Language-level

Concurrency Support:
Go

Chris Rossbach

Outline for Today

* Questions?
* Administrivia

* Lab 3 looms large: Go go go!
* Agenda

* Message Passing background

* Concurrency in Go
* Thoughts and guidance on Lab 3

* Acknowledgements: Rob Pike’s 2012 Go presentation is excellent, and | borrowed from it:
https://talks.golang.org/2012/concurrency.slide

Faux Quiz questions

* How are promises and futures different or the same as goroutines
 What is the difference between a goroutine and a thread?

* What is the difference between a channel and a lock?

* How is a channel different from a concurrent FIFO?

 What is the CSP model?

* What are the tradeoffs between explicit vs implicit naming in
message passing?

* What are the tradeoffs between blocking vs. non-blocking
send/receive in a shared memory environment? In a distributed one?

Event-based Programming: Motivation

* Threads have a *lot* of down-sides:
* Tuning parallelism for different environments
* Load balancing/assignment brittle
» Shared state requires locks =
* Priority inversion

Remember
this slide?
* Incorrect synchronization

 Deadlock

* Events: restructure programming model to have no threads!

ot bacod © e Mot

* Threads have a *lot* of down-sides:
* Tuning parallelism for different environments
* Load balancing/assignment brittle

» Shared state requires locks =
* Priority inversion

Remember

* Deadlock this slide?
* Incorrect synchronization

* Events: restructure programming model to have no threads!

Message Passing: Motivation

Message Passing: Motivation

* Threads have a *lot* of down-sides:
* Tuning parallelism for different environments
* Load balancing/assignment brittle

e Shared state requires locks =2

* Priority inversion
* Deadlock
* Incorrect synchronization

Message Passing: Motivation

* Threads have a *lot* of down-sides:
* Tuning paraIIellsm for different environments
* Load balancing/assignment brittle

hared state requires lock

* Priority inversion
e Deadlock
* Incorrect synchronization

Message Passing: Motivation

* Threads have a *lot* of down-sides:
* Tuning paraIIellsm for different environments
* Load hals : ignment brittle

hared state requires lock

* Priority inversion
e Deadlock
* Incorrect synchronization

* Message passing:
» Threads aren’t the problem, shared memory is

e restructure programming model to avoid communication through shared memory
(and therefore locks)

Message Passing

Message

77\

Object A Object B

Sending Object Receiving Object

Message Passing

Message Passing

* Threads/Processes send/receive messages

Message

Object A Object B
Sending Object Receiving Object

Message Passing

Message Passing

* Threads/Processes send/receive messages

* Three design dimensions
* Naming/Addressing: how do processes refer to each other?
* Synchronization: how to wait for messages (block/poll/notify)?
 Buffering/Capacity: can messages wait in some intermediate structure?

Message

77\

Object A Object B

Sending Object Receiving Object

Message Passing

Naming: Explicit vs Implicit

Also: Direct vs Indirect

Naming: Explicit vs Implicit

Also: Direct vs Indirect

* Explicit Naming
* Each process must explicitly name the other party
* Primitives:
* send(receiver, message) F
i

* receive(sender, message)

Naming: Explicit vs Implicit

Also: Direct vs Indirect

* Explicit Naming
* Each process must explicitly name the other party

* Primitives:
* send(receiver, message) .
* receive(sender, message)
* Implicit Naming
* Messages sent/received to/from mailboxes
* Mailboxes may be named/shared
* Primitives:
* send(mailbox, message)
* receive(mailbox, message)

CIG

Synchronization

Synchronization

* Synchronous vs. Asynchronous
* Blocking send: sender blocks until received
* Nonblocking send: send resumes before message received
* Blocking receive: receiver blocks until message available
* Non-blocking receive: receiver gets a message or null

Synchronization

* Synchronous vs. Asynchronous
* Blocking send: sender blocks until received
* Nonblocking send: send resumes before message received
* Blocking receive: receiver blocks until message available
* Non-blocking receive: receiver gets a message or null

Blocking:
+ simple
+ avoids wasteful spinning

Non-blocking:
+ maximal flexibility

Synchronization

* Synchronous vs. Asynchronous
* Blocking send: sender blocks until received
* Nonblocking send: send resumes before message received
* Blocking receive: receiver blocks until message available
* Non-blocking receive: receiver gets a message or null

 If both send and receive block

e “Rendezvouz” Blocking:
+ simple

Operation acts as an ordering primitive
Sender knows receiver succeded
Receiver knows sender succeeded

Particularly appealing in distributed environment AR
+ maximal flexibility

+ avoids wasteful spinning

Communicating Sequential Processes
Hoare 19/8

CSP: language for multi-processor machines
* Non-buffered message passing
* No shared memory
* Send/recv are blocking v
» Explicit naming of src/dest processes
e Also called direct naming
* Receiver specifies source process
* Alternatives: indirect

sequential communication
process channel

v

* Port, mailbox, queue, socket = single thread of control = synchronous
* Guarded commands to let processes wait ® autonomous m reliable
m encapsulated m unidirectional
m named m point-to-point
m static m fixed topology

Communicating Sequential Processes
Hoare 19/8

A 4

CSP: language for multi-processor machines
* Non-buffered message passing
* No shared memory
* Send/recv are blocking v
» Explicit naming of src/dest processes
e Also called direct naming
* Receiver specifies source process
* Alternatives: indirect

sequential communication
process channel

v

* Port, mailbox, queue, socket m single thread of control = synchronous
* Guarded commands to let processes wait ® autonomous m reliable
m encapsulated m unidirectional
m named m point-to-point
m static m fixed topology

< Transputer!

