GPUs going once...
GPUs going twice...
you get the idea

Chris Rossbach
cs3/8

D/
T

LD/ LD/ LD/ LD/
ST ST ST ST

LD/ LD/

ST

ST

i 232

Outline for Today

* (Questions?

e Administrivia

 Start thinking about Projects!
* Exam not quite done...Tuesday for sure!

* Agenda

* GPU performance
* GPU advanced topics

* Divergence
e Device APIs vs Dataflow

* Coherence

Acknowledgements:

e http://developer.download.nvidia.com/compute/developertrainingmaterials/presentatio

ns/cuda language/Introduction to CUDA C.pptx

e http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx

e http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.pptx

. Torﬁr(rﬁ)(d,t's 2013 paper

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx
http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx
http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx
http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.pptx

Faux Quiz Questions

* How is occupancy defined (in CUDA nomenclature)?
* What’s the difference between a block scheduler (e.g. Giga-Thread Engine) and a warp scheduler?

* Modern CUDA supports UVM to eliminate the need for cudaMalloc and cudaMemcpy*. Under
what conditions might you want to use or not use it and why?

* What is control flow divergence? How does it impact performance?

* What is a bank conflict?

* What is work efficiency?

* What is the difference between a thread block scheduler and a warp scheduler?
* How are atomics implemented in modern GPU hardware?

* Howis _shared__ memory implemented by modern GPU hardware?

* Whyis shared _memory necessary if GPUs have an L1 cache? When will an L1 cache provide
all the benefit of __shared memory and when will it not?

* |Is cudaDeviceSynchronize still necessary after copyback if | have just one CUDA stream?

How many threads/blocks?

cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;

cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;
add<<< >>>(d a, d b, d c);
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);
0;

How many threads/blocks?

// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;

// Launc ==
add<g< >>»(d_a, d b, d c);

// Copy result back to host

cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);

return 0O;

How many threads/blocks?

// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;

// Launc on GPU
add<k< >>»(d_a, d_ b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);

return 0;

e Usually things are correct if grid*block dims >= input size

* Getting good performance is another matter

Review: Internals

__host _global
void wvecAdd () void addKernel (float *A d,
{ float *B d,
dim3 DimGrid = (ceil(n/256,1,1); float *C d,
dim3 DimBlock = (256,1,1); int n){
addKernel<<<DGrid,DBlock>>>(A d4,B d4,C d,n); int i = blockIdx.x * blockDim.x
+ threadIdx.x;

}
if(i<n) C_d[i] = A d[i]+B d[i];

Review: Internals

__host _global
void wvecAdd () void addKernel (float *A d,
{ float *B d,
dim3 DimGrid = (ceil(n/256,1,1); float *C d,
dim3 DimBlock = (256,1,1); int n) {
addKernel<<<DGrid,DBlock>>>(A d4,B d4,C d,n); int i = blockIdx.x * blockDim.x
} + threadIdx.x;
if(i<n) C_d[i] = A d[i]+B d[i]:;
}

Kernel

Review: Internals

__host _global
void wvecAdd () void addKernel (float *A d,
{ float *B d,
dim3 DimGrid = (ceil(n/256,1,1); float *C d,
dim3 DimBlock = (256,1,1); int n) {
addKernel<<<DGrid,DBlock>>>(A d4,B d4,C d,n); int i = blockIdx.x * blockDim.x
} + threadIdx.x;
if(i<n) C_d[i] = A d[i]+B d[i]:;
}

Schedule onto multiprocessors

How are threads

MO Mk scheduled?

IThread Blocks, Warps, Scheduling

IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

Register File

SMs

Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

e SMis split blocks into warps
* Unit of HW scheduling for SM

e 32 threads each

IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory L1 Cache/Shared Memory

SM_0 SM_1 SM_12

e SMis split blocks into warps
* Unit of HW scheduling for SM

e 32 threads each

IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory L1 Cache/Shared Memory

SM_0 SM_1 SM_12

e SMis split blocks into warps
* Unit of HW scheduling for SM

e 32 threads each

IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

%)
(%)

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

SMs split blocks into warps
Unit of HW scheduling for SM

32 threads each

IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks Remaining TBs are queued

%)
(%)

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

SMs split blocks into warps
Unit of HW scheduling for SM

32 threads each

GPU Performance Metric: Occupancy

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared

* how to reason about resource demands of a CUDA kernel @iy
* Enables device-specific online tuning of kernel parameter{ {ilEEEEEE st =

Review: GPU Performance Metric: Occupancy

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

12

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared

* how to reason about resource demands of a CUDA kernel @iy
* Enables device-specific online tuning of kernel parameter{ {ilEEEEEE st =

Hardware Resources Are Finite

{

Kernel , Thread Block Control
Distributor =
¥ TB O J—IJ
SM /
Scheduler I,’I Warp Schedulers

