GPUs going once...
GPUs going twice...
you get the idea

Chris Rossbach
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Outline for Today

* (Questions?

e Administrivia

 Start thinking about Projects!
* Exam not quite done...Tuesday for sure!

* Agenda

* GPU performance
* GPU advanced topics

* Divergence
e Device APIs vs Dataflow

*  Coherence

Acknowledgements:

e http://developer.download.nvidia.com/compute/developertrainingmaterials/presentatio

ns/cuda language/Introduction to CUDA C.pptx

e http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx

e http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.pptx

. Torﬁr(rﬁ)(d,t's 2013 paper
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Faux Quiz Questions

* How is occupancy defined (in CUDA nomenclature)?
* What’s the difference between a block scheduler (e.g. Giga-Thread Engine) and a warp scheduler?

* Modern CUDA supports UVM to eliminate the need for cudaMalloc and cudaMemcpy*. Under
what conditions might you want to use or not use it and why?

* What is control flow divergence? How does it impact performance?

* What is a bank conflict?

* What is work efficiency?

* What is the difference between a thread block scheduler and a warp scheduler?
* How are atomics implemented in modern GPU hardware?

* Howis _shared__ memory implemented by modern GPU hardware?

* Whyis shared _memory necessary if GPUs have an L1 cache? When will an L1 cache provide
all the benefit of __shared  memory and when will it not?

* |Is cudaDeviceSynchronize still necessary after copyback if | have just one CUDA stream?



How many threads/blocks?

cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;

cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;
add<<< >>>(d a, d b, d c);
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);
0;



How many threads/blocks?

// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;

// Launc ==
add<g< >>»(d_a, d b, d c);

// Copy result back to host

cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);

return 0O;




How many threads/blocks?

// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;

// Launc on GPU
add<k< >>»(d_a, d_ b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);

return 0;

e Usually things are correct if grid*block dims >= input size

* Getting good performance is another matter



Review: Internals

__host _global
void wvecAdd () void addKernel (float *A d,
{ float *B d,
dim3 DimGrid = (ceil(n/256,1,1); float *C d,
dim3 DimBlock = (256,1,1); int n){
addKernel<<<DGrid,DBlock>>>(A d4,B d4,C d,n); int i = blockIdx.x * blockDim.x
+ threadIdx.x;

}
if( i<n ) C_d[i] = A d[i]+B d[i];
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void wvecAdd () void addKernel (float *A d,
{ float *B d,
dim3 DimGrid = (ceil(n/256,1,1); float *C d,
dim3 DimBlock = (256,1,1); int n) {
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Kernel




Review: Internals

__host _global
void wvecAdd () void addKernel (float *A d,
{ float *B d,
dim3 DimGrid = (ceil(n/256,1,1); float *C d,
dim3 DimBlock = (256,1,1); int n) {
addKernel<<<DGrid,DBlock>>>(A d4,B d4,C d,n); int i = blockIdx.x * blockDim.x
} + threadIdx.x;
if( i<n ) C_d[i] = A d[i]+B d[i]:;
}

Schedule onto multiprocessors

How are threads

MO Mk scheduled?
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Thread Blocks
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SMs

Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

e SMis split blocks into warps
* Unit of HW scheduling for SM

e 32 threads each
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Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks
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IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks Remaining TBs are queued

%)
(%)

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

SMs split blocks into warps
Unit of HW scheduling for SM

32 threads each
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Hardware Resources Are Finite
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Hardware Resources Are Finite

Kernel Thread Block Control
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Hardware Resources Are Finite

{

Kernel
Distributor

SM '
Scheduler !

Occupancy:
* (#Active Warps) /(#MaximumActive Warps)

e Limits on the numerator:
* Registers/thread
* Shared memory/thread block
* Number of scheduling slots: blocks, warps

e Limits on the denominator:
* Memory bandwidth
e Scheduler slots

Thread Block Control
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Hardware Resources Are Finite
|

Kernel K Thread Block Control
Distributor d J_IJ Limits the #thread blocks
/ : >
¥ ,' TB O
SM
Scheduler ; Warp Schedulers
‘l' ‘l' \l: \l: Warp Context -l_ Limits the #threads
| | | | | | | |'I 1 -|

Occupancy:

* (#Active Warps) /(#MaximumActive Warps)

* Limits on the numerator:

