
cs378

Programming at Scale: Dataflow

Today

Questions?

Administrivia
• Project Proposal Due Soon!

Agenda:
• MPI Wrapup
• Dataflow

MapReduce faux quiz (5 min, any 2):

• Have you ever written a MapReduce program? If so, what was it?
• What phenomena can slow down a map task?
• Do reducers wait for all their mappers before starting? Why/why not?
• What machine resources does the shuffle phase consume most?
• Is it safe to re-execute a failed map/reduce job sans cleanup? Why [not]?
• How does MR handle master failure? What are the alternatives?

Review: Scale: Goal

Review: Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

You are an engineer at:
Hare-brained-scheme.com

Your boss, comes to your office and says:

“We’re going to be super rich! We just need a program to
search for strings in text files...”

Input: <search_term>, <files>
Output: list of files containing <search_term>

One Solution

public class StringFinder {
int main(…) {

foreach(File f in getInputFiles()) {
if(f.contains(searchTerm))

results.add(f.getFileName());
}
System.out.println(“Files:” + results.toString());

}
}

Another Solution
public class StringFinder {

int main(…) {
foreach(File F in getInputFiles()) {

partitions = partitionFile(F, num_hosts)
foreach(host h, partition f in partitions) {

h.send(f)
h.runAsync({

if(f.contains(searchTerm))
results.add(f.getFileName())});

}}
System.out.println(“Files:” + results.toString());

}}

Infrastructure is hard to get right

Web Server
StringFinder
Indexed data

Search
query

1. How do we distribute the searchable files on our machines?

2. What if our webserver goes down?

3. What if a StringFinder machine dies? How would you know it was dead?

StringFinder
Indexed data

StringFinder
Indexed data

4. What if marketing comes and says, “well, we also want to show pictures of the
earth from space too! Ooh..and the moon too!”

StringFinder was the easy part!

You really need general infrastructure.
Many different tasks
Want to use hundreds or thousands of PC’s
Continue to function if something breaks
Must be easy to program…

Dataflow Engines

Programming model + infrastructure
Write programs that run on lots of machines
Automatic parallelization and distribution
Fault-tolerance
I/O and jobs Scheduling
Status and monitoring

Key Ideas:
All modern “big data” platforms are dataflow engines!

Differences:
1. what graph structures are allowed?
2. How does this impact programming model?

• Input & Output: sets of <key, value> pairs
• Programmer writes 2 functions:

map (in_key, in_value) -> list(out_key,
intermediate_value)

• Processes <k,v> pairs
• Produces intermediate pairs

reduce (out_key, list(interm_val)) ->
list(out_value)
• Combines intermediate values for a key
• Produces a merged set of outputs

MapReduce

Indexing (1)

public void map() {

String line = value.toString();

StringTokenizer itr = new StringTokenizer(line);

if(itr.countTokens() >= N) {

while(itr.hasMoreTokens()) {

word = itr.nextToken()+“|”+key.getFileName();

output.collect(word, 1);

}

}

}

Input: a line of text, e.g. “mistakes were made” from myfile.txt
Output:

mistakes|myfile.txt
were|myfile.txt
made|myfile.txt

Indexing (2)

public void reduce() {

int sum = 0;

while(values.hasNext()) {

sum += values.next().get();

}

output.collect(key, sum);

}
Input: a <term,filename> pair, list of occurrences (e.g. {1, 1,..1})
Output:

mistakes|myfile.txt 10
were|myfile.txt 45
made|myfile.txt 2

Review: K-Means

public void kmeans() {

while(…) {

for each point

find_nearest_center(point);

for each center

compute_new_center(center)

}
}

fnc

fnc

fnc

cnc

cnc

Input Output

fnc

fnc

fnc

cnc

cnc

Input Output

fnc

fnc

fnc

cnc

cnc

Input Output

Example: K-Means Mapper

Example: K-Means Reducer

How Does Parallelization Work?

INPUT
FILE(s)

Execution

Group
by?

Key idea à shuffle == sort or hash!