‘l’ ‘l’ ‘l’ ‘l’ /, Warp Context
1

1
1
SM SM SM SM

| | | | \ SP SP SP SP
v ‘\\ SP SP SP SP

\

\
DRAM Y SP SP SP SP
\ sp || sp || sp | sp

Register File

SM — Stream Multiprocessor

SP — Stream Processor \ L1/Shared Memory

Hardware Resources Are Finite
¢ |

Kernel
Distributor

v

SM
Scheduler

v v

v

Thread Block Control

Limits the #thread blocks

B0

}

Warp Schedulers

Warp Context

SM SM

SM

v

DRAM

SM — Stream Multiprocessor

SP — Stream Processor

SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP

Register File

L1/Shared Memory

>

Hardware Resources Are Finite
¢ |

Kernel
Distributor

v

SM
Scheduler

v v

v

Thread Block Control

Limits the #thread blocks

B0

}

Warp Schedulers

Warp Context

SM SM

SM

v

DRAM

SM — Stream Multiprocessor

SP — Stream Processor

SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP
Register File

L1/Shared Memory

>

Limits the #threads
S

Hardware Resources Are Finite
¢

Kernel ,'I Thread Block Control
Distributor = Limits the #thread blocks
¥ TB O J—IJ >
SM
Scheduler I,’I Warp Schedulers

Limits the #threads

‘l’ ‘l’ ‘l’ ‘l’ ,’I | Warp Context -I-_|

1

SM|[SM|[SM || Sm '
| | | | \ SP SP SP SP
v ‘\\ sp || sp || sPp || sP
DRAM \‘\ SP SP SP SP
" sp || sp || sp [] sp

Limits the #threads
| Register File ——
SM — Stream Multiprocessor \

SP — Stream Processor \ L1/Shared Memory

Hardware Resources Are Finite

Kernel Thread Block Control
Distributor A J_IJ Limits the #thread blocks
' >
¥ TB 0
SM
Scheduler Warp Schedulers
‘l: ‘l: ‘l: ‘l: Warp Context Limits the #threads
—
SM SM SM SM
I I I I SP SP SP SP
v sp |[sp | sp][sp
DRAM SP SP SP SP
SP SP SP SP
Limits the #threads
- Register File —
SM - Stream Multiprocessor Limits the #thread blocks
SP — Stream Processor \ L1/Shared Memory >

Hardware Resources Are Finite

{

Kernel
Distributor

SM '
Scheduler !

Occupancy:
* (#Active Warps) /(#MaximumActive Warps)

e Limits on the numerator:
* Registers/thread
* Shared memory/thread block
* Number of scheduling slots: blocks, warps

e Limits on the denominator:
* Memory bandwidth
e Scheduler slots

Thread Block Control

Limits the #thread blocks

B0

}

Warp Schedulers

Warp Context

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

Register File

L1/Shared Memory

>

Limits the #threads
S

Limits the #threads
—>

Limits the #thread blocks

>

Hardware Resources Are Finite
|

Kernel K Thread Block Control
Distributor d J_IJ Limits the #thread blocks
/ : >
¥ ,' TB O
SM
Scheduler ; Warp Schedulers
‘l' ‘l' \l: \l: Warp Context -l_ Limits the #threads
| | | | | | | |'I 1 -|

Occupancy:

* (#Active Warps) /(#MaximumActive Warps)

* Limits on the numerator:

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

* Registers/thread sp |[sp][sp][sp
* Shared memory/thread block — Limits the #threads
* Number of scheduling slots: blocks, warps Register File B ,E _
Limits the #thread blocks
e Limits on the denominator: L1/Shared Memory >

* Memory bandwidth

* Scheduler slots What is the performance impact of varying kernel resource demands?

Impact of Thread Block Si

VAS

!

Kernel
Distributor

SM
Scheduler

v

Thread Block Control

Limits the #thread blocks

TBO

Warp Schedulers

Warp Context

Limits the #threads

[sm|[sm||sm
[| I |
v

DRAM

SM — Stream Multiprocessor

SP— Stream Processor

[sm]

Register File

L1/Shared Memory

>

Limits the #threads

+—

Limits the #thread blocks

-

14

Impact of Thread Block Si

Example: v100:

VAS

!

Kernel
Distributor

SM
Scheduler

v

Thread Block Control

Limits the #thread blocks

TBO

Warp Schedulers

Warp Context

Limits the #threads

[sm|[sm||sm
[| I |
v

DRAM

SM — Stream Multiprocessor

SP— Stream Processor

[sm]

Register File

L1/Shared Memory

>

Limits the #threads

+—

Limits the #thread blocks

1

14

Impact of Thread Block Size

Example: v100:
* max active warps/SM == 64 (limit: warp context)

!

