b B writes r2=2, reads r1 → 1

History Effect

H1ab A writes r1=1, B writes r2=2
reads r2 → 0, B reads r1 → 0

H2ab A writes r1=1, B writes r2=2
reads r2 → 0, B reads r1 → 1

H3ab A writes r1=1, B writes r2=2
reads r2 → 2, B reads r1 → 0

H4ab A writes r1=1, B writes r2=2
reads r2 → 2, B reads r1 → 1

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories

• Composition of serializable histories → non-serializable histories

Sub-History Outcome

H1a A writes r1=1, reads r2 → 0

H2a A writes r1=1, reads r2 → 2

H1b B writes r2=2, reads r1 → 0

H2b B writes r2=2, reads r1 → 1

History Effect

H1ab A writes r1=1, B writes r2=2
reads r2 → 0, B reads r1 → 0

H2ab A writes r1=1, B writes r2=2
reads r2 → 0, B reads r1 → 1

H3ab A writes r1=1, B writes r2=2
reads r2 → 2, B reads r1 → 0

H4ab A writes r1=1, B writes r2=2
reads r2 → 2, B reads r1 → 1

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories

• Composition of serializable histories → non-serializable histories

• Ex. H1ab is not serializable

Sub-History Outcome

H1a A writes r1=1, reads r2 → 0

H2a A writes r1=1, reads r2 → 2

H1b B writes r2=2, reads r1 → 0

H2b B writes r2=2, reads r1 → 1

History Effect

H1ab A writes r1=1, B writes r2=2
reads r2 → 0, B reads r1 → 0

H2ab A writes r1=1, B writes r2=2
reads r2 → 0, B reads r1 → 1

H3ab A writes r1=1, B writes r2=2
reads r2 → 2, B reads r1 → 0

H4ab A writes r1=1, B writes r2=2
reads r2 → 2, B reads r1 → 1

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories

• Composition of serializable histories → non-serializable histories

• Ex. H1ab is not serializable

Sub-History Outcome

H1a A writes r1=1, reads r2 → 0

H2a A writes r1=1, reads r2 → 2

H1b B writes r2=2, reads r1 → 0

H2b B writes r2=2, reads r1 → 1

History Effect

H1ab A writes r1=1, B writes r2=2
reads r2 → 0, B reads r1 → 0

H2ab A writes r1=1, B writes r2=2
reads r2 → 0, B reads r1 → 1

H3ab A writes r1=1, B writes r2=2
reads r2 → 2, B reads r1 → 0

H4ab A writes r1=1, B writes r2=2
reads r2 → 2, B reads r1 → 1

4 serializable sub-histories composed
To form 4 complete histories,
Only H4ab is actually serializable

Linearizability Properties

15

• non-blocking
• one method is never forced to wait to sync with another.

Linearizability Properties

15

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.

• gives us composability.

•

Linearizability Properties

15

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.

• gives us composability.

• Why is it important?
• Serializability is not composable.

• A system composed of linearizable objects remains linearizable

• Does this mean you get txn or lock-like composition for free?
• In general no

• Serializability is a property of transactions, or groups of updates

• Linearizability is a property of concurrent objects

• The two are often conflated (e.g. because txns update only a single object)

Linearizability Properties

15

Race Detection

Race Detection

Locks: a litany of problems

Race Detection

Locks: a litany of problems

• Deadlock

Race Detection

Locks: a litany of problems

• Deadlock

• Priority inversion

Race Detection

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

Race Detection

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

Race Detection

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

Race Detection

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Race Detection

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Race Detection

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Race Detection

Locks: a litany of problems

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Use locks!
• But automate bug-finding!