An important problem in the CSP model:

An important problem in the CSP model:

* Processes need to receive messages from different senders

An important problem in the CSP model:

* Processes need to receive messages from different senders
* Only primitive: blocking receive(<name>, message)

An important problem in the CSP model:

* Processes need to receive messages from different senders
* Only primitive: blocking receive(<name>, message)

An important problem in the CSP model:

* Processes need to receive messages from different senders

* Only primitive: blocking receive(<name>, message)

Q|

R
S

P

recv_multi(Q) {

}

receive(Q, message)
receive(R, message)
receive(S, message)

An important problem in the CSP model:

* Processes need to receive messages from different senders
* Only primitive: blocking receive(<name>, message)

- . recv_multi(Q) {

receive(Q, message)
- receive(R, message)

- / receive(S, message)
}

Is there a problem
with this?

An important problem in the CSP model:

* Processes need to receive messages from different senders
* Only primitive: blocking receive(<name>, message)

- . recv_multi(Q) {

X receive(Q, message)
- X receive(R, message)

/ receive(S, message)
Is there a problem

Blocking with Indirect Naming

* Processes need to receive messages from different senders

* blocking receive with indirect naming
* Process waits on port, gets first message first message arriving at that port

Blocking with Indirect Naming

* Processes need to receive messages from different senders

* blocking receive with indirect naming
* Process waits on port, gets first message first message arriving at that port

P | receive(port, message)

Blocking with Indirect Naming

* Processes need to receive messages from different senders

* blocking receive with indirect naming
* Process waits on port, gets first message first message arriving at that port

P | receive(port, message)

OK to block (good)
Requires indirection (less good)

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming
* Requires receiver to poll senders

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming
* Requires receiver to poll senders

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming

while(....) {

* Requires receiver to poll senders

e
Q)

R
S

}

try_receive(Q, message)
try_receive(R, message)
try_receive(S, message)

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming
* Requires receiver to poll senders

while(...) {
. try_receive(Q, message)
try_receive(R, message)
. . try_receive(S, message)

s | }

Polling (bad)

No indirection (good)

Blocking and Direct Naming

Blocking and Direct Naming

e How to achieve it?

Blocking and Direct Naming

* How to achieve it?
» CSP provides abstractions/primitives for it

Alternative / Guarded Commands

Guarded command is delayed until either Alternative command:

e guard succeeds > cmd executes or e |ist of one or more guarded commands
e guard fails > command aborts e separated by”||”

Gunrded Comands e surrounded by square brackets

<guard>— <command list>
i [Xx>y->max:=x || y=x->max:=y]

boolean expression

at most one ? , must be at end of
guard, considered true iff

Examples message pending

n <10—Alindex(n); n :=n + 1;
n < 10; A?index(n) —next = MyArray(n);

Alternative / Guarded Commands

Guarded command is delayed until either Alternative command:

e guard succeeds - cmd executes or e |ist of one or more guarded commands

e guard fails > command aborts e separated by ”||”
e surrounded by square brackets
Guarded Commands

<guard>— <command list>
i [x=y->max:=x || y=x->max:=y]

boolean expression

at most one ? , must be at end of
guard, considered true iff

Examples message pending

* Enable choice preserving concurrency
n <10—Alindex(n); n :=n + 1; * Hugely influential
n < 10; A?index(n) —next = MyArray(n);

e goroutines, channels, select, defer:
* Trying to achieve the same thing

Go Concurrency

e CSP: the root of many languages
* Occam, Erlang, Newsqueak, Concurrent ML, Alef, Limbo

* Go is a Newsqueak-Alef-Limbo derivative
* Distinguished by first class channel support
* Program: goroutines communicating through channels
* Guarded and alternative-like constructs in select and defer

A boring function

func boring(msg string) {
for 1 := 0; : 1+t {
fmt.Println(msg, 1)
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

}

func main() {
boring("boring!")
|}

A boring function

func boring(msg string) {
for 1 := 0: : 1+ {
fmt.Println(msg, 1)
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

}

func main() {
boring("boring!")
}

lgnoring a boring function

Go statement runs the function
Doesn’t make the caller wait
Launches a goroutine

Analagous to & on shell command

package main

import (
nfmtu
"math/rand"
"time"

)

func main() {
go boring("boring!")
}

lgnoring a boring function

package main

* Go statement runs the function import (
. nf t"
e Doesn’t make the caller wait o .
math/rand
* Launches a goroutine "time"

* Analagous to & on shell command)

func main() {
go boring("boring!"™)
}

func main() {

* Keep main() around a while go boring("boring!")
)] fmt.Println("I'm listening.")
* See goroutine actually running time.Sleep(2 * time.Second)

fmt.Println("You're boring; I'm leaving.")

lgnoring a boring function

Go statement runs the function
Doesn’t make the caller wait
Launches a goroutine

Analagous to & on shell command

* Keep main() around a while
e See goroutine actually running

package main
I'm listening.

import (boring! 0
" fmt" boring!
"math/rand" boring!
"time" boring!

) boring!

boring! 5
You're boring; I'm leaving.

func main() {
go boring("bor
}

Program exited.

func main() {
go boring("boring!")
fmt.Println("I'm listening.")
time.Sleep(2 * time.Second)
fmt.Println("You're boring; I'm leaving.")

Goroutines

Goroutines

* Independently executing function launched by go statement

Goroutines

* Independently executing function launched by go statement
* Has own call stack

Goroutines

* Independently executing function launched by go statement
* Has own call stack
* Cheap: Ok to have 1000s...100,000s of them

Goroutines

* Independently executing function launched by go statement
* Has own call stack
* Cheap: Ok to have 1000s...100,000s of them

* Not a thread
* One thread may have 1000s of go routines!

Goroutines

* Independently executing function launched by go statement
* Has own call stack
* Cheap: Ok to have 1000s...100,000s of them

* Not a thread
* One thread may have 1000s of go routines!