Kernel
Distributor

SM
Scheduler

Thread Block Control

Limits the #thread blocks

TBO

Warp Schedulers

Warp Context

Limits the #threads

T
T
T

lj

[sm|[sm|{sm|[sm]

I
07

DRAM

SM — Stream Multiprocessor

SP— Stream Processor

allellelle
Sfl=[|®|]|®
ollellelle
Sfl=||®|]|®
allellelle
Sfl%||®|]|®
allellelle
S(lo||®|]|®

I Register File

| L1/Shared Memory

>

Limits the #threads

+—

Limits the #thread blocks

| +—

14

Limits the #thread blocks

Limits the #threads

s
Distributor
J TBO
SM
. Scheduler Warp Schedulers |
Impact of Thread Block Size P
[sm|[sm|{sm|[sm]
[I | I
v
DRAM
\
3 Register File |—
sssssssssssssssssssssss
rrrrrrrrrrrrrrrrrrrr /sharedMemory | —

Example: v100:
* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)

Limits the #threads

Limits the #thread blocks

14

Ke‘!'nel Thread Block Control
Distributor Limits the #thread blocks
J , TBO
SM
° Schedul] Warp Sche dulers |
Impact of Thread Block Size s e e I T
[sm|[sm|{sm|[sm] T
[I | I
¥
DRAM
Limits the #threads
. I Register File |——>
Exa m |e -V 100 . R A S Limits the #thread blocks
° ° SP— Stream Processor | L1/Shared Memory | —_

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads 2>

Ke‘!'nel Thread Block Control
Distributor Limits the #thread blocks
J , TBO
SM
° Schedul] Warp Sche dulers |
Impact of Thread Block Size s e e I T
[sm|[sm|{sm|[sm] T
[I | I
¥
DRAM
Limits the #threads
. I Register File |——>
Exa m |e -V 100 . R A S Limits the #thread blocks
° ° SP— Stream Processor | L1/Shared Memory | —_

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads 2>

Impact of Thread Block Size

Example: v100:
* max active warps/SM == 64 (limit: warp context)
* max active blocks/SM == 32 (limit: block control)

Limits the #thread blocks

Limits the #threads

Kernel Thread Block Control
Distributor
J TBO
SM
Scheduler] Warp Sche dulers |
I I Warp Context I'I-I_I

SM — Stream Multiprocessor

rrrrrrrrrrrrrrrrrr

:
.

* With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads 2>

* With 128 threads/block? =

Limits the #threads

Limits the #thread blocks

Impact of Thread Block Size

Example: v100:
* max active warps/SM == 64 (limit: warp context)
* max active blocks/SM == 32 (limit: block control)

Limits the #thread blocks

Limits the #threads

Kernel Thread Block Control
Distributor
J TBO
SM
Scheduler] Warp Sche dulers |
I I Warp Context I'I-I_I

SM — Stream Multiprocessor

rrrrrrrrrrrrrrrrrr

:
.

* With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads 2>

* With 128 threads/block? =

Limits the #threads

Limits the #thread blocks

Thread Block Control

Kernel
Distributor Limits the #thread blocks
J TBO
SM
° Scheduler Warp Sche dulers |
In 1Pa ct of Thread Block Size T ey
[sm|[sm|{sm|[sm] ‘
I | I
¥
DRAM
Limits the #threads
. I Register File |——>
S SHesm SR Limits the #thread blocks
| /Shared Mem: | ——

Example: v100: "
* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads 2>
* With 128 threads/block? =
e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:
* Blocks are maxed out, but max active threads = 32*32 = 1024
e Occupancy =.5(1024/2048)

Impact of Thread Block Size

Example: v100:

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?

Limits the #thread blocks

Limits the #threads

|SM||SM||SM||SM|'

rrrrrrrrrrrrrrrrrr

* Max active warps * threads/warp = 64*32 = 2048 threads 2>

* With 128 threads/block? =

e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:

* Blocks are maxed out, but max active threads = 32*32 = 1024

e Occupancy =.5(1024/2048)

 To maximize utilization, thread block size should balance

e Limits on active thread blocks vs.
* Limits on active warps

Limits the #threads

Limits the #thread blocks

Impact of

Registers Per Thread

y

Kernel
Distributor

!

SM
Scheduler

Thread Block Control

Limits the #thread blocks

TBO

Warp Schedulers

Limits the #threads

SET

DRAM

SM — Stream Multiprocessor

SP— Stream Processor

Warp Context ﬂ

S|

o e —"
L1/Shared Memory —_>

Limits the #threads

Limits the #thread blocks

15

y

Kernel ; Thread Block Control
Distributor Limits the #thread blocks
] TBO
Y

Impact of #Registers Per Thread &@ds = 2

DRAM

allellelle
Sl1el1%]|]®
allellelle
Sl|1el|%|]|®
allellelle
Sl|1e]|%]|]|®
aollellelle
Sl|e||%]|]|®

Limits the #threads

. Register File —_
SM — Stream Multiprocessor

Limits the #thread blocks

SP— Stream Processor L1/Shared Memory —_—

Registers/thread can limit number of active threads!