Lockset Algorithm

Lockset Algorithm

• Locking discipline
• Every shared mutable variable is protected by some locks

Lockset Algorithm

• Locking discipline
• Every shared mutable variable is protected by some locks

• Core idea

Lockset Algorithm

• Locking discipline
• Every shared mutable variable is protected by some locks

• Core idea
• Track locks held by thread t

Lockset Algorithm

• Locking discipline
• Every shared mutable variable is protected by some locks

• Core idea
• Track locks held by thread t

• On access to var v, check if t holds the proper locks

Lockset Algorithm

• Locking discipline
• Every shared mutable variable is protected by some locks

• Core idea
• Track locks held by thread t

• On access to var v, check if t holds the proper locks

• Challenge: how to know what locks are required?

Lockset Algorithm

• Locking discipline
• Every shared mutable variable is protected by some locks

• Core idea
• Track locks held by thread t

• On access to var v, check if t holds the proper locks

• Challenge: how to know what locks are required?

• Infer protection relation
• Infer which locks protect which variable from execution history.

Lockset Algorithm

• Locking discipline
• Every shared mutable variable is protected by some locks

• Core idea
• Track locks held by thread t

• On access to var v, check if t holds the proper locks

• Challenge: how to know what locks are required?

• Infer protection relation
• Infer which locks protect which variable from execution history.

• Assume every lock protects every variable

Lockset Algorithm

• Locking discipline
• Every shared mutable variable is protected by some locks

• Core idea
• Track locks held by thread t

• On access to var v, check if t holds the proper locks

• Challenge: how to know what locks are required?

• Infer protection relation
• Infer which locks protect which variable from execution history.

• Assume every lock protects every variable

• On each access, use locks held by thread to narrow that assumption

Lockset Algorithm

• Locking discipline
• Every shared mutable variable is protected by some locks

• Core idea
• Track locks held by thread t

• On access to var v, check if t holds the proper locks

• Challenge: how to know what locks are required?

• Infer protection relation
• Infer which locks protect which variable from execution history.

• Assume every lock protects every variable

• On each access, use locks held by thread to narrow that assumption

Narrow down set of
locks maybe
protecting v

Lockset Algorithm Example

23

lock(lockA);

v++;

unlock(lockA);

lock(lockB);

v++;

unlock(lockB);

{} {lockA, lockB}

thread t locks_held(t) C(v)

Lockset Algorithm Example

23

lock(lockA);

v++;

unlock(lockA);

lock(lockB);

v++;

unlock(lockB);

{} {lockA, lockB}

thread t locks_held(t) C(v)

Lockset Algorithm Example

23

lock(lockA);

v++;

unlock(lockA);

lock(lockB);

v++;

unlock(lockB);

{}
{lockA}

{lockA, lockB}

thread t locks_held(t) C(v)

Lockset Algorithm Example

23

lock(lockA);

v++;

unlock(lockA);

lock(lockB);

v++;

unlock(lockB);

{}
{lockA}

{lockA, lockB}

{lockA}

thread t locks_held(t) C(v)

Lockset Algorithm Example

23

lock(lockA);

v++;

unlock(lockA);

lock(lockB);

v++;

unlock(lockB);

{}
{lockA}

{}

{lockA, lockB}

{lockA}

thread t locks_held(t) C(v)

Lockset Algorithm Example

23

lock(lockA);

v++;

unlock(lockA);

lock(lockB);

v++;

unlock(lockB);

{}
{lockA}

{}

{lockB}

{lockA, lockB}

{lockA}

thread t locks_held(t) C(v)

Lockset Algorithm Example

23

lock(lockA);

v++;

unlock(lockA);

lock(lockB);

v++;

unlock(lockB);

{}
{lockA}

{}

{lockB}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

Lockset Algorithm Example

23

lock(lockA);

v++;

unlock(lockA);

lock(lockB);

v++;

unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

Lockset Algorithm Example

23

lock(lockA);

v++;

unlock(lockA);

lock(lockB);

v++;

unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

ACK! race

Lockset Algorithm Example

23

lock(lockA);

v++;

unlock(lockA);

lock(lockB);

v++;

unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

ACK! race

Pretty clever!
Why isn’t this

a complete
solution?