Task Granularity And Pipelining

|map tasks| >> |machines| -- why?
Minimize fault recovery time
Pipeline map with other tasks
Easier to load balance dynamically

The end of your career at:
Hare-brained-scheme.com

Your boss, comes to your office and says:

“I can’t believe you used MapReduce!!!
You’re fired...”

Why might he say this?

MapReduce: not without Controversy

Why is MapReduce backwards?

Backwards step in programming paradigm
Sub-optimal: brute force, no indexing
Not novel: 25 year-old ideas from DBMS lit

It’s just a group-by aggregate engine

Missing most DBMS features
Schema, foreign keys, …

Incompatible with most DBMS tools

So why is it such a big success?

MapReduce and Dataflow

• MR is a dataflow engine
• Lots of others
• Dryad
• DryadLINQ
• Dandelion
• CIEL
• GraphChi/Pregel
• Spark

MapReduce vs Dryad (and others…)

DAG instead of BSP
Interface variety

Memory FIFO
Disk
Network

Flexible Modular Composition

Map

Map

Map

Reduce

Reduce

Input Output

Dryad (2007): 2-D Piping
• Unix Pipes: 1-D

grep | sed | sort | awk | perl

• Dryad: 2-D
grep1000 | sed500 | sort1000 | awk500 | perl50

Dataflow Engines

Dataflow Job Structure

grep

sed

sort
awk

perl
grep

grep
sed

sort

sort

awk

Input
files

Vertices
(processes)

Output
files

Channels
Stage

How to implement?

Channels

X

M

Items

Finite streams of items

• distributed filesystem files
(persistent)

• SMB/NTFS files
(temporary)

• TCP pipes
(inter-machine)

•memory FIFOs
(intra-machine)Key idea:

Encapsulate data movement behind
channel abstraction à gets

programmer out of the picture

Spark (2012) Background

Commodity clusters: important platform
In industry: search, machine translation, ad targeting, …
In research: bioinformatics, NLP, climate simulation, …

Cluster-scale models (e.g. MR) de facto standard
Fault tolerance through replicated durable storage
Dataflow is the common theme

Multi-core
Iteration

Motivation

Programming models for clusters transform data
flowing from stable storage to stable storage

E.g., MapReduce:

Map

Map

Map

Reduce

Reduce

Input Output

Benefits of data flow: runtime can decide
where to run tasks and can automatically

recover from failures

Iterative Computations: PageRank

Map

Map

Map

Reduce

Reduce

Input Output

Iterative Computations: PageRank

Map

Map

Map

Reduce

Reduce

Input Output

Map

Map

Map

Reduce

Reduce

Output

Map

Map

Map

Reduce

Reduce

Output

Solution: augment data flow model with
“resilient distributed datasets” (RDDs)

Programming Model

• Resilient distributed datasets (RDDs)
• Immutable collections partitioned across cluster that can

be rebuilt if a partition is lost
• Created by transforming data in stable storage using data

flow operators (map, filter, group-by, …)
• Can be cached across parallel operations

• Parallel operations on RDDs
• Reduce, collect, count, save, …

• Restricted shared variables
• Accumulators, broadcast variables

Example: Log Mining
• Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Cached RDD
Parallel operation

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)

RDD Fault Tolerance

• RDDs maintain lineage information that can be used
to reconstruct lost partitions

• Ex:
cachedMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))

.persist()

HdfsRDD
path: hdfs://…

FilteredRDD
func: contains(...)

MappedRDD
func: split(…)

CachedRDD

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Cosmos
Azure

SQL Server

Dryad

DryadLINQ
Scope

Sawzall

Hadoop

HDFS
S3

Pig, Hive

Parallel
Databases

SQL ≈SQL LINQ, SQLSawzall

Cosmos,
HPC, Azure

Spark

DryadLINQ = LINQ + Dryad

Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

var results = from c in collection
where IsLegal(c.key)
select new { Hash(c.key), c.value};