15

y

Kernel ; Thread Block Control
Distributor Limits the #thread blocks
] TBO
Y

Impact of #Registers Per Thread &@ds = 2

DRAM

allellelle
Sl1el1%]|]®
allellelle
Sl|1el|%|]|®
allellelle
Sl|1e]|%]|]|®
aollellelle
Sl|e||%]|]|®

Limits the #threads

. Register File —_
SM — Stream Multiprocessor

Limits the #thread blocks

SP— Stream Processor L1/Shared Memory —_—

Registers/thread can limit number of active threads!
V100:

15

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!
V100:
* Registers per thread max: 255

Kernel
Distributor

Scheduler

DRAM

eam Multiprocessor

rrrrrrrrrrrrrrrrrr

SEEE

oooooooooooooooooo

Lim

Lim

its the #ithread blocks

its the #ithreads

imits the #threads

imits the #thread blocks

15

y

Kernel
Distributor Limits the #thread blocks

oooooooooooooooooo

Scheduler

Impact of #Registers Per Thread &@ds = 2

DRAM

imits the #threads

SSSSSSSSS -
rrrrrrrrrrrrrrr imits the #thread blocks

rrrrrrrrrrrrrrrrrr

Registers/thread can limit number of active threads!
V100:

* Registers per thread max: 255

* 64K registers per SM

15

Impact of

Registers Per Thread

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

DRAM

SM — Stream Multiprocessor
SP— Stream Processor

SEEE

Thread Block Control |

Limits the #thread blocks

TBO

Warp Schedulers

Warp Context

Limits the #threads

Si
S|
Si

P
P
P
P

P
P
P
= P

r File
L1/Shared Memory —_>

(=[]0]
15315 I
E

Limits the #threads

Limits the #thread blocks

15

Kernel
Distributor

Scheduler

Impact of #Registers Per Thread

DRAM

SM — Stream Multiprocessor
SP— Stream Processor

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

Warp Schedulers

Thread Block Control

TBO

Limits the #thread blocks

Limits the #threads

L1/Shared Memory —_>

Limits the #threads

Limits the #thread blocks

Impact of #Registers Per Thread &g

DRAM

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM

» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?

Thread Block Control |

Limits the #thread blocks

Limits the #threads

Register File
L1/Shared Memory —_>

Limits the #threads

Limits the #thread blocks

Impact of #Registers Per Thread &g

DRAM

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM

» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?
e Recall: granularity of management is a thread block!

Thread Block Control |

Limits the #thread blocks

Limits the #threads

Register File
L1/Shared Memory —_>

Limits the #threads

Limits the #thread blocks

el ; Thread Block Control |
utor Limits the #thread blocks

uler

Impact of #Registers Per Thread &g

DRAM

Limits the #threads

Limits the #threads

Limits the #thread blocks

) Register File
—St tiprocessor
SP— Stream Processor L1/Shared Memory —_—

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?
e Recall: granularity of management is a thread block!
* Loss of concurrency of 256 threads!
» 34 regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,
* 8 blocks would over-subscribe register file
e Occupancy drops to .875!

Impact of Shared Memory

e Shared memory is allocated per thread block
e Can limit the number of thread blocks executing concurrently per SM
* Shared mem/block * # blocks <= total shared mem per SM

* gridDim and blockDim parameters impact demand for
* shared memory
* number of thread slots
* number of thread block slots

Balance

Shared
memory/Th
read block

#Threads/Bl
ock

#Thread #HRegisters/T
Blocks hread

« Navigate the tradeoffs
maximize core utilization and memory bandwidth utilization
Device-specific

« Goal: Increase occupancy until one or the other is saturated

Balance

template < class T >
__host__

RN RN

cudaOccupancyMaxActiveBlocksPerMultiprocessor (int* numBlocks, T func, int blockSize, size_t dynamicSMemSize) [inline]

Returns occupancy for a device function.