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

* Registers/thread sp |[ sp ][ sp ][ sp
* Shared memory/thread block — Limits the #threads
* Number of scheduling slots: blocks, warps Register File B ,E _
Limits the #thread blocks
e Limits on the denominator: L1/Shared Memory >

* Memory bandwidth

* Scheduler slots What is the performance impact of varying kernel resource demands?
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Impact of Thread Block Size

Example: v100:
* max active warps/SM == 64 (limit: warp context)

!
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Limits the #thread blocks

Limits the #threads

s
Distributor
J TBO
SM
. Scheduler Warp Schedulers |
Impact of Thread Block Size P
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v
DRAM
\
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Example: v100:
* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)

Limits the #threads

Limits the #thread blocks
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Ke‘!'nel Thread Block Control
Distributor Limits the #thread blocks
J , TBO
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* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads 2>
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Impact of Thread Block Size

Example: v100:
* max active warps/SM == 64 (limit: warp context)
* max active blocks/SM == 32 (limit: block control)

Limits the #thread blocks

Limits the #threads
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* With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads 2>

* With 128 threads/block? =

Limits the #threads

Limits the #thread blocks



Impact of Thread Block Size

Example: v100:
* max active warps/SM == 64 (limit: warp context)
* max active blocks/SM == 32 (limit: block control)

Limits the #thread blocks

Limits the #threads

Kernel Thread Block Control
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* With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads 2>

* With 128 threads/block? =

Limits the #threads
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Thread Block Control

Kernel
Distributor Limits the #thread blocks
J TBO
SM
° Scheduler Warp Sche dulers |
In 1Pa ct of Thread Block Size T ey
[sm|[sm|{sm|[sm] ‘
I | I
¥
DRAM
Limits the #threads
. I Register File |——>
S SHesm SR Limits the #thread blocks
| /Shared Mem: | ——

Example: v100: "
* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads 2>
* With 128 threads/block? =
e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:
* Blocks are maxed out, but max active threads = 32*32 = 1024
e Occupancy =.5(1024/2048)




Impact of Thread Block Size

Example: v100:

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?

Limits the #thread blocks

Limits the #threads

|SM||SM||SM||SM|'

rrrrrrrrrrrrrrrrrr

* Max active warps * threads/warp = 64*32 = 2048 threads 2>

* With 128 threads/block? =

e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:

* Blocks are maxed out, but max active threads = 32*32 = 1024

e Occupancy =.5(1024/2048)

 To maximize utilization, thread block size should balance

e Limits on active thread blocks vs.
* Limits on active warps

Limits the #threads

Limits the #thread blocks
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Kernel ; Thread Block Control
Distributor Limits the #thread blocks
] TBO
Y

Impact of #Registers Per Thread  &@ds = 2

DRAM

allellelle
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Limits the #threads

. Register File —_
SM — Stream Multiprocessor

Limits the #thread blocks

SP— Stream Processor L1/Shared Memory —_—

Registers/thread can limit number of active threads!
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Impact of #Registers Per Thread

Registers/thread can limit number of active threads!
V100:
* Registers per thread max: 255

Kernel
Distributor

Scheduler

DRAM

eam Multiprocessor

rrrrrrrrrrrrrrrrrr

SEEE

oooooooooooooooooo

Lim

Lim

its the #ithread blocks

its the #ithreads

imits the #threads

imits the #thread blocks
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Kernel
Distributor Limits the #thread blocks

oooooooooooooooooo

Scheduler

Impact of #Registers Per Thread  &@ds = 2

DRAM

imits the #threads

SSSSSSSSS -
rrrrrrrrrrrrrrr imits the #thread blocks

rrrrrrrrrrrrrrrrrr

Registers/thread can limit number of active threads!
V100:

* Registers per thread max: 255

* 64K registers per SM
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Impact of

Registers Per Thread

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

DRAM

SM — Stream Multiprocessor
SP— Stream Processor

SEEE

Thread Block Control |

Limits the #thread blocks

TBO

Warp Schedulers

Warp Context

Limits the #threads

Si
S|
Si

P
P
P
P

P
P
P
= P

r File
L1/Shared Memory —_>

(=[]0 ]
15315 I
E

Limits the #threads

Limits the #thread blocks
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Kernel
Distributor

Scheduler

Impact of #Registers Per Thread

DRAM

SM — Stream Multiprocessor
SP— Stream Processor

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

Warp Schedulers

Thread Block Control

TBO

Limits the #thread blocks

Limits the #threads

L1/Shared Memory —_>

Limits the #threads

Limits the #thread blocks



Impact of #Registers Per Thread &g

DRAM

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM

» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?

