
Foundations:
Concurrency Concerns
Synchronization Basics

Chris Rossbach
CS378

Today

• Questions?
• Administrivia

• You’ve started Lab 1 right?
• Foundations

• Parallelism
• Basic Synchronization
• Threads/Processes/Fibers, Oh my!
• Cache coherence

• Acknowledgments: some materials in this lecture borrowed from
• Emmett Witchel (who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger)
• Mark Silberstein (who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta)
• Andy Tannenbaum
• Don Porter
• me…
• Photo source: https://img.devrant.com/devrant/rant/r_10875_uRYQF.jpg

Faux Quiz (answer any 2, 5 min)

• Who was Flynn? Why is her/his taxonomy important?
• How does domain decomposition differ from functional

decomposition? Give examples of each.
• Can a SIMD parallel program use functional decomposition?

Why/why not?
• What is an RMW instruction? How can they be used to construct

synchronization primitives? How can sync primitives be constructed
without them?

Who is Flynn?

Michael J. Flynn
• Emeritus at Stanford
• Proposed taxonomy in 1966 (!!)
• 30 pages of publication titles
• Founding member of SIGARCH

• (Thanks Wikipedia)

Review: Flynn’s Taxonomy

Y AXIS:

X AXIS:

Instruction
Streams

Data Streams

Review: Problem Partitioning

• Domain Decomposition
• SPMD
• Input domain
• Output Domain
• Both

• Functional Decomposition
• MPMD
• Independent Tasks
• Pipelining

Domain decomposition

• Each CPU gets part of the input

CPU 0

CPU 1

Issues?
• Accessing Data

• Can we access v(i+1, j) from CPU 0
• …as in a “normal” serial program?
• Shared memory? Distributed?

• Time to access v(i+1,j) == Time to access v(i-1,j) ?
• Scalability vs Latency

• Control
• Can we assign one vertex per CPU?
• Can we assign one vertex per process/logical task?
• Task Management Overhead

• Load Balance
• Correctness

• order of reads and writes is non-deterministic
• synchronization is required to enforce the order
• locks, semaphores, barriers, conditionals….

Load Balancing

• Slowest task determines performance

8

Task 0
Task 1

Task 2
Task 3

wait
work

time

Granularity
• Fine-grain parallelism

• G is small
• Good load balancing
• Potentially high overhead
• Hard to get correct

• Coarse-grain parallelism
• G is large
• Load balancing is tough
• Low overhead
• Easier to get correct

Performance: Amdahl’s law

Amdahl’s law

What makes something “serial” vs. parallelizable?

Serial Parallelizable

X/2 seconds X/2 seconds

my task

X seconds

Amdahl’s law

Serial Parallelizable
Parallelizable

Parallelizable

X/2 seconds X/2 seconds

End to end time: X seconds

X/4 seconds

End to end time: (X/2 + X/4) = (3/4)X seconds

What is the “speedup” in this case?

2 CPUs

Speedup exercise

Serial Parallelizable

X/4 seconds
3 * X/4 seconds

End to end time: X seconds

What is the “speedup” in this case?

8 CPUs

P P P P P P P P

P
P
P
P
P
P
P
P

(3X/4)/8 seconds

Amdahl Action Zone

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

SP
EE

DU
P

NUMBER OF CPUS

50% PARALLEL

Amdahl Action Zone

0

1

2

3

4

5

1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

SP
EE

DU
P

NUMBER OF CPUS

50% 75%

Amdahl Action Zone

0
20
40
60
80

100
120

1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

SP
EE

DU
P

NUMBER OF CPUS

50% 75% 90% 95% 99%

Strong Scaling vs Weak Scaling
Amdahl vs. Gustafson

When is Gustavson’s law a better metric?
When is Amdahl’s law a better metric?

• Gustafson’s law: Speedup(N) = S + (S-1)*N
• Weak scaling: Speedup(N) calculated given work per CPU is fixed
• Work/CPU fixed when adding more CPUs keeps granularity fixed
• Problem size grows: solve larger problems
• Consequence: speedup upper bound is much higher
• Given work W on n CPUs, with α serial

• Incremental work W’ on (n+1) CPUs:
Wʹ=αW+(1−α)nW

• Speedup based on case where (1-α) scales perfectly:

S(n)=α+(1−α)n

CPUs

Super-linear speedup
• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Efficient bubble sort

• Serial: 150s

• Parallel 40s
• Speedup:

NO NO NO!
• Serial quicksort: 30s

• Speedup = 30/40 = 0.75X Why insist on best serial algorithm as baseline?