Improving over lockset

1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

thread A thread B

Improving over lockset

1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

Lockset detects a race
There is no race: why not?

thread A thread B

Improving over lockset

1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

Lockset detects a race
There is no race: why not?
• A-1 happens before B-3
• B-3 happens before A-6
• Insight: races occur when “happens-before” cannot be known

thread A thread B

Happens-before

• Happens-before relation
• Within single thread

• Between threads

• Accessing variables not ordered
by “happens-before” is a race

• Captures locks and dynamism

• How to track “happens-before”?
• Sync objects are ordering events

• Generalizes to fork/join, etc

Happens-before

• Happens-before relation
• Within single thread

• Between threads

• Accessing variables not ordered
by “happens-before” is a race

• Captures locks and dynamism

• How to track “happens-before”?
• Sync objects are ordering events

• Generalizes to fork/join, etc

Thread 1

Happens-before

• Happens-before relation
• Within single thread

• Between threads

• Accessing variables not ordered
by “happens-before” is a race

• Captures locks and dynamism

• How to track “happens-before”?
• Sync objects are ordering events

• Generalizes to fork/join, etc

Thread 1 Thread 2

Thread 2

Happens-before

• Happens-before relation
• Within single thread

• Between threads

• Accessing variables not ordered
by “happens-before” is a race

• Captures locks and dynamism

• How to track “happens-before”?
• Sync objects are ordering events

• Generalizes to fork/join, etc

Thread 1

T1 access to V
“Happens-before”
T2 access to V

Ordering and Causality

Ordering and Causality

A, B, C have local orders

Ordering and Causality

A, B, C have local orders

• Want total order
• But only for causality

Ordering and Causality

A, B, C have local orders

• Want total order
• But only for causality

Different types of clocks

Ordering and Causality

A, B, C have local orders

• Want total order
• But only for causality

Different types of clocks

• Physical

Ordering and Causality

A, B, C have local orders

• Want total order
• But only for causality

Different types of clocks

• Physical

• Logical
• TS(A) later than others A knows about

Ordering and Causality

A, B, C have local orders

• Want total order
• But only for causality

Different types of clocks

• Physical

• Logical
• TS(A) later than others A knows about

• Vector
• TS(A): what A knows about other TS’s

Ordering and Causality

A, B, C have local orders

• Want total order
• But only for causality

Different types of clocks

• Physical

• Logical
• TS(A) later than others A knows about

• Vector
• TS(A): what A knows about other TS’s

• Matrix
• TS(A) is N^2 showing pairwise

knowledge

A Naïve Approach

• Each system records each event it performed and its timestamp

• Suppose events in the this system happened in this real order:

A Naïve Approach

• Each system records each event it performed and its timestamp

• Suppose events in the this system happened in this real order:
• Time Tc0: System C sent data to System B (before C stopped

responding)

Tc0

A Naïve Approach

• Each system records each event it performed and its timestamp

• Suppose events in the this system happened in this real order:
• Time Tc0: System C sent data to System B (before C stopped

responding)

• Time Ta0: System A asked for work from System B

Tc0 Ta0

A Naïve Approach

• Each system records each event it performed and its timestamp

• Suppose events in the this system happened in this real order:
• Time Tc0: System C sent data to System B (before C stopped

responding)

• Time Ta0: System A asked for work from System B

• Time Tb0: System B asked for data from System C

Tc0 Ta0 Tb0

A Naïve Approach (cont)

• Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A

System B

System C

A Naïve Approach (cont)

• Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A

System B

System C

System C
sent data

Tc

A Naïve Approach (cont)

• Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A

System B

System C

System C
sent data

Tc

Ta

System A
asked for
work

A Naïve Approach (cont)

• Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A

System B

System C

System C
sent data

Tc

Ta

System A
asked for
work Tb

System B
asked for
data

A Naïve Approach (cont)

• But in reality, we do not know if Tc occurred before Ta and Tb, because
in an asynchronous distributed system clocks are not synchronized!

System A

System B

System C

System C
sent data

Tc

Ta

System A
asked for
work Tb

System B
asked for
data

A Naïve Approach (cont)

• But in reality, we do not know if Tc occurred before Ta and Tb, because
in an asynchronous distributed system clocks are not synchronized!