Thread Block Control |

Limits the #thread blocks

Limits the #threads

Register File
L1/Shared Memory —_>

Limits the #threads

Limits the #thread blocks



Impact of #Registers Per Thread &g

DRAM

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM

» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?
e Recall: granularity of management is a thread block!

Thread Block Control |

Limits the #thread blocks

Limits the #threads

Register File
L1/Shared Memory —_>

Limits the #threads

Limits the #thread blocks



el ; Thread Block Control |
utor Limits the #thread blocks

uler

Impact of #Registers Per Thread &g

DRAM

Limits the #threads

Limits the #threads

Limits the #thread blocks

) Register File
—St tiprocessor
SP— Stream Processor L1/Shared Memory —_—

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?
e Recall: granularity of management is a thread block!
* Loss of concurrency of 256 threads!
» 34 regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,
* 8 blocks would over-subscribe register file
e Occupancy drops to .875!



Impact of Shared Memory

e Shared memory is allocated per thread block
e Can limit the number of thread blocks executing concurrently per SM
* Shared mem/block * # blocks <= total shared mem per SM

* gridDim and blockDim parameters impact demand for
* shared memory
* number of thread slots
* number of thread block slots



Balance

Shared
memory/Th
read block

#Threads/Bl
ock

#Thread #HRegisters/T
Blocks hread

« Navigate the tradeoffs
maximize core utilization and memory bandwidth utilization
Device-specific

« Goal: Increase occupancy until one or the other is saturated



Balance

template < class T >
__host__

RN RN

cudaOccupancyMaxActiveBlocksPerMultiprocessor ( int* numBlocks, T func, int blockSize, size_t dynamicSMemSize ) [inline]

Returns occupancy for a device function.

Parameters

numBlocks

- Returned occupancy
func

- Kernel function for which occupancy is calulated
blockSize

- Block size the kernel is intended to be launched with
dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes

« Navigate the tradeoffs

maximize core utilization and memory bandwidth utilization
Device-specific

Goal: Increase occupancy until one or the other is saturated

17



Parallel Memory Accesses

* Coalesced main memory access (16/32x faster)
* HW combines multiple warp memory accesses into a single coalesced access

* Bank-conflict-free shared memory access (16/32)

* No alignment or contiguity requirements
e CC 2.x+3.0: 32 different banks + 1-word broadcast each



Parallel Memory Architecture

In a parallel machine, many threads access memory
 Therefore, memory is divided into banks
* Essential to achieve high bandwidth

Each bank can service one address per cycle

« A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

* Conflicting accesses are serialized

19



Coalesced Main Memory Accesses

single coalesced access

NVIDIA

Address 132

Address 136

Address 156

L
‘ Thread 8 + Address 164 ‘ Thread 8 + Address 164
‘ Thread 10 v Address 168 ‘ Thread 10 b Address 168
‘ Thread 11 + Address 172 ‘ Thread 11 + Address 172
‘ Thread 12 + Address 176 ‘ Thread 12 t Address 176
‘ Thread 13 L Address 180 ‘ Thread 13 Address 180
‘ Thread 14 + Address 184 ‘ Thread 14 + Address 184
‘ Thread 15 + Address 188 ‘ Thread 15 L Address 188

NVIDIA

one and two coalesced accesses™

Address 128

% Address 132

Address 136

k Address 148

t Address 152

h Address 160

k Address 164

h Address 168

Thread 12 ‘

M Address 172

b Address 176

Thread 13

Address 180

Thread 14

Address 184

Thread 15

Address 188

20



Bank Addressing Examples

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

e No Bank Conflicts

Linear addressing
stride ==

e No Bank Conflicts
e Random 1:1 Permutation

Thread 0

Thread 1 4
Thread 2 ‘
Thread 3 ‘
Thread 4 ‘
Thread 5

Thread 6
Thread 7

Thread 15

ph

21




Bank Addressing Examples

* 2-way Bank Conflicts

 Linear addressing
stride ==

Thread O

Thread 1 ‘
Thread 2 ~
Thread 3 "