Can this
happen?

Concurrency and Correctness
If two threads execute this program concurrently,

how many different final values of X are there?
Initially, X == 0.

void increment() {
int temp = X;
temp = temp + 1;
X = temp;

}

void increment() {
int temp = X;
temp = temp + 1;
X = temp;

}

Thread 1 Thread 2

Answer:
A. 0
B. 1
C. 2
D. More than 2

Schedules/Interleavings
Model of concurrent execution
• Interleave statements from each thread into a single thread
• If any interleaving yields incorrect results, synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;

Thread 1
tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!

Thread 2

Locks fix this with Mutual Exclusion

Mutual exclusion ensures only safe interleavings
• But it limits concurrency, and hence scalability/performance

void increment() {
lock.acquire();
int temp = X;
temp = temp + 1;
X = temp;
lock.release();

}

Is mutual exclusion a good abstraction?

• Fine-grain locks
• Greater concurrency
• Greater code complexity
• Potential deadlocks

• Not composable
• Potential data races

• Which lock to lock?

Why are Locks “Hard?”

// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
LOCK(s);
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);

}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0 Thread 1

• Coarse-grain locks
• Simple to develop
• Easy to avoid deadlock
• Few data races
• Limited concurrency

Review: correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region
• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.
• If a thread i is in entry section, then there is a bound on the number of times that

other threads are allowed to enter the critical section before thread i’s request is
granted

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Mutex, spinlock, etc.
are ways to implement
these

Theorem: Every property is a
combination of a safety property
and a liveness property.

-Bowen Alpern & Fred Schneider
https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

Did we get all the important conditions?
Why is correctness defined in terms of locks?

Implementing Locks
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (*lock == 1)

; //spin
*lock = 1;

}

Lock::Release() {
*lock = 0;

}

What are the problem(s) with this?
Ø A. CPU usage
Ø B. Memory usage
Ø C. Lock::Acquire() latency
Ø D. Memory bus usage
Ø E. Does not work

Completely and utterly broken.
How can we fix it?

HW Support for Read-Modify-Write (RMW)

Preview of Techniques:
• Bus locking
• Single Instruction ISA extensions

• Test&Set
• CAS: Compare & swap
• Exchange, locked increment, locked decrement (x86)

• Multi-instruction ISA extensions:
• LLSC: (PowerPC,Alpha, MIPS)
• Transactional Memory (x86, PowerPC)

bool rmw(addr, value) {
atomic {
tmp = *addr;
newval = modify(tmp);
*addr = newval;
}

}

IDEA: hardware
implements

something like:

Why is that hard?
How can we do it?

More on this later…

Implementing Locks with Test&set
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

Lock::Release() {
*lock = 0;

}

What are the problem(s) with this?
Ø A. CPU usage
Ø B. Memory usage
Ø C. Lock::Acquire() latency
Ø D. Memory bus usage
Ø E. Does not work

(test & set ~= CAS ~= LLSC)
TST: Test&set
• Reads a value from memory
• Write “1” back to memory location

More on this later…

Programming and Machines: a mental model

Parallel Machines: a mental model

Processes and Threads and Fibers…

• Abstractions
• Containers
• State

• Where is shared state?
• How is it accessed?
• Is it mutable?

ustack (1)

Process Address Space

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)
user (2)
user (2)
user (2)

access possible in user mode

access requires kernel mode

P1

Anyone see an issue?

32

Processes

• Multiprogramming of four programs
• Conceptual model of 4 independent, sequential processes
• Only one program active at any instant

Model Implementation

33

Thread Model

(a) Three processes each with one thread
(b) One process with three threads

When might (a) be better than (b)? Vice versa?
Each thread has its own stack

34

The Thread Model

• Items shared by all threads in a process
• Items private to each thread

35

Using threads
Ex. How might we use threads in a word processor program?