* Multiplexed onto threads as needed to ensure forward progress
e Deadlock detection built in

Channels

* Connect goroutines allowing them to communicate

// Declaring and initializing.
var ¢ chan int

c = make(chan int)

// or

¢ := make(chan int)

// Sending on a channel.
c <-1

// Receiving from a channel.
// The "arrow" indicates the direction of data flow.
value = <-c

Channels

* Connect goroutines allowing them to communicate

Channels

* Connect goroutines allowing them to communicate

func main() {
c := make(chan string)
go boring("boring!", c)
for 1 :=0; 1 <5; i++ {
fmt.Printf("You say: %q\n", <-c) // Receive expression is just a value.
}

fmt.Println("You're boring; I'm leaving.")

func boring(msg string, c chan string) {
for 1 := 0; ; 1++ {
c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any suitable value.
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

Channels

* Connect goroutines allowing them to communicate

func main() {

c := make(chan string)
go boring("boring!", c)
for 1 :=0; 1 <5; i++ {

fmt.Printf("You say: %q\n", <-c) // Receive expression is just a value.
}

fmt.Println("You're boring; I'm leaving.")

You say: "boring! 0"
You say: "boring! 1"
You say: "boring! 2"
You say: "boring! 3"
You say: "boring! 4"
You're boring; I'm leaving.

func boring(msg string, c chan string) {
for 1 := 0; ; 1++ {
c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any s
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

Program exited.

Channels

* When main executes <-c, it blocks

* Connect goroutines allowing tf _ _
 When boring executes c <- value it blocks

func main() { * Channels communicate and synchronize

c := make(chan string)
go boring("boring!", c)
for 1 :=0; 1 <5; 1++ {
fmt.Printf("You say: %q\n", <-c) // Receive expression is just a value.
}

fmt.Println("You're boring; I'm leaving.")

You say: "boring!
You say: "boring!
You say: "boring!
You say: "boring!
You say: "boring!
You're boring; I'm leaving.

func boring(msg string, c chan string) {
for 1 := 0; ; 1++ {
c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any s
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

Program exited.

Select: Handling Multiple Channels

* All channels are evaluated

* Select blocks until one communication can proceed
e Cf. Linux select system call, Windows WaitForMultipleObjectsEx
e Cf. Alternatives and guards in CPS

* If multiple can proceed select chooses randomly

e Default clause executes immediately if no ready channel

select {
case vl := <-c1l:

fmt.Printf("received %v from c1\n", v1)
case v2 := <-c2:

fmt.Printf("received %v from c2\n", v1)
case c3 <- 23:
fmt.Printf("sent %v to c3\n", 23)

default:
fmt.Printf("no one was ready to communicate\n")

}

Select: Handling Multiple Channels

* All channels are evaluated

* Select blocks until one communication can proceed
e Cf. Linux select system call, Windows WaitForMultipleObjectsEx
e Cf. Alternatives and guards in CPS

* If multiple can proceed select chooses randomly

» Default clause executes immediately if no ready channel

select {
case vl := <-ct:

fmt.Printf("received %v from c1\n", v1)
case v2 := <-c2:

fmt.Printf("received %v from c2\n", v1)
case c3 <- 23:
fmt.Printf("sent %v to c3\n", 23)

dafault: Wi cleEul ke [d |
fmt.Printf("no one was ready to communicate\n") LIPS ElCI e lesdelniss inslale A e Dok

}

Google Search

* Workload:
* Accept query
e Return page of results (with ugh, ads)
* Get search results by sending query to
* Web Search
* Image Search
* YouTube
* Maps
* News, etc
* How to implement this?

Search 1.0

* Google function takes query and returns a slice of results (strings)
* Invokes Web, Image, Video search serially

func Google(query string) (results []Result) {
results = append(results, Web(query))
results = append(results, Image(query))
results = append(results, Video(query))
return

Search 2.0

* Run Web, Image, Video searches concurrently, wait for results
* No locks, conditions, callbacks

func Google(query string) (results []Result) {
c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

for 1 :=0; 1 < 3; i++ {

result := <-c

results = append(results, result)
+
return

Search 2.1

 Don’t wait for slow servers: No locks, conditions, callbacks!

c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

timeout := time.After(80 * time.Millisecond)
for 1 :=0; 1 < 3; 1++ {
select {
case result := <-c:
results = append(results, result)
case <-timeout:
fmt.Println("timed out")
return

return

Search 3.0

* Reduce tail latency with replication. No locks, conditions, callbacks!

c := make(chan Result)

go func() { c <- First(query, Web1, Web2) } ()

go func() { c <- First(query, Imagel, Image2) } ()
go func() { c <- First(query, Video1l, Video2) } ()

timeout := time.After(80 * time.Millisecond)
for 1 :=0; 1 <3; 1++ {

select {

case result := <-c:

results = append(results, result)
case <-timeout:

fmt.Println("timed out")

return

¥
}

return

func First(query string, replicas ...Search) Result {
c := make(chan Result)
searchReplica := func(i int) { c <- replicas[i](query) }
for 1 := range replicas {
go searchReplica(1i)

}

return <-c

Other tools in Go

* Goroutines and channels are the main primitives

* Sometimes you just need a reference counter or lock
* “sync” and “sync/atomic” packages
* Mutex, condition, atomic operations

* Sometimes you need to wait for a go routine to finish
* Didn’t happen in any of the examples in the slides
* WaitGroups are key

WaitGroups

testQ() {

wg sync.WaitGroup
wg.Add(4)
ch := make(int)
for 1:=0; i<4; i++ {
go (id int) {
aval, amore := <- ch

if(amore) {
fmt.Printf("reader #%d got %d value\n", id, aval)

} else {
fmt.Printf("channel reader #%d terminated with nothing.\n", id)

}
wg.Done()

H(1)
}
time.Sleep(1000 * time.Millisecond)

close(ch)
wg.Wait()

WaitGroups

testQ() {

var wg sync.WaitGroup
wg.Add(4)
ch := make(int)
for 1:=0; i<4; i++ {
go (id int) {
aval, amore := <- ch

if(amore) {
fmt.Printf("reader #%d got %d value\n", id, aval)

} else {
fmt.Printf("channel reader #%d terminated with nothing.\n", id)

}
wg.Done()
}(1)
}

time.Sleep(1000 * time.Millisecond)
close(ci)
wg.Wait()

Go: magic or threadpools and concurrent Qs?