Thread 8 >
Thread 9

Thread 10
Thread 11 Bank 15

e 8-way Bank Conflicts

 Linear addressing
stride ==

Thread O
Thread 1

Thread 2 |

Thread 3 ’
Thread 4 '
Thread 5 ,\
Thread 6 »

Thread 7

x8

Thread 15

22




Linear Addressing

e Q@Given:

~ _shared  float shared[256];
float foo =

shared|[baselndex + s *
threadldx.x];

* This is only bank-conflict-free if s
shares no common factors with the
number of banks

e 16 on G80, so s must be odd

23

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2

Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15




IGPU Atomics & Divergence
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IGPU Atomics & Divergence

Race conditions —
 Traditional locks: avoid!
* How do we synchronize?

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
* “Fire-and-forget”



double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(8locked, 1) != 0)

J

.. double old = *data;
Race conditions — *data = old + val;

locked = 0;
* Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()

atomicSub () atomicDec ()

atomicMin () atomicExch ()
()

atomicMax atomicCAS ()

Implemented as write-through to L2
* “Fire-and-forget”



double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(8locked, 1) != 0)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

* Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()

atomicSub () atomicDec ()

atomicMin () atomicExch ()
()

atomicMax atomicCAS ()

Implemented as write-through to L2
* “Fire-and-forget”



double atomicAdd(double *data, double val)
{

IGPU Atomics & Di\/er while(atomicExch(8locked, 1) != 0)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

* Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()

«———— Warp of Threads ) E_dev1ce__ void example(bool condition)

§ s scove [TTTTTTTTTTTTTTT] $#(condition)

Some active VAZ‘-Z'Z%Q%%.II..I.I run_this first();

I else

Dthers active ........:"’Aiﬁﬁﬁ‘zﬂﬁnﬁg then_run_this();

Mtactve [TTTTTTTTTTTTTTT] converged_again();



double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(8locked, 1) != 0)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

* Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()

atomicSub () atomicDec ()

atomicMin () atomicExch ()
()

atomicMax atomicCAS ()

Implemented as write-through to L2
* “Fire-and-forget”



double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(8locked, 1) != 0)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

* Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

at Every thread C ( )

oRE  tries to lock o ( )

a t But only one  FAFATA .EE 77 C h ( )
succeeds EEESEAL e VAN AN,

at Locking thread Non-locked S ( )

continues threads idle
until unlock



double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(8locked, 1) != 0)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

* Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

at Omi CAdd ( ) Every thread
atomicSub () wiestotock LIITTTTTTTTTTTTTT] ontaced
. : threads

at Om_-f_ cMin ( ) BUtS%rélgeZZi D]I:m retry first
atomicMax () l Locking thread

idles
Implemented as write-throug l
¢ “ Fi re_a n d _fo rget” Unlock Never

Happens



Advanced Topic: GPU Programming Models



Layered abstractions
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Layered abstractions

Hardware

interface ~ -

/O dev DISK

U

e

MH
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Layered abstractions

Hardware

interface —~—

= C /O dev DISK

3/14/23



Layered abstractions

process files user-mode

LIBC/CLR Runtimes/libs

_ _ OS-level
process files pipes abstractions

vendor driver | vendor driver | vendor driver }

Josn

EIIEY

3/14/23



Layered abstractions

programmer-

visible interface process files user-mode

: !
LIBC/CLR Runtimes/libs

OS interface OS-level

vendor driver | vendor driver | vendor driver }

* 1:1 correspondence between OS-level and user-level abstractions
* Diverse HW support enabled HAL

Josn

uio

|°

3/14/23



GPU abstractions

MH

3/14/23



GPU abstractions

Hardware
interface

/V\I-\il'

3/14/23



GPU abstractions

GPGPU shaders language
APls kernels integration

GPU Runtime (e.g. OpenCL)

Josn

~— Runtime
support
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GPU abstractions

programmer-
visible interface

GPU Runtime (e.g. OpenCL)

_—

GPGPU shaders language
APIs kernels integration

3/14/23

~— Runtime
support




GPU abstractions

_—

programmer-
visible interface GPGPU shaders language
APIs kernels integration
GPU Runtime (e.g. OpenCL)
1 OS-level
ion!

