
Asynchronous Programming
Promises + Futures

Consistency
Chris Rossbach

Today

• Questions?
• Administrivia
• Due dates shifted

• Material for the day
• Events / Asynchronous programming
• Promises & Futures
• Bonus: memory consistency models

• Acknowledgements
• Consistency slides borrow some materials from Kevin Boos. Thanks!

Asynchronous Programming
Events, Promises, and Futures

Programming Models for Concurrency

• Hardware execution model:
• CPU(s) execute instructions sequentially

• Programming model dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Techniques/primitives
• Message passing vs shared memory
• Preemption vs Non-preemption

• Dimensions/techniques not always orthogonal

co
m
m
un

ic
at
io
n

com
put

ati
on

coordination

Futures &
Promises
touch all
three
dimension

Futures & Promises

• Values that will eventually become available
• Time-dependent states:
• Completed/determined

• Computation complete, value concrete
• Incomplete/undetermined

• Computation not complete yet

• Construct (future X)
• immediately returns value
• concurrently executes X

Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts
• Lambda expression
• Anonymous function
• Functor

• runAsync() immediately returns a waitable object (cf)

• Where (on what thread) does the lambda expression run?

Futures and Promises:
Why two kinds of objects?

Promise: “thing to be done”

Future: encapsulation
(something to give caller)

Promise to do something in the future

Futures vs Promises

• Future: read-only reference to uncompleted value
• Promise: single-assignment variable that the future refers to
• Promises complete the future with:
• Result with success/failure
• Exception

Language Promise Future

Algol Thunk Address of async result

Java Future<T> CompletableFuture<T>

C#/.NET TaskCompletionSource<T> Task<T>

JavaScript Deferred Promise

C++ std::promise std::future

Mnemonic:
Promise to do something

Make a promise for the future

GUI Programming Distilled
How can we
parallelize

this?

Parallel GUI Implementation 1

Parallel GUI Implementation 1

Pros:
• Encapsulates parallel work
Cons:
• Obliterates original code structure
• How to assign handlersàCPUs?
• Load balance?!?
• Utilization

DoThisProc

DoThatProc

OtherThing

Pros/cons?

Parallel GUI Implementation 2
Pros:
• Preserves programming model
• Can recover some parallelism
Cons:
• Workers still have same problem
• How to load balance?
• Shared mutable state a problem

Extremely difficult to solve
without changing the whole

programming model…so
change it

Pros/cons?

Event-based Programming: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments
• Load balancing/assignment brittle
• Shared state requires locks à

• Priority inversion
• Deadlock
• Incorrect synchronization

• …

• Events: restructure programming model so threads are not exposed!

Event Programming Model Basics

• Programmer only writes events
• Event: an object queued for a module (think future/promise)
• Basic primitives
• create_event_queue(handler) à event_q
• enqueue_event(event_q, event-object)

• Invokes handler (eventually)

• Scheduler decides which event to execute next
• E.g. based on priority, CPU usage, etc.

Event-based programming
Runtime

Is the problem solved?

Another Event-based Program

Blocks!Burns CPU!Uses Other Handlers!
(call OnPaint?)

No problem!
Just use more events/handlers, right?

Continuations, BTW

Stack-Ripping

Stack-based state out-of-scope!
Requests must carry state

Threads vs Events
• Thread Pros
• Overlap I/O and computation

• While looking sequential
• Intermediate state on stack
• Control flow naturally expressed

• Thread Cons
• Synchronization required
• Overflowable stack
• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

Language-level
Futures: the
sweet spot?

Thread Pool Implementation

Cool project
idea: build a
thread pool!

Thread Pool Implementation

ThreadPool Implementation

Redux: Futures in Context

Futures:
• abstraction for concurrent work supported by

• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Model:
• Event-based programming
• Thread-based programming
Currently: 2nd renaissance IMHO

Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave with multiple CPUs
• Ordering of reads and writes

• Memory Consistency != Cache Coherence
• Coherence: propagate updates to cached copies

• Invalidate vs. Update
• Coherence vs. Consistency?

• Coherence: ordering of ops. at a single location
• Consistency: ordering of ops. at multiple locations

25

Sequential Consistency

• Result of any execution is same
as if all operations execute on a
uniprocessor
• Operations on each processor

are totally ordered in the
sequence and respect program
order for each processor

P1 P2 P3 Pn…

Memory

26

Trying to mimic Uniprocessor semantics:
• Memory operations occur:

• One at a time
• In program order

• Read returns value of last write

Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2
Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
enter CS enter CS

27

Can both P1 and P2 wind up in the
critical section at the same time?

Do we need Sequential Consistency?

Initially, A = B = 0

P1 P2 P3
A = 1

if (A == 1)
B = 1

if (B == 1)
register1 = A

28

Key issue:
• P2 and P3 may not see writes to A, B in the same order
• Implication: P3 can see B == 1, but A == 0 which is incorrect
• Wait! Why would this happen?

Write Buffers
• P_0 write à queue op in write buffer, proceed
• P_0 read à look in write buffer,
• P_(x != 0) read à old value: write buffer hasn’t drained

Requirements for Sequential Consistency
• Program Order
• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs
• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

29

Disadvantages:
• Difficult to implement!

• Coherence to (e.g.) write buffers is hard
• Sacrifices many potential optimizations

• Hardware (cache) and software (compiler)
• Major performance hit

Relaxed Consistency Models
• Program Order relaxations (different locations)

• W à R; W à W; R à R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Combined relaxations
• Read your own Write (okay for S.C.)

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

30

Read others’ write early

Read own write early

Relaxation

Relax Write to Read program order

Relax Write to Write program order

Relax Read to Read and Read to Write program orders

Figure 7: Relaxations allowed by memory models. The first three (program order) relaxations apply only to
operation pairs accessing different locations.

Relaxation W R W W R RW Read Others’ Read Own Safety net
Order Order Order Write Early Write Early

SC [16]
IBM 370 [14] serialization instructions

TSO [20] RMW
PC [13, 12] RMW
PSO [20] RMW, STBAR
WO [5] synchronization

RCsc [13, 12] release, acquire, nsync,
RMW

RCpc [13, 12] release, acquire, nsync,
RMW

Alpha [19] MB, WMB
RMO [21] various MEMBAR’s

PowerPC [17, 4] SYNC

Figure 8: Simple categorization of relaxed models. A indicates that the corresponding relaxation is allowed by
straightforward implementations of the corresponding model. It also indicates that the relaxation can be detected
by the programmer (by affecting the results of the program) except for the following cases. The “Read Own Write
Early” relaxation is not detectable with the SC, WO, Alpha, and PowerPC models. The “Read Others’ Write Early”
relaxation is possible and detectable with complex implementations of RCsc.

Relaxation Example Commercial Systems Providing the Relaxation
W R Order AlphaServer 8200/8400, Cray T3D, Sequent Balance, SparcCenter1000/2000
W W Order AlphaServer 8200/8400, Cray T3D
R RW Order AlphaServer 8200/8400, Cray T3D
Read Others’ Write Early Cray T3D
Read Own Write Early AlphaServer 8200/8400, Cray T3D, SparcCenter1000/2000

Figure 9: Some commercial systems that relax sequential consistency.

12

Questions?