System A

System B

System C

System C
sent data

Tc

Ta

System A
asked for
work Tb

System B
asked for
data

System C
sent data

Tc

Rules for Ordering of Events

• local events precede one another → precede one another globally:
• If ei

k ,ei
m Є hi and k < m, then ei

k→ei
m

• Sending a message always precedes receipt of that message:
• If ei = send(m) and ej= receive(m), then ei→ej

• Event ordering is transitive:
• If e → e’ and e’ → e”, then e → e”

Space-time Diagram for Distributed Computation

p1
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

p2
e2

1 e2
2 e2

3

p3
e3

1 e3
2 e3

3 e3
4 e3

5 e3
6

local events precede one another → precede one another globally:

If ei
k ,ei

m Є hi and k < m, then ei
k→ei

m

Sending a message always precedes receipt of that message:

If ei = send(m) and ej= receive(m), then ei→ej
Event ordering is associative:

If e → e’ and e’ → e”, then e → e”

Space-time Diagram for Distributed Computation

p1
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

p2
e2

1 e2
2 e2

3

p3
e3

1 e3
2 e3

3 e3
4 e3

5 e3
6

local events precede one another → precede one another globally:

If ei
k ,ei

m Є hi and k < m, then ei
k→ei

m

Sending a message always precedes receipt of that message:

If ei = send(m) and ej= receive(m), then ei→ej
Event ordering is associative:

If e → e’ and e’ → e”, then e → e”

Space-time Diagram for Distributed Computation

p1
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

p2
e2

1 e2
2 e2

3

p3
e3

1 e3
2 e3

3 e3
4 e3

5 e3
6

local events precede one another → precede one another globally:

If ei
k ,ei

m Є hi and k < m, then ei
k→ei

m

Sending a message always precedes receipt of that message:

If ei = send(m) and ej= receive(m), then ei→ej
Event ordering is associative:

If e → e’ and e’ → e”, then e → e”

Space-time Diagram for Distributed Computation

p1
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

p2
e2

1 e2
2 e2

3

p3
e3

1 e3
2 e3

3 e3
4 e3

5 e3
6

e2
1→e3

6

local events precede one another → precede one another globally:

If ei
k ,ei

m Є hi and k < m, then ei
k→ei

m

Sending a message always precedes receipt of that message:

If ei = send(m) and ej= receive(m), then ei→ej
Event ordering is associative:

If e → e’ and e’ → e”, then e → e”

Space-time Diagram for Distributed Computation

p1
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

p2
e2

1 e2
2 e2

3

p3
e3

1 e3
2 e3

3 e3
4 e3

5 e3
6

e2
1→e3

6

local events precede one another → precede one another globally:

If ei
k ,ei

m Є hi and k < m, then ei
k→ei

m

Sending a message always precedes receipt of that message:

If ei = send(m) and ej= receive(m), then ei→ej
Event ordering is associative:

If e → e’ and e’ → e”, then e → e”

Space-time Diagram for Distributed Computation

p1
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

p2
e2

1 e2
2 e2

3

p3
e3

1 e3
2 e3

3 e3
4 e3

5 e3
6

e2
1→e3

6

local events precede one another → precede one another globally:

If ei
k ,ei

m Є hi and k < m, then ei
k→ei

m

Sending a message always precedes receipt of that message:

If ei = send(m) and ej= receive(m), then ei→ej
Event ordering is associative:

If e → e’ and e’ → e”, then e → e”

Space-time Diagram for Distributed Computation

p1
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

p2
e2

1 e2
2 e2

3

p3
e3

1 e3
2 e3

3 e3
4 e3

5 e3
6

e2
1→e3

6

local events precede one another → precede one another globally:

If ei
k ,ei

m Є hi and k < m, then ei
k→ei

m

Sending a message always precedes receipt of that message:

If ei = send(m) and ej= receive(m), then ei→ej
Event ordering is associative:

If e → e’ and e’ → e”, then e → e”

Space-time Diagram for Distributed Computation

p1
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

p2
e2

1 e2
2 e2

3

p3
e3

1 e3
2 e3

3 e3
4 e3

5 e3
6

e2
1→e3

6

local events precede one another → precede one another globally:

If ei
k ,ei

m Є hi and k < m, then ei
k→ei

m

Sending a message always precedes receipt of that message:

If ei = send(m) and ej= receive(m), then ei→ej
Event ordering is associative:

If e → e’ and e’ → e”, then e → e”

Space-time Diagram for Distributed Computation

p1
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

p2
e2

1 e2
2 e2

3

p3
e3

1 e3
2 e3

3 e3
4 e3

5 e3
6

e2
1→e3

6 e2
2 || e3

6

local events precede one another → precede one another globally:

If ei
k ,ei

m Є hi and k < m, then ei
k→ei

m

Sending a message always precedes receipt of that message:

If ei = send(m) and ej= receive(m), then ei→ej
Event ordering is associative:

If e → e’ and e’ → e”, then e → e”

Space-time Diagram for Distributed Computation

p1
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

p2
e2

1 e2
2 e2

3

p3
e3

1 e3
2 e3

3 e3
4 e3

5 e3
6

e2
1→e3

6 e2
2 || e3

6

local events precede one another → precede one another globally:

If ei
k ,ei

m Є hi and k < m, then ei
k→ei

m

Sending a message always precedes receipt of that message:

If ei = send(m) and ej= receive(m), then ei→ej
Event ordering is associative:

If e → e’ and e’ → e”, then e → e”

Cuts of a Distributed Computation

• Suppose there is an external monitor process

• External monitor constructs a global state:
• Asks processes to send it local history

• Global state constructed from these local histories is:

a cut of a distributed computation

Example Cuts

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

p1

p2

p3

Example Cuts

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C

p1

p2

p3

Example Cuts

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C C’

p1

p2

p3

Consistent vs. Inconsistent Cuts

• A cut is consistent if
• for any event e included in the cut

• any event e’ that causally precedes e is also included in that cut

• For cut C:
(e Є C) Λ (e’→ e) => e’ Є C

Are These Cuts Consistent?

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C

p1

p2

p3

Are These Cuts Consistent?

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C’

Are These Cuts Consistent?

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C’

Are These Cuts Consistent?

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C’

inconsistent

Are These Cuts Consistent?

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C’

inconsistent
included

in C

Are These Cuts Consistent?

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C’

inconsistent
included

in C

causally
precedes e3

6

Are These Cuts Consistent?

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C’

inconsistent
included

in C

causally
precedes e3

6

…but not
included

in C

Are These Cuts Consistent?

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C’

inconsistent
included

in C

causally
precedes e3

6

…but not
included

in C

A consistent cut corresponds to a consistent global state

What Do We Need to Know to
Construct a Consistent Cut?

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C’

inconsistent
included

in C

causally
precedes e3

6

…but not
included

in C
We must know the causal
ordering of events. If we

do we can detect an
inconsistent cut

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

• LC(ei) – the logical clock value at process pi at event ei

• Suppose we had a distributed system with only a single process

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

• LC(ei) – the logical clock value at process pi at event ei

• Suppose we had a distributed system with only a single process

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

• LC(ei) – the logical clock value at process pi at event ei

• Suppose we had a distributed system with only a single process

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

• LC(ei) – the logical clock value at process pi at event ei

• Suppose we had a distributed system with only a single process

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 LC=2

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

• LC(ei) – the logical clock value at process pi at event ei

• Suppose we had a distributed system with only a single process

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 LC=2 LC=3

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

• LC(ei) – the logical clock value at process pi at event ei

• Suppose we had a distributed system with only a single process

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 LC=2 LC=3 LC=4

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

• LC(ei) – the logical clock value at process pi at event ei

• Suppose we had a distributed system with only a single process

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 LC=2 LC=3 LC=4 LC=5

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

• LC(ei) – the logical clock value at process pi at event ei

• Suppose we had a distributed system with only a single process

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Logical Clocks (cont.)