 We’ve seen several abstractions for
* Control flow/exection
e Communication

* Lots of discussion of pros and cons
e Ultimately still CPUs + instructions

* Go: just sweeping issues under the language interface?
* Why is it OK to have 100,000s of goroutines? VoK MEIMANNARCHITECTITRS
 Why isn’t composition an issue? e

CPU
INPUT > * OUTPUT

CONTROL [|ARITHMETIC/
UNIT LOGIC UNIT

Go implementation details

Go implementation details

* M = “machine” = OS thread

Go implementation details

* M = “machine” = OS thread
; | * P = (processing) context

Go implementation details

* M = “machine” = OS thread
; | e P = (processing) context
. . p e * G = goroutines

Go implementation details

* M = “machine” = OS thread
; | e P = (processing) context
. . p e * G = goroutines

| e Each ‘M’ has a queue of goroutines

Go implementation details

* M = “machine” = OS thread

¢ | * P = (processing) context
P | (8 P G * G = goroutines

| | e Each ‘M’ has a queue of goroutines
G i G G

|

* Goroutine scheduling is cooperative
e Switch out on complete or block
* Very light weight (fibers!)
* Scheduler does work-stealing

Go implementation details

* M = “machine” = OS thread
» A * P = (processing) context

- 8 * G = goroutines

struct G

-) @
- bytex stackguard; // stack guard information
‘ bytex stackbase; // base of stack

- -

£ g D bytex stackO; // current stack pointer

' -« bytex entry; // initial function
void* param; // passed parameter on wakeup
intl6 status; // status
int32 goid; // unique id

M lockedm; // used for locking M’s and G’s

Go implementation details

* M = “machine” = OS thread

¢ | * P = (processing) context
P | (8 P G * G = goroutines

| | e Each ‘M’ has a queue of goroutines
G i G G

|

* Goroutine scheduling is cooperative
e Switch out on complete or block
* Very light weight (fibers!)
* Scheduler does work-stealing

Go implementation details

* M = “machine” = OS thread

M M
\ ' J e P= (processmg) context
P F e P —. * G = goroutines
| J 8 struct M S i
G : El | C G | {
- G curg; // current running goroutine
\ int32 id ; // unique id
£ - int32 locks; // locks held by this M
MCache xmcache; // cache for this thread
| G lockedg; // used for locking M’s and G’s
uintptr createstack [32]; // Stack that created this thread
M nextwaitm; // next M waiting for lock

Go implementation details

* M = “machine” = OS thread

M
e struct Sched {
Y N Lock; // global sched lock.
P — // must be held to edit G or M queues
L . G xgfree; // available g’s (status == Gdead)
& (o \‘] . G xghead; // g’s waiting to run queue
G xgtail ; // tail of g’s waiting to run queue
| int32 gwait; // number of g’s waiting to run
A int32 gcount; // number of g’s that are alive
B int32 grunning; // number of g’s running on cpu
- // or in syscall .
M xmbhead; // m’s waiting for work a
int32 mwait; // number of m’s waiting for work

int32 mcount; // number of m’s that have been created

Go implementation details

struct Sched {

* M = “machine” = OS thread

' \

Lock; // global sched lock.

// must be held to edit G or M queues
G xgfree; // available g’s (status == Gdead)
G *ghead; // g’s waiting to run queue
G xgtail ; // tail of g’s waiting to run queue
int32 gwait; // number of g’s waiting to run

int32 gcount; // number of g’s that are alive
int32 grunning; // number of g’s running on cpu
// or in syscall

M xmbhead; // m’s waiting for work
int32 mwait; // number of m’s waiting for work
int32 mcount; // number of m’s that have been created

Go implementation details

struct Sched {

* M = “machine” = OS thread

' \

Lock; // global sched lock.

// must be held to edit G or M queues
G xgfree; // available g’s (status == Gdead)
G *ghead; // g’s waiting to run queue
G xgtail ; // tail of g’s waiting to run queue
int32 gwait; // number of g’s waiting to run

int32 gcount; // number of g’s that are alive
int32 grunning; // number of g’s running on cpu
// or in syscall

M xmbhead; // m’s waiting for work
int32 mwait; // number of m’s waiting for work
int32 mcount; // number of m’s that have been created

1000s of go routines?

testQ(consumers int) {
startTimes["testQ"] = time.Now()
wg sync.WaitGroup
wg.Add(consumers)
ch := make(int)
for 1:=0; i<consumers; i++ {
go (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {

info("channel reader #%d terminated with nothing.\n", id)

}
wg.Done()
F(1)

}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

1000s of go routines?

* Creates a channel
testQ(int) { * Creates “consumers” goroutines
es consumers 1n q
T T) I e * Each of them tries to read from the channel

wg sync.WaitGroup * Main either:
wg.Add(consumers) * Sleeps for 1 second, closes the channel

ch := make int
. ()) * sends “consumers” values
for i:=0; i<consumers; i++ {

go (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {
info("channel reader #%d terminated with nothing.\n", id)

}
wg.Done()

3(1)

}
time.Sleep(1000 * time.Millisecond)

close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

1000s of go routines?