Parameters

numBlocks

- Returned occupancy
func

- Kernel function for which occupancy is calulated
blockSize

- Block size the kernel is intended to be launched with
dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes

« Navigate the tradeoffs

maximize core utilization and memory bandwidth utilization
Device-specific

Goal: Increase occupancy until one or the other is saturated

17

Parallel Memory Accesses

* Coalesced main memory access (16/32x faster)
* HW combines multiple warp memory accesses into a single coalesced access

* Bank-conflict-free shared memory access (16/32)

* No alignment or contiguity requirements
e CC 2.x+3.0: 32 different banks + 1-word broadcast each

Parallel Memory Architecture

In a parallel machine, many threads access memory
 Therefore, memory is divided into banks
* Essential to achieve high bandwidth

Each bank can service one address per cycle

« A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

* Conflicting accesses are serialized

19

Coalesced Main Memory Accesses

single coalesced access

NVIDIA

Address 132

Address 136

Address 156

L
‘ Thread 8 + Address 164 ‘ Thread 8 + Address 164
‘ Thread 10 v Address 168 ‘ Thread 10 b Address 168
‘ Thread 11 + Address 172 ‘ Thread 11 + Address 172
‘ Thread 12 + Address 176 ‘ Thread 12 t Address 176
‘ Thread 13 L Address 180 ‘ Thread 13 Address 180
‘ Thread 14 + Address 184 ‘ Thread 14 + Address 184
‘ Thread 15 + Address 188 ‘ Thread 15 L Address 188

NVIDIA

one and two coalesced accesses™

Address 128

% Address 132

Address 136

k Address 148

t Address 152

h Address 160

k Address 164

h Address 168

Thread 12 ‘

M Address 172

b Address 176

Thread 13

Address 180

Thread 14

Address 184

Thread 15

Address 188

20

Bank Addressing Examples

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

e No Bank Conflicts

Linear addressing
stride ==

e No Bank Conflicts
e Random 1:1 Permutation

Thread 0

Thread 1 4
Thread 2 ‘
Thread 3 ‘
Thread 4 ‘
Thread 5

Thread 6
Thread 7

Thread 15

ph

21

Bank Addressing Examples

* 2-way Bank Conflicts

 Linear addressing
stride ==

Thread O

Thread 1 ‘
Thread 2 ~
Thread 3 "

Thread 8 >
Thread 9

Thread 10
Thread 11 Bank 15

e 8-way Bank Conflicts

 Linear addressing
stride ==

Thread O
Thread 1

Thread 2 |

Thread 3 ’
Thread 4 '
Thread 5 ,\
Thread 6 »

Thread 7

x8

Thread 15

22

Linear Addressing

e Q@Given:

~ _shared float shared[256];
float foo =

shared|[baselndex + s *
threadldx.x];

* This is only bank-conflict-free if s
shares no common factors with the
number of banks

e 16 on G80, so s must be odd

23

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2

Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

IGPU Atomics & Divergence

24

IGPU Atomics & Divergence

Race conditions —
 Traditional locks: avoid!
* How do we synchronize?

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
* “Fire-and-forget”

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(8locked, 1) != 0)

J

.. double old = *data;
Race conditions — *data = old + val;

locked = 0;
* Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()

atomicSub () atomicDec ()

atomicMin () atomicExch ()
()

atomicMax atomicCAS ()

Implemented as write-through to L2
* “Fire-and-forget”

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(8locked, 1) != 0)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

* Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()

atomicSub () atomicDec ()

atomicMin () atomicExch ()
()

atomicMax atomicCAS ()

Implemented as write-through to L2
* “Fire-and-forget”

double atomicAdd(double *data, double val)
{

IGPU Atomics & Di\/er while(atomicExch(8locked, 1) != 0)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

* Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()

«———— Warp of Threads) E_dev1ce__ void example(bool condition)

§ s scove [TTTTTTTTTTTTTTT] $#(condition)

Some active VAZ‘-Z'Z%Q%%.II..I.I run_this first();

I else

Dthers active:"’Aiﬁﬁﬁ‘zﬂﬁnﬁg then_run_this();

Mtactve [TTTTTTTTTTTTTTT] converged_again();

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(8locked, 1) != 0)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

* Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()

atomicSub () atomicDec ()

atomicMin () atomicExch ()
()

atomicMax atomicCAS ()

Implemented as write-through to L2
* “Fire-and-forget”

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(8locked, 1) != 0)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

* Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

at Every thread C ()

oRE tries to lock o ()

a t But only one FAFATA .EE 77 C h ()
succeeds EEESEAL e VAN AN,

at Locking thread Non-locked S ()

continues threads idle
until unlock

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(8locked, 1) != 0)

J

double old = *data;

Race conditions — *data = old + val;
locked = 0;

* Traditional locks: avoid!

