I Programming at Scale: Dataflow

cs37/8

I Today

Questions?

Administrivia

* Project Proposal Due Soon!

Agenda:
* MPI Wrapup
* Dataflow

MapReduce faux quiz (5 min, any 2):

* Have you ever written a MapReduce program? If so, what was it?

* What phenomena can slow down a map task?

* Do reducers wait for all their mappers before starting? Why/why not?

* What machine resources does the shuffle phase consume most?

* |s it safe to re-execute a failed map/reduce job sans cleanup? Why [not]?
* How does MR handle master failure? What are the alternatives?

IReview: Scale: Goal

Ei.i.i.i.i.i.i.;.'i.i_ Ei.i.i.i.i.i.i.;.'i.i_ ARRRRRIRL Ei.i.i.i.i.i.i.;.'i.i_ Ei.i.i.i.i.i.i.;.'i.i_

I B

I Review: Design Space

A
Internet
Shared MapReduce '
nothing
__________ Spark
Search Dryad p,
7/
Shared 4
Private lsomething ,/
data /7
center / Transaction e //
v MPI ,
< >
Latency Throughput

Grid

/

You are an engineer at:
Hare-brained-scheme.com

| comes to your office and says:

Your boss, i

“We’re going to be super rich! We just need a program to
search for strings in text files...”

Input: <search_term>, <files>

Output: list of files containing <search_term>

IOne Solution

public class StringFinder {
int main(...) {
foreach(File f in getInputFiles()) {
if(f.contains(searchTerm))
results.add(f.getFileName());
}

System.out.printIn(“Files:” + results.toString());

IAnother Solution

public class StringFinder {
int main(...) {
foreach(File F in getInputFiles()) {
partitions = partitionFile(F, num_hosts)
foreach(host h, partition f in partitions) {
h.send(f)
h.runAsync({
if(f.contains(searchTerm))
results.add(f.getFileName())});
1}

System.out.printIn(“Files:” + results.toString());

1

I Infrastructure is hard to get right

StringFinder

Indexed data

StringFinder

Indexed data

Internet

StringFinder

Indexed data

'

How do we distribute the searchable files on our machines?

What if our webserver goes down?

What if a StringFinder machine dies? How would you know it was dead?

P wnh e

What if marketing comes and says, “well, we also want to show pictures of the
earth from space too! Ooh..and the moon too!”

IStringFinder was the easy part!

You really need general infrastructure.
Many different tasks

Want to use hundreds or thousands of PC’s
Continue to function if something breaks

Must be easy to program...

I Dataflow Engines

Programming model + infrastructure

Write programs that run on lots of machines
Automatic parallelization and distribution
Fault-tolerance

I/O and jobs Scheduling

Status and monitoring

Key Ideas:
All modern “big data” platforms are dataflow engines!

Differences:
1. what graph structures are allowed?
2. How does this impact programming model?

IMapReduce

* Input & Output: sets of <key, value> pairs

* Programmer writes 2 functions:
map (in key, in value) -> list(out key,
intermediate value)

* Processes <k,v> pairs
* Produces intermediate pairs

reduce (out key, list(interm wval)) ->
list (out value)
* Combines intermediate values for a key
* Produces a merged set of outputs

I Indexing (1)

public void map() {
String line = value.toString() ;
StringTokenizer itr = new StringTokenizer (line);
if (itr.countTokens () >= N) {
while (itr.hasMoreTokens ()) {
word = itr.nextToken()+"|”+key.getFileName () ;
output.collect (word, 1) ;

} Input: aline of text, e.g. “mistakes were made” from myfile.txt
Output:
} mistakes | myfile.txt
were | myfile.txt
made | myfile.txt

I Indexing (2)

public void reduce() {
int sum = 0;
while (values.hasNext()) {
sum += values.next() .get() ;

}
output.collect (key, sum);

Input: a <term,filename> pair, list of occurrences (e.g. {1, 1,..1})
Output:

mistakes | myfile.txt 10

were | myfile.txt 45

made | myfile.txt 2

I Review: K-Means

public void kmeans () {
while(..) {
for each point
find nearest center(point) ;
for each center

compute new center (center)