* Creates a channel
testQ(int) { * Creates “consumers” goroutines
es consumers 1n q
T T) I e * Each of them tries to read from the channel

wg sync.WaitGroup * Main either:
wg.Add(consumers) * Sleeps for 1 second, closes the channel

ch := make int
. ()) * sends “consumers” values
for i:=0; i<consumers; i++ {

go (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else { PS C:\Users\chris\go\src\cs378\lab3> . . 10
info("channel readd¢estQ: 1.0016706s
} PS C:\Users\chris\go\src\cs378\1ab3> . - 100
wg.Done() testQ: 1.0011655s
(1) PS C:\Users\chris\go\src\cs378\1ab3> . . 1000
} testQ: 1.0084796s
time.Sleep(1000 * time.Millise®S C:\Users\chris\go\src\cs378\1lab3> . - 10000
close(ch) testQ: 1.0547925s
wg.Wait() PS C:\Users\chris\go\src\cs378\1ab3> . - 100000
stopTimes["testQ"] = time.Now(testQ: 1.3907835s
PS C:\Users\chris\go\src\cs378\1ab3> . - 1000000
testQ: 4.2405814s

Channel implementation

* You can just read it:

* https://golang.org/src/runtime/chan.go

e Some highlights

77 ENTry poInT fOr ¢ <- X Trom COmpILED COuE

//go:nosplit

func chansend1(c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

}

1%
* generic single channel send/recv
* If block is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*/

9 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

if ¢ ==nil {
if Iblock {
return false
}

gopark(nil, nil, "chan send (nil chan)", traceevGostop, 2)
throw("unreachable")

if debugChan {
print("chansend: chan=", c, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))

}

// Fast path: check for failed non-blocking operation without acquiring the lock.
1/
// After observing that the channel is not closed, we observe that the channel is

// not ready for sending. Each of these observations is a single word-sized read

[/ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
// Because a closed channel cannot transition from ‘ready for sending' to

/1 'not ready for sending', even if the channel is closed between the two observations,
// they imply a moment between the two when the channel was both not yet closed

// and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.

7

// It is okay if the reads are reordered here: if we observe that the channel is not
// ready for sending and then observe that it is not closed, that implies that the

// channel wasn't closed during the first observation.

if Iblock & c.closed == @ & ((c.datagsiz == @ &% c.recvq.first == nil) ||

(c.datagsiz > @ && c.gcount == c.datagsiz)) {

return false

}

var t@ ints4

if blockprofilerate > @ {
te = cputicks()

}

lock(&c.lock)

if c.closed != @ {
unlock(&c.lock)
panic(plainerror("send on closed channel®))

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found 3 waiting receiver. lie pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
candlr eca an ESinel/N D oonlackis Iarky LV 2

https://golang.org/src/runtime/chan.go

Channel implementation

°Y

*S

func chansend(c

1

f ¢

*hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
nil {
if !block {

return false
}
gopark(nil, nil, “chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

if debugChan {

print(“chansend: chan=", c, "\n")

if raceenabled {

racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))

7 Entry poIntT for ¢ <- X from COMpILEd CO0E

//go:nosplit

func chansendi(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

}

I*

* generic single channel send/recv

* If block is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.
-

140 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) beel {

if ¢ ==nil {
if Iblock {
return false
}
gopark(nil, nil, "chan send (nil chan)", traceevGostop, 2)
throw("unreachable")

}

if debugChan {
print(“chansend: chan=", c, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))

}

// Fast path: check for failed non-blocking operation without acquiring the lock.
1
[/ After observing that the channel is not closed, we observe that the channel is
// not ready for sending. Each of these observations is a single word-sized read
/1 (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
// Because a closed channel cannot transition from 'ready for sending' to
/1 'not ready for sending', even if the channel is closed between the two observations,
// they imply a moment between the two when the channel was both not yet closed
// and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
7
// It is okay if the reads are reordered here: if we observe that the channel is not
// ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first observation.
if Iblock & c.closed == @ & ((c.datagsiz == @ && c.recvq.first == nil) ||
(c.datagsiz > @ && c.gcount == c.datagsiz)) {
return false

}

var t@ inté4

if blockprofilerate > @ {
te = cputicks()

}

lock(&c. lock)

if c.closed 1= @ {
unlock(&c.lock)
panic(plainerror("send on closed channel))

}

if sg i= c.recvq.dequeue(); sg != nil {
// Found 3 waiting receiver. lie pass the value we want to send

// directly to the receiver, bypassing the channel buffer (if any).
candlr eca an Eiinel/N L oomlackils 1arky Y 2Y

https://golang.org/src/runtime/chan.go

Channel implementation

func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
.Y if ¢ == nil {
if !block {
return false

}

gopark(nil, nil, “chan send (nil chan)", traceEvGoStop, 2)
[) S throw("unreachable")

if debugChan {
print(“chansend: chan=", c, "\n")

} Race detection! Cool!

if raceenabled {

racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))

7 Entry poIntT for ¢ <- X from COMpILEd CO0E

//go:nosplit

func chansendi(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

}

I*

* generic single channel send/recv

* If block is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.
-

140 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) beel {

if ¢ ==nil {
if Iblock {
return false
}
gopark(nil, nil, "chan send (nil chan)", traceevGostop, 2)
throw("unreachable")

}

if debugChan {
print(“chansend: chan=", c, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))

}

// Fast path: check for failed non-blocking operation without acquiring the lock.
1
[/ After observing that the channel is not closed, we observe that the channel is
// not ready for sending. Each of these observations is a single word-sized read
/1 (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
// Because a closed channel cannot transition from 'ready for sending' to
/1 'not ready for sending', even if the channel is closed between the two observations,
// they imply a moment between the two when the channel was both not yet closed
// and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
7
// It is okay if the reads are reordered here: if we observe that the channel is not
// ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first observation.
if Iblock & c.closed == @ & ((c.datagsiz == @ && c.recvq.first == nil) ||
(c.datagsiz > @ && c.gcount == c.datagsiz)) {
return false

}

var t@ inté4

if blockprofilerate > @ {
te = cputicks()

}

lock(&c. lock)

if c.closed 1= @ {
unlock(&c.lock)
panic(plainerror("send on closed channel))

}

if sg i= c.recvq.dequeue(); sg != nil {
// Found 3 waiting receiver. lie pass the value we want to send