* How do we synchronize?

return old;

Read-Modify-Write — atomic

at Omi CAdd () Every thread
atomicSub () wiestotock LIITTTTTTTTTTTTTT] ontaced
. : threads

at Om_-f_ cMin () BUtS%rélgeZZi D]I:m retry first
atomicMax () l Locking thread

idles
Implemented as write-throug l
¢ “ Fi re_a n d _fo rget” Unlock Never

Happens

Advanced Topic: GPU Programming Models

Layered abstractions

3/14/23

Layered abstractions

Hardware

interface ~ -

/O dev DISK

U

e

MH

3/14/23

Layered abstractions

Hardware

interface —~—

= C /O dev DISK

3/14/23

Layered abstractions

process files user-mode

LIBC/CLR Runtimes/libs

_ _ OS-level
process files pipes abstractions

vendor driver | vendor driver | vendor driver }

Josn

EIIEY

3/14/23

Layered abstractions

programmer-

visible interface process files user-mode

: !
LIBC/CLR Runtimes/libs

OS interface OS-level

vendor driver | vendor driver | vendor driver }

* 1:1 correspondence between OS-level and user-level abstractions
* Diverse HW support enabled HAL

Josn

uio

|°

3/14/23

GPU abstractions

MH

3/14/23

GPU abstractions

Hardware
interface

/V\I-\il'

3/14/23

GPU abstractions

GPGPU shaders language
APls kernels integration

GPU Runtime (e.g. OpenCL)

Josn

~— Runtime
support

3/14/23

GPU abstractions

programmer-
visible interface

GPU Runtime (e.g. OpenCL)

_—

GPGPU shaders language
APIs kernels integration

3/14/23

~— Runtime
support

GPU abstractions

_—

programmer-
visible interface GPGPU shaders language
APIs kernels integration
GPU Runtime (e.g. OpenCL)
1 OS-level
ion!

abstraction! \)7@- F

®
Fat driver, >

proprietary =—

interfaces

MH

3/14/23

~— Runtime
support

—_—

GPU abstractions

~— Runtime
support

programmer- — — —
visible interface -— GPGPU shaders language
§ APls kernels integratjon
- GPU Runtime (e.g. OpenCL)
1 OS-level
ion!
abstraction! \>§ T [mmap] T
Fat driver, (5;
proprietary =—— B
interfaces
T
=

No kernel-facing API

OS resource-management limited
Poor composability

3/14/23

No OS support -> No isolation

GPU benchmark throughput

5 1200

[

S 1000

(]

(V)]

o 800

&

o 600

)

S

(>) 400

£

200

. - O
Higher is no CPU load high CPU load
better

* Image-convolution in CUDA
* Windows 7 x64 8GB RAM

* Intel Core 2 Quad 2.66GHz
* nVidia GeForce GT230

3/14/23

No OS support -> No isolation

GPU benchmark throughput

1200

©
C
O 1000
A
g_ 800
c
O 600
)
O
(>) 400
=

200
. . O

Higher is no CPU load high CPU load

better

ge-convolution in CUDA
dows 7 x64 8GB RAM

| Core 2 Quad 2.66GHz
dia GeForce GT230

3/14/23

CPU+GPU schedulers not integrated!
...other pathologies abundant

Composition: Gestural Interface

Raw images
“*Hand"”

xform filter

3/14/23

Composition: Gestural Interface

Raw images
“*Hand"”

events

|

noisy point cloud
capture camera

images flter

3/14/23

Composition: Gestural Interface

Raw images
“*Hand"”

events

A G —

noisy point cloud

xform filter

geometric

transformation

3/14/23

Composition: Gestural Interface

Raw images
“*Hand"”

events

—

noisy point cloud

xform filter

3/14/23

Composition: Gestural Interface

Raw images
“*Hand"”

events

|

noisy point cloud

detect gestures

xform

3/14/23

Composition: Gestural Interface

Raw images
“*Hand"”

xform filter

3/14/23

Composition: Gestural Interface

Raw images
“*Hand"”

events

noisy point cloud

xform ~ filter

» Requires OS mediation

» High data rates

» Abundant data parallelism
...use GPUs!

3/14/23

What We’d Like To Do

#> capture | xform | filter | detect &

» Modular design
» flexibility, reuse
» Utilize heterogeneous hardware
» Data-parallel components -2 GPU
» Sequential components = CPU
» Using OS provided tools
» processes, pipes

3/14/23

What We’d Like To Do

#> capture | xform | filter | detect &
CPU CPU

» Modular design
» flexibility, reuse
» Utilize heterogeneous hardware
» Data-parallel components -2 GPU
» Sequential components = CPU
» Using OS provided tools
» processes, pipes

3/14/23

GPU Execution model

= GPUs cannotrun OS:

= different ISA

* Memories have different coherence guarantees
- (disjoint, or require fence instructions)

= Host CPU must "manage” GPU execution

Program inputs explicitly transferred/bound at runtime
Device buffers pre-allocated

Main
memory

Copy inputs Copy outputs Send commands

GPU

3/14/23

GPU
memory

GPU Execution model

= GPUs cannotrun OS:

= different ISA

* Memories have different coherence guarantees
- (disjoint, or require fence instructions)

= Host CPU must "manage” GPU execution

Program inputs explicitly transferred/bound at runtime
Device buffers pre-allocated