Input

M Input

~ Input

— Output

Example: K-Means Mapper

/*
* Map: find minimum distance center for point, emit to reducer
*/
@Override
public void map (LongWritable key, Text value,
OutputCollector<DoubleWritable, DoubleWritable> output,
Reporter reporter) throws IOException {
String line = value.toString() ;
double point = Double.parseDouble(line) ;
double minl, min2 = Double.MAX VALUE, nearest center = mCenters.get(0);
// Find the minimum center from a point
for (double c¢ : mCenters) {

minl = c - point;

if (Math.abs(minl) < Math.abs(min2)) {
nearest_center = C;
min2 = minl;

}
}
// Emit the nearest center and the point
output.collect (new DoubleWritable (nearest center),
new DoubleWritable (point)) ;

I Example: K-Means Reducer

/*

* Reduce: collect all points per center and calculate

* the next center for those points
*/

@Override

public void reduce (

DoubleWritable key, Iterator<DoubleWritable> values,

OutputCollector<DoubleWritable, Text> output,

throws IOException {
double newCenter;
double sum = 0;
int no elements = 0;
String points = "";
while (values.hasNext()) {
double d = values.next () .get ()

points = points + " " + Double.toString(d);

sum = sum + d;
++no _elements;

}

// We have a new center now
newCenter = sum / no elements;

// Emit new center and point

output.collect (new DoubleWritable (newCenter),

Reporter reporter)

new Text (points));

How Does Parallelization Work?

User
Program
(2)° ' assign
__assign reduce .
map

;

\w orker

\

split 0

(6) wnite

output

split 1 file 0

(5) emote read

split 2 % (4) local write "
worker
split 3 @ output
S file 1

split4
Input Map Intermediate files Reduce Output

files phase (on local disks) phase files

I Execution

Input

Intermediate | kl:v kl:v k2:v

kl:vk3:v

Grouped |kl1:v,v,v,v

Key idea = shuffle == sort or hash!

ITask Granularity And Pipelining

| map tasks| >> |machines| -- why?
Minimize fault recovery time
Pipeline map with other tasks

Easier to load balance dynamically

The end of your career at:
Hare-brained-scheme.com

Your boss, comes to your office and says:
3 B

“I can’t believe you used MapReduce!!!
You’re fired...”

Why might he say this?

I MapReduce: not without Controversy

MapReduce: A major step backwards | The Database
Column

on Jan 17 in Datab hitecture, Database history, Database innovation posted by DeWitt

[Note: Although the system attributes this post to a single author, it was written by David J. DeWitt
and Michael Stonebraker]

On January 8, a Database Column reader asked for our views on new distributed database
research efforts, and we’ll begin here with our views on MapReduce. This is a good time to discuss
it, since the recent trade press has been filled with news of the revolution of so-called “cloud
computing.” This paradigm entails harnessing large numbers of (low-end) processors working in
parallel to solve a computing problem. In effect, this suggests constructing a data center by lining up
a large number of “jelly beans” rather than utilizing a much smaller number of high-end servers.

Forexample, IBM and Google have announced plans to make a 1,000 processor cluster available
to a few select universities to teach students how to program such clusters using a software tool
called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to
program using the MapReduce framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents
have spread about how it represents a paradigm shift in the development of scalable, data-
intensive applications. MapReduce may be a good idea for writing certain types of general-purpose
computations, but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive
applications

IWhy Is MapReduce backwards?

Backwards step in programming paradigm

Sub-optimal: brute force, no indexing

Not novel: 25 year-old ideas from DBMS lit
It’s just a group-by aggregate engine

Missing most DBMS features
Schema, foreign keys, ...

Incompatible with most DBMS tools

So why is it such a big success?

IMapReduce and Dataflow

* MR is a dataflow engine ——
 Lots of others
* Dryad —
* DryadLINQ =
* Dandelion
 CIEL ‘ ,.’ T . d’ Outputs
: SF:Z fl? Chi/Prege! 5‘;?‘?‘?‘:5:3 4 0 ' [Chamsts
/\ A)\ shared

~ memory)

..L

®-— Inputs —

II\/IapReduce vs Dryad (and others...)