C#

collection

results

C# C# C#

Vertex
code

Query
plan
(Dryad job)Data

Programming Model

Where
Select
GroupBy
OrderBy
Aggregate
Join
Apply
Materialize

Example: Histogram
public static IQueryable<Pair> Histogram(

IQueryable<LineRecord> input, int k)
{

var words = input.SelectMany(x => x.line.Split(' '));
var groups = words.GroupBy(x => x);
var counts = groups.Select(x => new Pair(x.Key, x.Count()));
var ordered = counts.OrderByDescending(x => x.count);
var top = ordered.Take(k);
return top;

}

“A line of words of wisdom”

[“A”, “line”, “of”, “words”, “of”, “wisdom”]

[[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]]

[{“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}]

[{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}]

[{“of”, 2}, {“A”, 1}, {“line”, 1}]

SelectMany
Sort

GroupBy+Select
HashDistribute

MergeSort
GroupBy

Select
Sort
Take

MergeSort
Take

RDDs
• Immutable, partitioned, logical collection of records
• Need not be materialized
• contains information to rebuild a dataset

• Partitioning can be based on a key
• Built using bulk transformations on other RDDs
• Can be cached for future reuse

Transformations
(define a new RDD)

map
filter
sample
union
groupByKey
reduceByKey
join
persist/cache
…

Parallel operations
(return a result to driver)

reduce
collect
count
save
lookupKey
…

RDDs vs Distributed Shared Memory

Concern RDDs Distr. Shared Mem.
Reads Fine-grained Fine-grained
Writes Bulk transformations Fine-grained
Consistency Trivial (immutable) Up to app / runtime
Fault recovery Fine-grained and low-

overhead using lineage
Requires checkpoints
and program rollback

Straggler
mitigation

Possible using
speculative execution

Difficult

Work placement Automatic based on
data locality

Up to app (but runtime
aims for transparency)

Summary

Dataflow key enabler for cluster-scale parallelism
Key issues become runtime’s responsibility

Data movement
Scheduling
Fault-tolerance

Example: Counting Words…
map(String input_key, String input_value):
// input_key: document name
// input_value: document contents
for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key,
Iterator intermediate_values):

// output_key: a word
// output_values: a list of counts
int result = 0;
for each v in intermediate_values:

result += ParseInt(v);
Emit(AsString(result));

MapReduce handles all the other details!

Redundant Execution

Slow worker can throttle performance: why?
What makes a worker slow?

Other Jobs on machine (how could we fix)
Bad disks, soft errors
Exotica (processor caches disabled!)

Solution: spawn backups near end of phase

MapReduce is sub-optimal

Modern DBMSs: hash + B-tree indexes to accelerate data access.
Indexes are user-defined
Could MR do this?

No query optimizer! (oh my, terrible…but good for researchers! J)
Skew: wide variance in distribution of keys

E.g. “the” more common than “zyzzyva”

Materializing splits
N=1000 mappers à M=500 keys = 500,000 local files
500 reducer instances “pull” these files
DBMSs push splits to sockets (no local temp files)

MapReduce: !novel && feature-poor

• Partitioning data sets (map) == Hash join
• Parallel aggregation == reduce
• User-supplied functions differentiates from SQL:

• POSTGRES user functions, user aggregates
• PL/SQL: Stored procedures
• Object databases

Absent features:
• Indexing
• Update operator
• Transactions
• Integrity constraints, referential integrity
• Views

Review: What is GroupBy?

Group a collection by key
Lambda function maps elements à key

var res = ints.GroupBy(x => x);

10 30 20 10 20 30 10

101010 202030 30

foreach(T elem in ints)
{
key = KeyLambda(elem);

group = GetGroup(key);

group.Add(elem);
}

foreach(T elem in PF(ints))
{
key = KeyLambda(elem);

group = GetGroup(key);

group.Add(elem);
}

51

101010 2020 30 30

Why is MapReduce backwards?

Map == group-by
Reduce == aggregate

SELECT job, COUNT(*) as “numemps"
FROM employees
WHERE salary > 1000
GROUP BY job;

• Where is the aggregate in this example?
• Is the DBMS analogy clear?

Why is MapReduce backwards?

Schemas are good (what’s a schema?)
Separation of schema from app is good (why?)
High-level access languages are good (why?)