36

Where to Implement Threads:

A user-level threads package

User Space Kernel Space

A threads package managed by the kernel

Threads vs Fibers

• Like threads, just an abstraction for flow of control
• Lighter weight than threads

• In Windows, just a stack, subset of arch. registers, non-preemptive
• *Not* just threads without exception support
• stack management/impl has interplay with exceptions
• Can be completely exception safe

• Takeaway: diversity of abstractions/containers for execution flows

Fibers?!?!

x86_64 Architectural Registers

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

Linux x86_64 context
switch excerpt Complete fiber

context switch on
Unix and Windows

x86_64 Registers and Threads

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

x86_64 Registers and Fibers

• Register map diagram courtesy of: By Immae - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

The takeaway:
• Many abstractions for flows of control
• Different tradeoffs in overhead, flexibility
• Matters for concurrency: exercised heavily

Pthreads

• POSIX standard thread model,
• Specifies the API and call semantics.
• Popular – most thread libraries are Pthreads-compatible

Preliminaries

• Include pthread.h in the main file
• Compile program with –lpthread

• gcc –o test test.c –lpthread
• may not report compilation errors otherwise but calls will fail

• Good idea to check return values on common functions

Thread creation
• Types: pthread_t – type of a thread
• Some calls:

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void * (*start_routine)(void *),
void *arg);

int pthread_join(pthread_t thread, void **status);
int pthread_detach();
void pthread_exit();

• No explicit parent/child model, except main thread holds process info
• Call pthread_exit in main, don’t just fall through;
• When do you need pthread_join ?

• status = exit value returned by joinable thread
• Detached threads are those which cannot be joined (can also set this at creation)

Creating multiple threads

Can you find the bug here?

Pthread Mutexes

• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);

• Attributes: for shared mutexes/condition vars among processes, for priority
inheritance, etc.

• use defaults
• Important: Mutex scope must be visible to all threads!

Pthread Spinlock

• Type: pthread_spinlock_t

int pthread_spinlock_init(pthread_spinlock_t *lock);

int pthread_spinlock_destroy(pthread_spinlock_t *lock);

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_unlock(pthread_spinlock_t *lock);

int pthread_spin_trylock(pthread_spinlock_t *lock);

int pthread_mutex_init(pthread_mutex_t *mutex,…);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);

Wait…what’s the
difference?

Review: mutual exclusion model
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region
• Even if other thread takes forever in non-critical region

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Mutex, spinlock, etc.
are ways to implement
these

Multiprocessor Cache Coherence

F = ma ~ coherence
Physics | Concurrency

Multiprocessor Cache Coherence

• P1: read X
• P2: read X
• P2: X++
• P3: read X

X: 0

X: 0 X: 0 X: ??1

cache cache cache

Multiprocessor Cache Coherence

Each cache line has a state (M, E, S, I)
• Processors “snoop” bus to maintain states
• Initially à ‘I’ à Invalid
• Read one à ‘E’ à exclusive
• Reads à ‘S’ à multiple copies possible
• Write à ‘M’ à single copy à lots of cache coherence traffic

MODIFIED

EXCLUSIVE

SHARED

INVALID

Cache Coherence: single-thread

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

IME 1

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1
1

[cache
eviction]

Cache Coherence Action Zone

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

IME 1

MODIFIED

EXCLUSIVE

SHARED

INVALID

P1

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P2

S SI lock:

1

1

SAFE!

Cache Coherence Action Zone II

lock: 0

lock: 0

cache cache cache

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

IME 1

MODIFIED

EXCLUSIVE

SHARED

INVALID

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

P1 P2

M lock: 0SS 1II

1

IINOT
SAFE!

Read-Modify-Write (RMW)
Implementing locks requires read-modify-write operations

Required effect is:
• An atomic and isolated action

1. read memory location AND
2. write a new value to the location

• RMW is very tricky in multi-processors
• Cache coherence alone doesn’t solve it

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

Essence of HW-supported RMW

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0

test R0
bnz try
store lock, 1

}

Make this into a single
(atomic hardware instruction)

Test & Set CAS Exchange, locked
increment/decrement,

LLSC: load-linked store-conditional

Most architectures Many architectures x86 PPC, Alpha, MIPS

HW Support for Read-Modify-Write (RMW)

bool cas(addr, old, new) {
atomic {
if(*addr == old) {
*addr = new;
return true;

}
return false;

}
}

int TST(addr) {
atomic {
ret = *addr;
if(!*addr)
*addr = 1;

return ret;
}

}

int XCHG(addr, val) {
atomic {
ret = *addr;
*addr = val;
return ret;

}
}

bool LLSC(addr, val) {
ret = *addr;
atomic {
if(*addr == ret) {
*addr = val;
return true;

}
return false;