DAG instead of BSP

Interface variety
Memory FIFO
Disk
Network

Flexible Modular Composition

Vi

Input

— Output

Channels

X\M‘;'MOXXQM{(‘M/X
>~J [

Vertices
(processes)

14

Output files

| Dryad (2007): 2-D Piping
/"« Unix Pipes: 1-D I
grep | sed | sort | awk | perl

o Dryad: 2-D

w2 A
L o

J
=

I Dataflow Engines

b o — — — — — — — — — — — — — — — — —

505

control plane cluster

data plane
Files, TCP, FIFO

W

e — — — — — — — — — — — — — — — — — —

d

Job manager

IDataflow Job Structure

How to implement?

Input Channels
files Stage Output

files
\ sed # o ‘~ ‘ u

dWK
sort '

aw

8

\U

Vertices
(processes)

IChanneB

Finite streams of items

e distributed filesystem files
(persistent)
[tems * SM B/NTFS files
(temporary)
* TCP pipes
\Y (inter-machine)
* memory FIFOs
(intra-machine)

Key idea:
Encapsulate data movement behind

channel abstraction = gets
programmer out of the picture

ISpark (2012) Background

Commodity clusters: important platform

In industry: search, machine translation, ad targeting, ...
In research: bioinformatics, NLP, climate simulation, ...

Cluster-scale models (e.g. MR) de facto standard

Fault tolerance through replicated durable storage
Dataflow is the common theme

Multi-core
Iteration

I Motivation

Programming models for clusters transform data
flowing from stable storage to stable storage

E.g., MapReduce:

Inbut %— QOutonut
)

-

Benefits of data flow: runtime can decide
where to run tasks and can automatically
recover from failures

I lterative Computations: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to

2 rank; / [neighbors|

i€ neighbors

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

1inks
ranks

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmMap {
(url, (Tinks, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)

}

Input [Output

I lterative Computations: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to

ziEneighbors ranl(i / |nEighborSi|

1inks
ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmMap {
(url, (Tinks, rank)) =>
Tinks.map(dest => (dest, rank/links.size))

1 rodiiceRviov(l €L A

Solution: augment data flow model with
“resilient distributed datasets” (RDDs)

A

| Programming Model

 Resilient distributed datasets (RDDs)

* Immutable collections partitioned across cluster that can
be rebuilt if a partition is lost

* Created by transforming data in stable storage using data
flow operators (map, filter, group-by, ...)

e Can be cached across parallel operations

* Parallel operations on RDDs
e Reduce, collect, count, save, ...

e Restricted shared variables
 Accumulators, broadcast variables

|Example: Log Mining

* Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)

IRDD Fault Tolerance

* RDDs maintain lineage information that can be used
to reconstruct lost partitions

* Ex:
cachedvMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))
.persist()

HdfsRDD FilteredRDD MappedRDD
[path: hdfs://... func: contains(...)H func: split(...) H CachedRDD }

lines = LOAD '/user/hadoop/HDFS File.txt' AS (line:chararray);

Systems

words FOREACH lines GENERATE FLATTEN(TOKENIZE(line)) as word;

grouped = GROUP words BY word;

wordcount = FOREACH grouped GENERATE group, COUNT(words);

DUMP wordcount;
ApJ

SQL Sawzall =SQL LINQ, SQL
R Sawzall)(Pig, Hive j DryadLINQ
Language 7~ N2 S
CREATE EXTERNAL TABLE lines(line string)
LOAD DATA INPATH ‘books’ OVERWRITE INTO TABLE lines;
Execution Paralle
Databas
SELECT word, count(*) FROM lines
LATERAL VIEW explode(split(text, ' ')) 1lTable as word
Storage GROUP BY word;

count: table sum of int;

total: table sum of float;

sum_of squares: table sum of float;
x: float = input;

emit count <- 1;

emit total <- x;

emit sum of squares <- x * x;

BieTable [S3 | - I
- AN JSQL Server/

| DryadLINQ = LINQ + Dryac

Vertex
code

W erf

~

4Collection<T> collection;

J

bool IsLegal(Key k);
| string Hash(Key);

/

var results/ = from c in collection

where IsLegal(c.key)

k select new { Hash(c.key), c.value};

)