// directly to the receiver, bypassing the channel buffer (if any).
candlr eca an Eiinel/N L oomlackils 1arky Y 2Y

https://golang.org/src/runtime/chan.go

Channel implementation

* You can just read it:

* https://golang.org/src/runtime/chan.go

e Some highlights

77 ENTry poInT fOr ¢ <- X Trom COmpILED COuE

//go:nosplit

func chansend1(c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

}

1%
* generic single channel send/recv
* If block is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*/

9 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

if ¢ ==nil {
if Iblock {
return false
}

gopark(nil, nil, "chan send (nil chan)", traceevGostop, 2)
throw("unreachable")

if debugChan {
print("chansend: chan=", c, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))

}

// Fast path: check for failed non-blocking operation without acquiring the lock.
1/
// After observing that the channel is not closed, we observe that the channel is

// not ready for sending. Each of these observations is a single word-sized read

[/ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
// Because a closed channel cannot transition from ‘ready for sending' to

/1 'not ready for sending', even if the channel is closed between the two observations,
// they imply a moment between the two when the channel was both not yet closed

// and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.

7

// It is okay if the reads are reordered here: if we observe that the channel is not
// ready for sending and then observe that it is not closed, that implies that the

// channel wasn't closed during the first observation.

if Iblock & c.closed == @ & ((c.datagsiz == @ &% c.recvq.first == nil) ||

(c.datagsiz > @ && c.gcount == c.datagsiz)) {

return false

}

var t@ ints4

if blockprofilerate > @ {
te = cputicks()

}

lock(&c.lock)

if c.closed != @ {
unlock(&c.lock)
panic(plainerror("send on closed channel®))

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found 3 waiting receiver. lie pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
candlr eca an ESinel/N D oonlackis Iarky LV 2

https://golang.org/src/runtime/chan.go

7 Entry poIntT for ¢ <- X from COMpILEd CO0E

//go:nosplit

func chansendi(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

}

I*

* generic single channel send/recv
* If block is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

C | . | . ‘ t t .

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run

* the operation; we'll see that it's now closed.

-

func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if ¢ ==nil {

1 1 if 1block {
. 142 if Ibloc
* You can just read it:
}
gopark(nil, nil, "chan send (nil chan)", traceevGostop, 2)

e https://golang.org/src/runtime/chan.go €)

149 if debugChan {

P Some highlig if sg := c.recvq.dequeue(); sg != nil { , e e T

// Found a waiting receiver. We pass the value we want to send if raceenabled {)
racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))
// directly to the receiver, bypassing the channel buffer (if any). !
send (c, sg, ep, func () { unlock (&c. 10Ck) } , 3) ;; Fast path: check for failed non-blocking operation without acquiring the lock.
r‘etur‘n -t rue [/ After observing that the channel is not closed, we observe that the channel is
// not ready for sending. Each of these observations is a single word-sized read
} [/ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).

// Because a closed channel cannot transition from 'ready for sending' to

/1 'not ready for sending', even if the channel is closed between the two observations,
// they imply a moment between the two when the channel was both not yet closed

// and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.

7

// It is okay if the reads are reordered here: if we observe that the channel is not
// ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first observation.

if Iblock & c.closed == @ & ((c.datagsiz == @ & c.recvq.first == nil) ||

172 (c.datagsiz > @ && c.gcount == c.datagsiz)) {

173 return false

S

var t@ ints4

1 if blockprofilerate > @ {
178 te = cputicks()
179 }

lock(&c. lock)

if c.closed 1= @ {
unlock(&c.lock)
panic(plainerror("send on closed channel®))

if sg i= c.recvq.dequeue(); sg != nil {
// Found 3 waiting receiver. lie pass the value we want to send

// directly to the receiver, bypassing the channel buffer (if any).
candlr eca an Eiinel/N L oomlackils 1arky Y 2Y

https://golang.org/src/runtime/chan.go

Channel implementation

* You can just read it:

* https://golang.org/src/runtime/chan.go

e Some highlights

77 ENTry poInT fOr ¢ <- X Trom COmpILED COuE

//go:nosplit

func chansend1(c *nchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

}

1%
* generic single channel send/recv
* If block is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*/

9 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

if ¢ ==nil {
if Iblock {
return false
}

gopark(nil, nil, "chan send (nil chan)", traceevGostop, 2)
throw("unreachable")

if debugChan {
print("chansend: chan=", c, "\n")

}

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))

}

// Fast path: check for failed non-blocking operation without acquiring the lock.
1/
// After observing that the channel is not closed, we observe that the channel is

// not ready for sending. Each of these observations is a single word-sized read

[/ (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
// Because a closed channel cannot transition from ‘ready for sending' to

/1 'not ready for sending', even if the channel is closed between the two observations,
// they imply a moment between the two when the channel was both not yet closed

// and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.

7

// It is okay if the reads are reordered here: if we observe that the channel is not
// ready for sending and then observe that it is not closed, that implies that the

// channel wasn't closed during the first observation.

if Iblock & c.closed == @ & ((c.datagsiz == @ &% c.recvq.first == nil) ||

(c.datagsiz > @ && c.gcount == c.datagsiz)) {

return false

}

var t@ ints4

if blockprofilerate > @ {
te = cputicks()

}

lock(&c.lock)

if c.closed != @ {
unlock(&c.lock)
panic(plainerror("send on closed channel®))

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found 3 waiting receiver. lie pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
candlr eca an ESinel/N D oonlackis Iarky LV 2

https://golang.org/src/runtime/chan.go

12277 entry poInt for ¢ <- X Trom COmpILEn Coue
123 //go:nosplit

124 func chansend1(c *hchan, elem unsafe.Pointer) {
125 chansend(c, elem, true, getcallerpc())
26 }

/,

* generic single channel send/recv
* If block is not nil,

. ° 1
131 * then the protocol will not
132 * sleep but return if it could
133 * not complete.

v

*
* sleep can wake up with g.param == nil

136 * when 3 channel involved in the sleep has

137 * been closed. it is easiest to loop and re-run

138 * the operation; we'll see that it's now closed.