Main

memory

Copy inputs T Copy outputs lSend commands

GPU

3/14/23

memory

user

kernel

HW

Data migration

#> capture | | detect &

GPU driver

detect

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

detect

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

detect

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture |

capture

E 2

| detect &

GPU driver

filter

detect

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

detect

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

detect

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

detect

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

copy-xfer

YV EE—

detect

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

capture filter

GPU driver

copy-xfer

YV EE—

detect

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

filter

GPU driver

detect

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

filter

GPU driver

detect

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

filter

GPU driver

copy-xfer

YV EE—

1 4

detect

HIDdrv

3/14/23

Data migration

#> capture | | | detect &
filter
g
D
K]
-
9

GPU driver

HW

YV EE— N 7

detect

HIDdrv

copy-xfer

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

filter

GPU driver

YV EE— N 7

copy-xfer

detect

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

GPU driver

detgct

HIDdrv

3/14/23

user

kernel

HW

Data migration

#> capture | | | detect &

GPU driver

detect

3/14/23

Device-centric APIs considered harmful

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
1nvokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

3/14/23

Device-centric APIs considered harmful

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
1nvokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

What happens if | want the following?
MatrixD=AxB xC

3/14/23

Composed matrix multiplication

Matrix
AxXBxC(Matrix A, B, C) {
Matrix AxB = gemm(A,B);
Matrix AxXBXC = gemm(AxB,C);
AXBXC;

3/14/23

Composed matrix multiplication

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix(Q);
copyFromGPU(C);

Matrix "

AxXBxC(Matrix A, B, C) { }
Matrix AxB = gemm(A,B);
Matrix AxXBXC = gemm(AxB,C);

AXBXC;

3/14/23

Composed matrix multiplication

Matrix
] gemm(Matrix A, Matrix B) {
AxB copied from copyTOGPuEAg;
ToGPU(B) ;
GPU memory... TnvokeGPUO)

_ Matrix C = new-Matrix();
Matrix 2 '
AxBxC(Matrix¥A, B, C) { } |

Matrix = gemm(A,B) ;
Matrix AXBXC = gemm(AxB,C);
AXBXC;

3/14/23

Composed matrix multiplication

Matrix
AXBxC(Matrix A, B, C) {
Matrix AxB = gemm(A,B);
Matrix AxXBXC = gemm(
AXBXC:;

Matrix
gemmi{viatrix A, Matrix B) {

copyToGPU(B) ;
invokeiPU();
Matrix C = new Matrix(Q);

copyFromGPU(C);
C;

,C);

...only to be copied
right back!

3/14/23

What if I have many GPUs?

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
1nvokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

3/14/23

What if I have many GPUs?

Matrix

gemm(GPU dev,Matrix A, Matrix B) {
copytToGPU(dev, A);
copyToGPU(dev, B);
1nvokeGPU(dev) ;
Matrix C = new Matrix();
copyFromGPU(dev, C);

C;

3/14/23

What if I have many GPUs?

Matrix

gemm(GPU dev,Matrix A, Matrix B) {
copytToGPU(dev, A);
copyToGPU(dev, B);
1nvokeGPU(dev) ;
Matrix C = new Matrix();
copyFromGPU(dev, C);

C;

What happens if | want the following?
MatrixD=AxB xC

3/14/23

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
C;

Matrix
AxBxC(Matrix A,B,C) {
Matrix AxB = gemm(, A,B);
Matrix AxXBXC = gemm(, AXB,C);
AXBXC;

3/14/23

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
C;

Matrix
AXBXC(GPU dev, Matrix A,B,C) {
Matrix AxB = gemm(dev, A,B);
Matrix AxXBXxC = gemm(dev, AxB,C);
AXBXC;

3/14/23

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)
{
copyToGPU(A) ;
Rats...now | can CopyToGPU(B) ;
only use 1 GPU. invokeGPUQ) ;

Matrix C = new Matrix();
copyFromGPU(C) ;
C;

How to partition
computation?

Matrix
AXBXC(GPU dev, Matrix A,B,C) {
Matrix AxB = gemm(dev, A,B);
Matrix AxXBXxC = gemm(dev, AxB,C);
AXBXC;

3/14/23

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
C;

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AxB = gemm(devA, A,B);
Matrix AxBxC = gemm(devB, AxB,C);
AXBXC;

3/14/23

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{

This will never be COPYF’SEB EAB\g ;
copylo ’
manageable fon_’ many GPUs. invokeGPUQ) :
Programmer implements Matrix C = new Matrix();
scheduling using static view! copyFromGPU(C) ;
G

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AxB = gemm(devA, A,B);
Matrix AxBxC = gemm(devB, AxB,C);
AXBXC;

3/14/23

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{

This will never be COPYPE'ES E‘B\g ;
copylo ’
manageable for many GPUs. invokeGPUQ) :
Programmer implements Matrix C = new Matrix();
scheduling using static view! copyFromGPU(C) ;
C;

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AxB = gemm(devA, A,B);
Matrix AxBxC = gemm(devB, AxB,C);
AXBXC;

¥ Why don’t we have this problem with CPUs?