abstraction! \)7@- F

®
Fat driver, >

proprietary =—

interfaces

MH

3/14/23
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GPU abstractions

~— Runtime
support

programmer- — — —
visible interface -— GPGPU shaders language
§ APls kernels integratjon
- GPU Runtime (e.g. OpenCL)
1 OS-level
ion!
abstraction! \>§ T [ mmap ] T
Fat driver, (5;
proprietary =—— B
interfaces
T
=

No kernel-facing API

OS resource-management limited
Poor composability

3/14/23



No OS support -> No isolation

GPU benchmark throughput

5 1200

[

S 1000

(]

(V)]

o 800

&

o 600

)

S

(>) 400

£

200

. - O
Higher is no CPU load high CPU load
better

* Image-convolution in CUDA
* Windows 7 x64 8GB RAM

* Intel Core 2 Quad 2.66GHz
* nVidia GeForce GT230

3/14/23



No OS support -> No isolation

GPU benchmark throughput

1200

©
C
O 1000
A
g_ 800
c
O 600
)
O
(>) 400
=

200
. . O

Higher is no CPU load high CPU load

better

ge-convolution in CUDA
dows 7 x64 8GB RAM

| Core 2 Quad 2.66GHz
dia GeForce GT230

3/14/23

CPU+GPU schedulers not integrated!
...other pathologies abundant



Composition: Gestural Interface

Raw images
“*Hand"”

xform filter

3/14/23



Composition: Gestural Interface

Raw images
“*Hand"”

events

|

noisy point cloud
capture camera

images flter
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Composition: Gestural Interface

Raw images
“*Hand"”

events

A G —

noisy point cloud

xform filter

geometric

transformation
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Composition: Gestural Interface

Raw images
“*Hand"”

events

—

noisy point cloud

xform filter
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Composition: Gestural Interface

Raw images
“*Hand"”

events

|

noisy point cloud

detect gestures

xform

3/14/23



Composition: Gestural Interface

Raw images
“*Hand"”

xform filter

3/14/23



Composition: Gestural Interface

Raw images
“*Hand"”

events

noisy point cloud

xform ~ filter

» Requires OS mediation

» High data rates

» Abundant data parallelism
...use GPUs!

3/14/23



What We’d Like To Do

#> capture | xform | filter | detect &

» Modular design
» flexibility, reuse
» Utilize heterogeneous hardware
» Data-parallel components -2 GPU
» Sequential components = CPU
» Using OS provided tools
» processes, pipes

3/14/23



What We’d Like To Do

#> capture | xform | filter | detect &
CPU CPU

» Modular design
» flexibility, reuse
» Utilize heterogeneous hardware
» Data-parallel components -2 GPU
» Sequential components = CPU
» Using OS provided tools
» processes, pipes

3/14/23



GPU Execution model

= GPUs cannotrun OS:

= different ISA

* Memories have different coherence guarantees
- (disjoint, or require fence instructions)

= Host CPU must "manage” GPU execution

Program inputs explicitly transferred/bound at runtime
Device buffers pre-allocated

Main
memory

Copy inputs Copy outputs Send commands

GPU

3/14/23

GPU
memory




GPU Execution model

= GPUs cannotrun OS:

= different ISA

* Memories have different coherence guarantees
- (disjoint, or require fence instructions)

= Host CPU must "manage” GPU execution

Program inputs explicitly transferred/bound at runtime
Device buffers pre-allocated

Main

memory

Copy inputs T Copy outputs lSend commands

GPU

3/14/23

memory




user

kernel

HW

Data migration

#> capture | | detect &

GPU driver

detect

HIDdrv

3/14/23



user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

HIDdrv
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user

kernel

HW

Data migration

#> capture |

capture

E 2

| detect &

GPU driver

filter

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

copy-xfer

YV EE—

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

copy-xfer

YV EE—

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

filter

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

filter

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

filter

GPU driver

copy-xfer

YV EE—

1 4

detect

HIDdrv
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Data migration

#> capture | | | detect &
filter
g
D
K]
-
9

GPU driver

HW

YV EE— N 7

detect

HIDdrv

copy-xfer

3/14/23



user

kernel

HW

Data migration

#> capture | | | detect &

filter

GPU driver

YV EE— N 7

copy-xfer

detect

HIDdrv

3/14/23



user

kernel

HW

Data migration

#> capture | | | detect &

GPU driver

detgct

HIDdrv

3/14/23




user

kernel

HW

Data migration

#> capture | | | detect &

GPU driver

detect

3/14/23



Device-centric APIs considered harmful

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
1nvokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