• In a system with more than one process logical clocks are updated as
follows:

• Each message m that is sent contains a timestamp TS(m)

• TS(m) is the logical clock value associated with sending event at the
sending process

Logical Clocks (cont.)

• In a system with more than one process logical clocks are updated as
follows:

• Each message m that is sent contains a timestamp TS(m)

• TS(m) is the logical clock value associated with sending event at the
sending process

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1

Logical Clocks (cont.)

• In a system with more than one process logical clocks are updated as
follows:

• Each message m that is sent contains a timestamp TS(m)

• TS(m) is the logical clock value associated with sending event at the
sending process

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 send(m)

Logical Clocks (cont.)

• In a system with more than one process logical clocks are updated as
follows:

• Each message m that is sent contains a timestamp TS(m)

• TS(m) is the logical clock value associated with sending event at the
sending process

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 send(m)

TS(m) = 1

Logical Clocks (cont)

• When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

Logical Clocks (cont)

• When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1

e2
1

LC=1

Logical Clocks (cont)

• When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 send(m)

e2
1

LC=1

Logical Clocks (cont)

• When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 send(m) TS(m) = 1

e2
2e2

1

LC=1

Logical Clocks (cont)

• When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 send(m) TS(m) = 1

e2
2

What is the LC
value of e2

2?
e2

1

LC=1

Logical Clocks (cont)

• When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 send(m) TS(m) = 1

e2
2

What is the LC
value of e2

2?

LC=2

e2
1

LC=1

Illustration of a Logical Clock

p1

p1

p1

Illustration of a Logical Clock

1
p1

p1

p1

Illustration of a Logical Clock

1

1

p1

p1

p1

Illustration of a Logical Clock

1

1

1

p1

p1

p1

Illustration of a Logical Clock

1 2

1

1

p1

p1

p1

Illustration of a Logical Clock

1 2

1

1 2

p1

p1

p1

Illustration of a Logical Clock

1 2

1

1 2

3
p1

p1

p1

Illustration of a Logical Clock

1 2

1

1 2

3\p1

p1

p1

Illustration of a Logical Clock

1 2

1

1 2 3

3\p1

p1

p1

Illustration of a Logical Clock

1 2 4

1

1 2 3

3\p1

p1

p1

Illustration of a Logical Clock

1 2 4

1

1 2 3 4

3\p1

p1

p1

Illustration of a Logical Clock

1 2 4

1 5

1 2 3 4

3\p1

p1

p1

Illustration of a Logical Clock

1 2 4

1 5

1 2 3 4 5

3\p1

p1

p1

Illustration of a Logical Clock

1 2 4 5

1 5

1 2 3 4 5

3\p1

p1

p1

Illustration of a Logical Clock

1 2 4 5

1 5 6

1 2 3 4 5

3\p1

p1

p1

Illustration of a Logical Clock

1 2 4 5 6

1 5 6

1 2 3 4 5

3\p1

p1

p1

Illustration of a Logical Clock

1 2 4 5 6

1 5 6

1 2 3 4 5 7

3\p1

p1

p1

Illustration of a Logical Clock

1 2 4 5 6 7

1 5 6

1 2 3 4 5 7

3\p1

p1

p1

Illustration of a Logical Clock

1 2 4 5 6 7

1 5 6

1 2 3 4 5 7

3\p1

p1

p1

Awesome, right?
Any drawbacks?

Illustration of a Logical Clock

1 2 4 5 6 7

1 5 6

1 2 3 4 5 7

3\p1

p1

p1

Awesome, right?
Any drawbacks?

e_x < e_y → TS(e_x) < TS(e_y), but
TS(e_x) < TS(e_y) doesn’t guarantee e_x < e_y

Vector Clock

Vector Clock

Replace Single Logical value with Vector!