139 #

140 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) beel {
141 if ¢ = nil {

* You can justreadit: .. ,

Sends and receives on unbuffered or empty-buffered channels are the
// only operations where one running goroutine writes to the stack of

296
° httpS.//gOlang.Org/S 297 /[another running goroutine. The GC assumes that stack writes only

298 [/ happen when the goroutine is running and are only done by that

o Some highlights 299 // goroutine. Using a write barrier is sufficient to make up for

300 // violating that assumption, but the write barrier has to work.)

301 // typedmemmove will call bulkBarrierPreWrite, but the target bytes

- . . iring the lock.
302 // are not in the heap, so that will not help. We arrange to call e
L . . . iat the channel i
303 // memmove and typeBitsBulkBarrier instead. ord szed read

— 1g on kind of channel).
3 G- :nding' to

B . . in the two observations,
305 func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) { I ot yet closed

iannel at that moment,

306 // src is on our stack, dst is a slot on another stack.

307 it the channel is not
308 // Once we read sg.elem out of sg, it will no longer Inm#nmum
309 // be updated if the destination's stack gets copied (shrunk). o
310 // So make sure that no preemption points can happen between read & use.

311 dst := sg.elem

312 typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)

313 memmove(dst, src, t.size)

314 }

134 7 ”mlrjﬁiock(ic.‘lock]
1 panic(plaingrror("send on closed channel”))

}

if sg i= c.recvq.dequeue(); sg != nil {
// Found 3 waiting receiver. lie pass the value we want to send

99 // directly to the receiver, bypassing the channel buffer (if any).
101 candlr eca an Eiinel/N L oomlackils 1arky Y 2Y

https://golang.org/src/runtime/chan.go

12277 entry poInt for ¢ <- X Trom COmpILEn Coue
123 //go:nosplit

124 func chansend1(c *hchan, elem unsafe.Pointer) {
125 chansend(c, elem, true, getcallerpc())
26 }

/,

* generic single channel send/recv
* If block is not nil,

[] 1
131 * then the protocol will not
132 * sleep but return if it could
133 * not complete.

*

v

* sleep can wake up with g.param == nil

136 * when 3 channel involved in the sleep has

137 * been closed. it is easiest to loop and re-run

38 * the operation; we'll see that it's now closed.

139 #

140 func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) beel {
141 if ¢ = nil {

° You Can JUSt read It: 295 [/ Sends and receives on unbuffered or empty-buffered g;\annelsile::: the
 https://golang.org/s ..

. . 98 [/ happen when the goroutine is running and are only done by that

o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for
300 // violating that assumption, but the write barrier has to work.)
301 // typedmemmove will call bulkBarrierPreWrite, but the target bytes
302 [/ are not in the heap, so that will not help. We arrange to call

5 [/ only operations where one running goroutine writes to the stack of

7 [/ another running goroutine. The GC assumes that stack writes only

N
(Ve
X

quiring the lock.

iat the channel is

303 // memmove and typeBitsBulkBarrier instead. ! vord-sized read
>0 / g 9n kind of channel).
304 :nding' to
B . . in the two observations,
305 func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) { I ot yet closed
iannel at that moment,
306 // src is on our stack, dst is a slot on another stack.
307 {t the channel is not
~ . . it implies that the
308 // Once we read sg.elem out of sg, it will no longer -
. == Nl
309 // be updated if the destination's stack gets copied (shrunk).
310 // So make sure that no preemption points can happen between read & use.
311 dst := sg.elem
312 typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)
313 memmove(dst, src, t.size)

184 i ”mlrjﬁiock(ic.‘lock]
panic(plainerror("send on closed channel))

}

if sg i= c.recvq.dequeue(); sg != nil {
// Found 3 waiting receiver. lie pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
101 candlr eca an Eiinel/N L oomlackils 1arky Y 2Y

https://golang.org/src/runtime/chan.go

12277 entry poInt for ¢ <- X Trom COmpILEn Coue
123 //go:nosplit
124 func chansend1(c *hchan, elem unsafe.Pointer) {
125 chansend(c, elem, true, getcallerpc())
126 }
8 ¢

* generic single channel send/recv

* If block is not nil,

[° 139
131 * then the protocol will not
132 * sleep but return if it could
133 * not complete.
12 *
135 * sleep can wake up with g.param == nil
* when a channel involved in the sleep has

137 * been closed. it is easiest to loop and re-run
138 * the operation; we'll see that it's now closed.

— f;:\c chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) boel {

0 . 141 if ¢ = nil {

) d ° 142 if block { N

You Can JUSt rea It' 295 // Sends and receives on unbuffered or empty-buffered channels are the
296 // only operations where one running goroutine writes to the stack of .
. L]
httpS.//gOlang.Org/S 297 /[another running goroutine. The GC assumes that stack writes only

. . 298 [/ happen when the goroutine is running and are only done by that
® Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for

®

// violating that assumption, but the write barrier has to work.)

w

typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)
memmove(dst, src, t.size)

G1 writes to G2's stack!

0
301 // typedmemmove will call bulkBarrierPreWrite, but the target bytes
302 // are not in the heap, so that will not help. We arrange to call i e
Y RS S S . 303 // memmove and typeBitsBulkBarrier instead. ot ot reu
§ - e o
“ose. R G 1StaCk stack| 305 func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) { ;”niﬁii";“cﬁ'éii?'“‘°"5’
. 306 // src is on our stack, dst is a slot on another stack. e
E 307 t the crmel 15t
G2 stackg T 308 // Once we read sg.elem out of sg, it will no longer ftim%imhatthe
heap 309 // be updated if the destination's stack gets copied (shrunk). o
per-goroutine stacks 310 // So make sure that no preemption points can happen between read & use.
311 dst := sg.elem
12
1
1

¥
—

184 ”mlrjﬁiock(ic.‘lock]
panic(plainerror("send on closed channel))

}

if sg i= c.recvq.dequeue(); sg != nil {
// Found 3 waiting receiver. lie pass the value we want to send

99 // directly to the receiver, bypassing the channel buffer (if any).
- e e e e (T et e e, e T O

https://golang.org/src/runtime/chan.go

12277 entry poInt for ¢ <- X Trom COmpILEn Coue
123 //go:nosplit

124 func chansend1(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

}
f

* generic single channel send/recv
* If block is not nil,

[] 1
131 * then the protocol will not
132 * sleep but return if it could
133 * not complete.