}

void CAS_lock(lock) {
while(CAS(&lock, 0, 1) != true);

}

LLSC: load-linked store-conditional

PPC, Alpha, MIPS

HW Support for RMW: LL-SC

bool LLSC(addr, val) {
ret = *addr;
atomic {
if(*addr == ret) {
*addr = val;
return true;

}
return false;

}

void LLSC_lock(lock) {
while(1) {
old = load-linked(lock);
if(old == 0 && store-cond(lock, 1))
return;

}
}

• load-linked is a load that is “linked” to a subsequent store-conditional
• Store-conditional only succeeds if value from linked-load is unchanged

LLSC Lock Action Zone

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0S[L] 1M lock:I I

LLSC Lock Action Zone II

_______P1____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0

_______P2____________
lock(lock) {
while(1) {
old = ll(lock);
if(old == 0)
if(sc(lock, 1))
return;

}
}

lock: 0S[L] 1M lock: S[L] 0I

Store
conditional

fails

Implementing Locks with Test&set
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

Lock::Release() {
*lock = 0;

}

What is the problem with this?
Ø A. CPU usage B. Memory usage C. Lock::Acquire() latency
Ø D. Memory bus usage E. Does not work

(test & set ~ CAS ~ LLSC)

Test & Set with Memory Hierarchies

0xF0 lock: 1
0xF4 …

lock: 1
…

lock: 1
…

CPU A
while(test&set(lock));
// in critical region

L1

L2

Main Memory

…

…

L1

L2

CPU B
while(test&set(lock));

Initially, lock already held by some other CPU—A, B busy-waiting
What happens to lock variable’s cache line when different cpu’s contend?

Load
can
stall

• With bus-locking, lock
prefix blocks *everyone*

• With CAS, LL-SC, cache line
cache line “ping pongs”
amongst contenders

TTS: Reducing busy wait contention

Lock::Acquire() {
while (test&set(lock) == 1);
}

Lock::Release() {
*lock = 0;

}

Busy-wait on in-memory copy

Lock::Acquire() {
while(1) {
while (*lock == 1) ; // spin just reading
if (test&set(lock) == 0) break;

}

Busy-wait on cached copy

Lock::Release() {
*lock = 0;
}

• What is the problem with this?
• A. CPU usage B. Memory usage C. Lock::Acquire() latency
• D. Memory bus usage E. Does not work

Test&Test&SetTest&Set

Test & Test & Set with Memory Hierarchies

0xF0 lock: 1
0xF4 …

lock: 1
…

lock: 1
…

CPU A
// in critical region

L1

L2

Main Memory

lock: 1
…

lock: 1
…

L1

L2

CPU B
while(*lock);
if(test&set(lock))brk;

What happens to lock variable’s cache line when different cpu’s contend for the same lock?

Test & Test & Set with Memory Hierarchies

0xF0 lock: 0
0xF4 …

lock: 0
…

lock: 0
…

CPU A
// in critical region
*lock = 0

L1

L2

Main Memory

L1

L2

CPU B
while(*lock);
if(test&set(lock))brk;

What happens to lock variable’s cache line when different cpu’s contend for the same lock?

0xF0 lock: 1
0xF4 …

lock: 1
…

lock: 1
…
lock: 0
…

lock: 0
…

Wait…why all this
spinning?

How can we improve over busy-wait?

Lock::Acquire() {
while(1) {
while (*lock == 1) ; // spin just reading
if (test&set(lock) == 0) break;

}

Mutex

• Same abstraction as spinlock
• But is a “blocking” primitive

• Lock available à same behavior
• Lock held à yield/block

• Many ways to yield
• Simplest case of semaphore

• Is it better to use a spinlock or mutex on a uni-processor?
• Is it better to use a spinlock or mutex on a multi-processor?
• How do you choose between spinlock/mutex on a multi-

processor?

Priority Inversion

A(prio-0) à enter(l);
B(prio-100) à enter(l); à must wait.

Solution?

Priority inheritance: A runs at B’s priority
MARS pathfinder failure:
http://wiki.csie.ncku.edu.tw/embedded/priority-inversion-on-Mars.pdf

Other ideas?

http://wiki.csie.ncku.edu.tw/embedded/priority-inversion-on-Mars.pdf

Dekker’s Algorithm

Lab #1

• Basic synchronization
• http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html

• Start early!!!

http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html

Questions?