3/14/23



Device-centric APIs considered harmful

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
1nvokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

What happens if | want the following?
MatrixD=AxB xC

3/14/23



Composed matrix multiplication

Matrix
AxXBxC(Matrix A, B, C) {
Matrix AxB = gemm(A,B);
Matrix AxXBXC = gemm(AxB,C);
AXBXC;

3/14/23



Composed matrix multiplication

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix(Q);
copyFromGPU(C);

Matrix "

AxXBxC(Matrix A, B, C) { }
Matrix AxB = gemm(A,B);
Matrix AxXBXC = gemm(AxB,C);

AXBXC;

3/14/23



Composed matrix multiplication

Matrix
] gemm(Matrix A, Matrix B) {
AxB copied from copyTOGPuEAg;
ToGPU(B) ;
GPU memory... TnvokeGPUO)

_ Matrix C = new-Matrix();
Matrix 2 '
AxBxC(Matrix¥A, B, C) { } |

Matrix = gemm(A,B) ;
Matrix AXBXC = gemm(AxB,C);
AXBXC;

3/14/23



Composed matrix multiplication

Matrix
AXBxC(Matrix A, B, C) {
Matrix AxB = gemm(A,B);
Matrix AxXBXC = gemm(
AXBXC:;

Matrix
gemmi{viatrix A, Matrix B) {

copyToGPU(B) ;
invokeiPU();
Matrix C = new Matrix(Q);

copyFromGPU(C);
C;

,C);

...only to be copied
right back!

3/14/23



What if I have many GPUs?

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
1nvokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

3/14/23



What if I have many GPUs?

Matrix

gemm(GPU dev,Matrix A, Matrix B) {
copytToGPU(dev, A);
copyToGPU(dev, B);
1nvokeGPU(dev) ;
Matrix C = new Matrix();
copyFromGPU(dev, C);

C;

3/14/23



What if I have many GPUs?

Matrix

gemm(GPU dev,Matrix A, Matrix B) {
copytToGPU(dev, A);
copyToGPU(dev, B);
1nvokeGPU(dev) ;
Matrix C = new Matrix();
copyFromGPU(dev, C);

C;

What happens if | want the following?
MatrixD=AxB xC

3/14/23



Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
C;

Matrix
AxBxC(Matrix A,B,C) {
Matrix AxB = gemm( , A,B);
Matrix AxXBXC = gemm( , AXB,C);
AXBXC;

3/14/23



Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
C;

Matrix
AXBXC(GPU dev, Matrix A,B,C) {
Matrix AxB = gemm(dev, A,B);
Matrix AxXBXxC = gemm(dev, AxB,C);
AXBXC;

3/14/23



Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)
{
copyToGPU(A) ;
Rats...now | can CopyToGPU(B) ;
only use 1 GPU. invokeGPUQ) ;

Matrix C = new Matrix();
copyFromGPU(C) ;
C;

How to partition
computation?

Matrix
AXBXC(GPU dev, Matrix A,B,C) {
Matrix AxB = gemm(dev, A,B);
Matrix AxXBXxC = gemm(dev, AxB,C);
AXBXC;

3/14/23



Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
C;

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AxB = gemm(devA, A,B);
Matrix AxBxC = gemm(devB, AxB,C);
AXBXC;

3/14/23



Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{

This will never be COPYF’SEB EAB\g ;
copylo ’
manageable fon_’ many GPUs. invokeGPUQ) :
Programmer implements Matrix C = new Matrix();
scheduling using static view! copyFromGPU(C) ;
G

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AxB = gemm(devA, A,B);
Matrix AxBxC = gemm(devB, AxB,C);
AXBXC;

3/14/23



Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{

This will never be COPYPE'ES E‘B\g ;
copylo ’
manageable for many GPUs. invokeGPUQ) :
Programmer implements Matrix C = new Matrix();
scheduling using static view! copyFromGPU(C) ;
C;

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AxB = gemm(devA, A,B);
Matrix AxBxC = gemm(devB, AxB,C);
AXBXC;

¥ Why don’t we have this problem with CPUs?

3/14/23




Dataftlow: a better abstraction

Matrix: A Matrix: B

Matrix: C

= nodes = computation
= edges = communication

= Expresses parallelism explicitly
= Minimal specification of data movement: runtime does it.