HERBBSRR

*
* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
* the operation; we'll see that it's now closed.

— fu:\c chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) boel {
. - 141 if ¢ = nil {
° Y d . w2 if lblock {
Ou Can JUSt rea It' 295 // Sends and receives on unbuffered or empty-buffered channels are the
° htt // | / 296 /[only operations where one running goroutine writes to the stack of ?
ps' go ang'org S 297 /[another running goroutine. The GC assumes that stack writes only
. . 298 [/ happen when the goroutine is running and are only done by that
o Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for
300 // violating that assumption, but the write barrier has to work.)
301 // typedmemmove will call bulkBarrierPreWrite, but the target bytes
o . . iri lock.
302 [/ are not in the heap, so that will not help. We arrange to call e e
1at the channel i
303 // memmove and typeBitsBulkBarrier instead. Fvord.stzd resd
>0 1g on kind of channel).
304 :nding' to
B . . in the two observations,
stack| 305 func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) { I not yet closed

iannel at that moment,

D
(o))

// src is on our stack, dst is a slot on another stack.

T 307 it the channel is not
it implies that the
-------------- 308 // Once we read sg.elem out of sg, it will no longer mADH
. == Nl
309 // be updated if the destination's stack gets copied (shrunk).
, heap| _
per-goroutine stacks 310 // So make sure that no preemption points can happen between read & use.
311 dst := sg.elem
312 typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)
; 313 memmove(dst, src, t.size
G1 writes to G2's stack! 314} e)
184 i ”WVLIﬁiO(k(iC:lOCk]
185 panic(plainerror("send on closed channel®))
3)
Tra nSpUte rS did this in hardWa re in the 905 btw- i =,’5rzﬁ‘;g:eggi:ﬁ;lrzge:ecnui pass the value we want to send

99 // directly to the receiver, bypassing the channel buffer (if any).
101 candlr eca an Eiinel/N L oomlackils 1arky Y 2Y

https://golang.org/src/runtime/chan.go

77 ENTry poInT fOr ¢ <- X Trom COmpILEn COue
//go:nosplit

func chansendi(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

* generic single channel send/recv
If block is not nil,

then the protocol will not
sleep but return if it could
not complete.

Channel implementation

sleep can wake up g.param == nil

when a channel i d in the sleep has

* been it is easiest to loop and re-run
* the operation; we'll see that it's now closed.

%

)

func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) beol {

* You can just read it:

gopark(nil, nil, “chan send (nil chan)", traceevGoStop, 2)
throu("unreachable™)

e https://golang.org/src/runtime/chan.go

if debugChan {

* Some highlights:

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))

e Race detection built in

// Fast path: check for failed non-blocking operation without acquiring the lock.

° F h L3 . L3 k fter observing that the channel i
ready for sending. Each of L
ast path just write to receiver stac o sy, g erd st
st c.closed and second c.recy depending on kind of channel).
/ Because a closed channel cannot transition from 'ready for sending' to
L4 L4 l not ready for sending', even if the channel is closed between the two observations,
[] O te n a S n O Ca p a C I ty S C e u e r I n t hey imply a moment between the two when the channel was both not yet closed
* nd not ready for sending. We behave as if we observed the channel at that moment,
and report that the send cannot proceed.
[J

Buffered channel implementation fairly standard /1y 0 s s s 1 .t s

eady for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first observation.

if Iblock & c.closed == @ & ((c.datagsiz == @ & c.recvq.first == nil) ||
(c.datagsiz > @ & c.qgcount == c.datagsiz)) {

return false

var t@ ints4
if blockprofilerate > @ {
te = cputicks()

lock(&c.lock)

if c.closed != @ {
unlock(&c.lock)
panic(plainError("send on closed channel®))
}
if sg i= c.recvg.dequeue(); sg != nil {
ound a waiting receiver. We pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
condlr ea on Euncly £ unlacki®e lark) 1 32)

https://golang.org/src/runtime/chan.go

Go: Sliced Bread 2.07

33

Go: Sliced Bread 2.07

* Lacks compile-time generics

33

Go: Sliced Bread 2.07

* Lacks compile-time generics
* Results in code duplication

33

Go: Sliced Bread 2.07

* Lacks compile-time generics
e Results in code duplication
* Metaprogramming cannot be statically checked

33

Go: Sliced Bread 2.07

* Lacks compile-time generics
* Results in code duplication
* Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

33

Go: Sliced Bread 2.07

* Lacks compile-time generics
* Results in code duplication
* Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose

33

Go: Sliced Bread 2.07

* Lacks compile-time generics
* Results in code duplication
* Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms
* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

33

Go: Sliced Bread 2.07

* Lacks compile-time generics
* Results in code duplication
* Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

* Pauses and overhead of garbage collection

33

Go: Sliced Bread 2.07

* Lacks compile-time generics
* Results in code duplication
* Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

* Pauses and overhead of garbage collection

* Limit Go’s use in systems programming compared to languages with manual memory
management

33

Go: Sliced Bread 2.07

* Lacks compile-time generics
* Results in code duplication
* Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

Pauses and overhead of garbage collection

* Limit Go’s use in systems programming compared to languages with manual memory
management

Right tradeoffs? None of these problems have to do with concurrency!

33

Questions?

34