Vector Clock

Replace Single Logical value with Vector!
Vi[i] : #events occurred at i
Vi[j] : #events i knows occurred at j
Update

• On local-event: increment Vi[I]
• On send-message: increment,

piggyback entire local vector V
• On recv-message: Vj[k] = max(

Vj[k],Vi[k])
• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of

events sender knows occurred
elsewhere

Vector Clock

Replace Single Logical value with Vector!
Vi[i] : #events occurred at i
Vi[j] : #events i knows occurred at j
Update

• On local-event: increment Vi[I]
• On send-message: increment,

piggyback entire local vector V
• On recv-message: Vj[k] = max(

Vj[k],Vi[k])
• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of

events sender knows occurred
elsewhere

Vector Clock

Replace Single Logical value with Vector!
Vi[i] : #events occurred at i
Vi[j] : #events i knows occurred at j
Update

• On local-event: increment Vi[I]
• On send-message: increment,

piggyback entire local vector V
• On recv-message: Vj[k] = max(

Vj[k],Vi[k])
• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of

events sender knows occurred
elsewhere

Vector Clock

Replace Single Logical value with Vector!
Vi[i] : #events occurred at i
Vi[j] : #events i knows occurred at j
Update

• On local-event: increment Vi[I]
• On send-message: increment,

piggyback entire local vector V
• On recv-message: Vj[k] = max(

Vj[k],Vi[k])
• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of

events sender knows occurred
elsewhere

Vector Clock

Replace Single Logical value with Vector!
Vi[i] : #events occurred at i
Vi[j] : #events i knows occurred at j
Update

• On local-event: increment Vi[I]
• On send-message: increment,

piggyback entire local vector V
• On recv-message: Vj[k] = max(

Vj[k],Vi[k])
• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of

events sender knows occurred
elsewhere

Vector Clock Example

Each process i maintains a vector Vi

• Vi[i] : number of events that have occurred at i

• Vi[j] : number of events I knows have occurred at
process j

Update

• Local event: increment Vi[I]

• Send a message :piggyback entire vector V

• Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the
sender knows occurred at another process k

• Also Vj[i] = Vj[i]+1

Vector Clock Example

Each process i maintains a vector Vi

• Vi[i] : number of events that have occurred at i

• Vi[j] : number of events I knows have occurred at
process j

Update

• Local event: increment Vi[I]

• Send a message :piggyback entire vector V

• Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the
sender knows occurred at another process k

• Also Vj[i] = Vj[i]+1

• Need to order operations
• Can’t rely on real-time
• Vector clock: timestamping algorithm s.t.

• TS(A) < TS(B) → A happens before B
• Independent ops remain unordered

See any drawbacks?

Happens-before

• Happens-before relation
• Within single thread

• Between threads

• Accessing variables not ordered
by “happens-before” is a race

• Captures locks and dynamism

• How to track “happens-before”?
• Sync objects are ordering events

• Generalizes to fork/join, etc

Happens-before

• Happens-before relation
• Within single thread

• Between threads

• Accessing variables not ordered
by “happens-before” is a race

• Captures locks and dynamism

• How to track “happens-before”?
• Sync objects are ordering events

• Generalizes to fork/join, etc

Thread 1

Happens-before

• Happens-before relation
• Within single thread

• Between threads

• Accessing variables not ordered
by “happens-before” is a race

• Captures locks and dynamism

• How to track “happens-before”?
• Sync objects are ordering events

• Generalizes to fork/join, etc

Thread 1 Thread 2

Thread 2

Happens-before

• Happens-before relation
• Within single thread

• Between threads

• Accessing variables not ordered
by “happens-before” is a race

• Captures locks and dynamism

• How to track “happens-before”?
• Sync objects are ordering events

• Generalizes to fork/join, etc

Thread 1

T1 access to V
“Happens-before”
T2 access to V

Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving
produced by the scheduler

• Example

Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving
produced by the scheduler

• Example

y := y+1;

Lock(mu);

v := v+1;

Unlock(mu);

Lock(mu);

v := v+1;

Unlock(mu);

y := y+1;

Thread 1

Thread 2

Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving
produced by the scheduler