= asynchrony is a runtime concern (not programmer concern)
= No specification of compute—>device mapping: like threads!

3/14/23



Advanced Topic: GPU Coherence



Review: Cache Coherence

Tag State Data

/'O devices




Review: Cache Coherence

Tag State Data

/'O devices




Review: Cache Coherence

Tag State Data

/'O devices

Each cache line has a state (M, E, S, I)



Review: Cache Coherence

Tag State Data

/'O devices

Each cache line has a state (M, E, S, I)
* Processors “snoop” bus to maintain states



Review: Cache Coherence

Tag State Data

/'O devices

Each cache line has a state (M, E, S, I)
= Processors “snoop” bus to maintain states
= Initially = 'I" = Invalid



Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

/'O devices

Each cache line has a state (M, E, S, I)
* Processors “snoop” bus to maintain states
= Initially = 'I" = Invalid
= Readone =2 'E’' =2 exclusive



Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

/'O devices

Each cache line has a state (M, E, S, |)
* Processors “snoop” bus to maintain states
= Initially = 'I" = Invalid
= Readone =2 'E’' =2 exclusive
= Reads =2 'S’ 2 multiple copies possible
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/'O devices
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= Initially = 'I" = Invalid
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= Reads =2 'S’ 2 multiple copies possible

=  Write = ‘M’ = single copy =2 lots of cache coherence traffic



Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

/'O devices

Each cache line has a state (M, E, S, I)
* Processors “snoop” bus to maintain states

= Initially = 'I" = Invalid

= Readone =2 'E’' =2 exclusive

= Reads =2 'S’ 2 multiple copies possible

=  Write = ‘M’ = single copy =2 lots of cache coherence traffic



GPU Cache Coherence Challenges

« Challenge 1: Coherence traffic

No coherence

I MESI

B GPU-VI

Q
=
-—

©

—
—
-—

Q

mﬂ

c

c

o

o

—

Q
—
=

N

-

-
8y

Do not require
coherence

Recalls

Load C
Load D
Load E
Load F
Load C
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GPU Cache Coherence Challenges

« Challenge 2: Tracking in-flight requests
« Significant % of L2




Background: Directory Protocol

= For each block: centralizec Pprsence b ndicate hether pcessor P
“d I re Cto ry” fo r State I n Ca C 1 eS Dirty bit: indicates block is dirty —

in one of the processors’ caches

= Directory is co-located with Loca ache
some global view of memory

Onedirectoryentryper — |0 CIT T T [ T 1 1]

cache line of memory

= Requests are no longer seen
by eve ryone One cache line of memory ——J

Writes are serialized through

directory

3/14/23




GPU-VI

GPU-VI Coherence

» Directory-Based c1li pir fic2

Different from snoop-model

Global directory metadata at L2
= Two states

Valid

Invalid

<
3]
o]
o
()
>
c
?
©
@
o
S

= Writes invalidate other copies
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Temporal Coherence (TC)

GPU-VI Coherence Temporal Coherence

G load,
predict|R | Local Timestamp
@ T° =15 5 Ioacfe ! %
\ _ predict

Aa(a'l“ T=20 e > Global Time - VALID
R ore -
k L1ID |

Interconnect

T 20

read-only epoch

invalidate

x self- '

0 invalidate
store

~

—25 778

read-only epoch

Global Timestamp

L2 Bank

ﬁ < Global Time >

NO L1 COPIES

G




TC-Strong vs TC-Weak

D Write stalling at L2 (TC-Strong)

l]]]Il] Fence waiting for pending requests (both)
D Fence waiting for GWCT (TC-Weak)

TC-Strong TC-Weak

cijf L2 ez c1jf L2 oz

081 flag data flag data
1

- NuLL | 60| Lo | 30 ~ NuLL | 60| [oLD | 30 =NO-L1 @NO-COH OMESI =GPU-VI sGPU-VIni mTCW

W

self-
invalidate : invalidate

TTTT AT ITITITIITITITITITII S

V2720222222222 2222222222

FETTETT GGG T TG TE TG TS
VITTITTTITTTTTTTTTITTTTTTT T

11]
-d
(a]

(a) Inter-workgroup comm.  (b) Intra-workgroup comm.

invalidate

C1's requests C2's private cache C1's requests C2's private cache
blocks state blocks state
(value | timestamp ) (value | timestamp )
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