3/14/23

Dataftlow: a better abstraction

Matrix: A Matrix: B

Matrix: C

= nodes = computation
= edges = communication

= Expresses parallelism explicitly
= Minimal specification of data movement: runtime does it.

= asynchrony is a runtime concern (not programmer concern)
= No specification of compute—>device mapping: like threads!

3/14/23

Advanced Topic: GPU Coherence

Review: Cache Coherence

Tag State Data

/'O devices

Review: Cache Coherence

Tag State Data

/'O devices

Review: Cache Coherence

Tag State Data

/'O devices

Each cache line has a state (M, E, S, I)

Review: Cache Coherence

Tag State Data

/'O devices

Each cache line has a state (M, E, S, I)
* Processors “snoop” bus to maintain states

Review: Cache Coherence

Tag State Data

/'O devices

Each cache line has a state (M, E, S, I)
= Processors “snoop” bus to maintain states
= Initially = 'I" = Invalid

Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

/'O devices

Each cache line has a state (M, E, S, I)
* Processors “snoop” bus to maintain states
= Initially = 'I" = Invalid
= Readone =2 'E’' =2 exclusive

Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

/'O devices

Each cache line has a state (M, E, S, |)
* Processors “snoop” bus to maintain states
= Initially = 'I" = Invalid
= Readone =2 'E’' =2 exclusive
= Reads =2 'S’ 2 multiple copies possible

Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

/'O devices

Each cache line has a state (M, E, S, I)
* Processors “snoop” bus to maintain states

= Initially = 'I" = Invalid

= Readone =2 'E’' =2 exclusive

= Reads =2 'S’ 2 multiple copies possible

= Write = ‘M’ = single copy =2 lots of cache coherence traffic

Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

/'O devices

Each cache line has a state (M, E, S, I)
* Processors “snoop” bus to maintain states

= Initially = 'I" = Invalid

= Readone =2 'E’' =2 exclusive

= Reads =2 'S’ 2 multiple copies possible

= Write = ‘M’ = single copy =2 lots of cache coherence traffic

GPU Cache Coherence Challenges

« Challenge 1: Coherence traffic

No coherence

I MESI

B GPU-VI

Q
=
-—

©

—
—
-—

Q

mﬂ

c

c

o

o

—

Q
—
=

N

-

-
8y

Do not require
coherence

Recalls

Load C
Load D
Load E
Load F
Load C

45

GPU Cache Coherence Challenges

« Challenge 2: Tracking in-flight requests
« Significant % of L2

Background: Directory Protocol

= For each block: centralizec Pprsence b ndicate hether pcessor P
“d I re Cto ry” fo r State I n Ca C 1 eS Dirty bit: indicates block is dirty —

in one of the processors’ caches

= Directory is co-located with Loca ache
some global view of memory

Onedirectoryentryper — |0 CIT T T [T 1 1]

cache line of memory

= Requests are no longer seen
by eve ryone One cache line of memory ——J

Writes are serialized through

directory

3/14/23

GPU-VI

GPU-VI Coherence

» Directory-Based c1li pir fic2

Different from snoop-model

Global directory metadata at L2
= Two states

Valid

Invalid

<
3]
o]
o
()
>
c
?
©
@
o
S

= Writes invalidate other copies

3/14/23

Temporal Coherence (TC)

GPU-VI Coherence Temporal Coherence

G load,
predict|R | Local Timestamp
@ T° =15 5 Ioacfe ! %
\ _ predict

Aa(a'l“ T=20 e > Global Time - VALID
R ore -
k L1ID |

Interconnect

T 20

read-only epoch

invalidate

x self- '

0 invalidate
store

~

—25 778

read-only epoch

Global Timestamp

L2 Bank

ﬁ < Global Time >

NO L1 COPIES

G

TC-Strong vs TC-Weak

D Write stalling at L2 (TC-Strong)

l]]]Il] Fence waiting for pending requests (both)
D Fence waiting for GWCT (TC-Weak)

TC-Strong TC-Weak

cijf L2 ez c1jf L2 oz

081 flag data flag data
1

- NuLL | 60| Lo | 30 ~ NuLL | 60| [oLD | 30 =NO-L1 @NO-COH OMESI =GPU-VI sGPU-VIni mTCW

W

self-
invalidate : invalidate

TTTT AT ITITITIITITITITITII S

V2720222222222 2222222222

FETTETT GGG T TG TE TG TS
VITTITTTITTTTTTTTTITTTTTTT T

11]
-d
(a]

(a) Inter-workgroup comm. (b) Intra-workgroup comm.

invalidate

C1's requests C2's private cache C1's requests C2's private cache
blocks state blocks state
(value | timestamp) (value | timestamp)

50