• Example
• T1-acc(v) happens before T2-acc(v)
• T1-acc(y) happens before T1-acc(v)
• T2-acc(v) happens before T2-acc(y)
• Conclusion: no race on Y!
• Finding doesn’t generalize

y := y+1;

Lock(mu);

v := v+1;

Unlock(mu);

Lock(mu);

v := v+1;

Unlock(mu);

y := y+1;

Thread 1

Thread 2

Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving
produced by the scheduler

• Example
• T1-acc(v) happens before T2-acc(v)
• T1-acc(y) happens before T1-acc(v)
• T2-acc(v) happens before T2-acc(y)
• Conclusion: no race on Y!
• Finding doesn’t generalize

Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving
produced by the scheduler

• Example
• T1-acc(v) happens before T2-acc(v)
• T1-acc(y) happens before T1-acc(v)
• T2-acc(v) happens before T2-acc(y)
• Conclusion: no race on Y!
• Finding doesn’t generalize

y := y+1;

Lock(mu);

v := v+1;

Unlock(mu);

Thread 1

Lock(mu);

v := v+1;

Unlock(mu);

y := y+1;

Thread 2

Dynamic Race Detection Summary

⚫ Lockset: verify locking discipline for shared memory
✓Detect race regardless of thread scheduling

 False positives because other synchronization primitives
(fork/join, signal/wait) not supported

⚫ Happens-before: track partial order of program events
✓ Supports general synchronization primitives

 Higher overhead compared to lockset

 False negatives due to sensitivity to thread scheduling

RaceTrack = Lockset + Happens-before

False positive using Lockset

Inst State Lockset

1 Virgin { }

3 Exclusive:t { }

6 Shared Modified {a}

9 Report race { }

Tracking accesses to X

RaceTrack Notations

Notation Meaning

L
t

Lockset of thread t

C
x

Lockset of memory x

B
u

Vector clock of thread u

S
x

Threadset of memory x

t
i

Thread t at clock time i

RaceTrack Algorithm

Notation Meaning

L
t

Lockset of thread t

C
x

Lockset of memory x

B
t

Vector clock of thread t

S
x

Threadset of memory x

t
1

Thread t at clock time 1

Avoiding Lockset's false positive (1)

Inst C
x

S
x

L
t

B
t

L
u

B
u

0 All { } { } {t
1
} - -

1 {t
2
} { } { t

1
,u

1
}

2 {a}

3 {a} {t
2
}

4 { }

5 {a}

6 {t
2
,u

1
}

7 { }

8 {t
2
,u

1
} - -

Notation Meaning

L
t

Lockset of thread t

C
x

Lockset of memory x

B
t

Vector clock of thread t

S
x

Threadset of memory x

t
1

Thread t at clock time 1

Avoiding Lockset's false positive (2)

Inst C
x

S
x

L
t

B
t

L
v

B
v

8 {a} {t
2
,u

1
} { } {t

2
,u

1
} - -

9 { } {t
2
}

10 {t
3
,u

1
} { } {t

2
,v

1
}

11 {a}

12 {a} {t
3
}

13 { }

14 {a}

15 {t
3
,v

1
}

16 { }

Notation Meaning

L
t

Lockset of thread t

C
x

Lockset of memory x

B
t

Vector clock of thread t

S
x

Threadset of memory x

t
1

Thread t at clock time 1

Avoiding Lockset's false positive (2)

Inst C
x

S
x

L
t

B
t

L
v

B
v

8 {a} {t
2
,u

1
} { } {t

2
,u

1
} - -

9 { } {t
2
}

10 {t
3
,u

1
} { } {t

2
,v

1
}

11 {a}

12 {a} {t
3
}

13 { }

14 {a}

15 {t
3
,v

1
}

16 { }

Notation Meaning

L
t

Lockset of thread t

C
x

Lockset of memory x

B
t

Vector clock of thread t

S
x

Threadset of memory x

t
1

Thread t at clock time 1

Only one thread!
Are we done?