\

@ (D colfection
C

Query
plan

(Dryad job)

() results

IProgramming Model

gUILTTDREUI T DU Il]
¥

Where eI) 0D ¢
Select E\/;-----] E\[/----: i ——
GroupBy £1000000) guem] g(mnmm
OrderBy {ocaa) {annnl) gunlll
Aggregate
Join (lID(lly g (NNNND) (NI
Apply ¢|oomma)

Materialize Em Om Omg

IExampIe: Histogram

public static IQueryable<Pair> Histogram(
|Queryable<LineRecord> input, int k)
{

var words = input.SelectMany(x => x.line.Split(' '));
selectMany ‘OUPS = words.GroupBv(x => x);

Sort 'L arden-partitioned. arden-partitioned i) arden-partitioned. 2] arden-partitioned .t arden-partitioned.brf4 arden-partitioned. g
GroupBy+Select g \ \ \ 1 / /
H ashDistribute Super_1[0] Super_1[1] Super_112] Super_1[3] Super_ 1[4 Super_ 1[5 Super_1[6]
e | et |

M € rges ort 1 Super_7[6] Super_T[0} Super_T[1] Super_T[2) Super_T[3] Super_T(4] Super_7[5]

GroupBy \\\d‘ | ‘%

Select
Super_20
Sort l
Take

5513ccf5-9e1d-4ef9-a093-5028¢1176¢6¢. 0]
MergeSort LA, lINe, Or, woras, Or , wisaom |

[ELC [[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]]

[{“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}]
[{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}]
[{“of”, 2}, {“A”, 1}, {“line”, 1}]

arden-partitioned bfg}

IRDDs

* Immutable, partitioned, logical collection of records

UL @%} UL
Where gl 00 ¢ NIl g(ml

Select @I--I-] é:---} E[:---]

GroupBy ﬂlll ooo E{;l_l] dllll
OrderBy fl-cas) fansnn) g(undl
Aggregate gl

Join MU g(lly (HENER (HED
Apply 3CON3CEEE
Materialize O Ow O

IRDDS vs Distributed Shared Memory

Concern RDDs Distr. Shared Mem.
Reads Fine-grained Fine-grained
Writes Bulk transformations Fine-grained

Consistency

Trivial (immutable)

Up to app / runtime

Fault recovery

Fine-grained and low-
overhead using lineage

Requires checkpoints
and program rollback

Straggler
mitigation

Possible using
speculative execution

Difficult

Work placement

Automatic based on
data locality

Up to app (but runtime
aims for transparency)

ISummary

Dataflow key enabler for cluster-scale parallelism

Key issues become runtime’s responsibility
Data movement
Scheduling
Fault-tolerance

IExampIe: Counting Words...

map (String input key, String input value):
// input key: document name
// input value: document contents

for each word w in input value:
EmitIntermediate(w, —'1");

reduce (String output key,
Iterator intermediate values):

// output key: a word
// output values: a list of counts

int result = 0;
for each v in intermediate_values:

result += Parselnt(v);
Emit (AsString(result)) ;

MapReduce handles all the other details!

I Redundant Execution

Slow worker can throttle performance: why?

What makes a worker slow?

I MapReduce is sub-optimal

Modern DBMSs: hash + B-tree indexes to accelerate data access.

Indexes are user-defined
Could MR do this?

No query optimizer! (oh my, terrible...but good for researchers! ©)

Skew: wide variance in distribution of keys
E.g. “the” more common than “zyzzyva”

Materializing splits
N=1000 mappers = M=500 keys = 500,000 local files
500 reducer instances “pull” these files
DBMSs push splits to sockets (no local temp files)

II\/IapReduce: Inovel && feature-poor

* Partitioning data sets (map) == Hash join
* Parallel aggregation == reduce

* User-supplied functions differentiates from SQL:
 POSTGRES user functions, user aggregates

e PL/SQL: Stored procedures
* Object databases

Absent features:

* Indexing

* Update operator

* Transactions

* Integrity constraints, referential integrity

* \/iews

I Review: What is GroupBy?

Group a collection by key

Lambda function maps elements =2 key

var res = ints.GroupBy(x => Xx);

foreach (T elem in PF (ints))
{

key KeyLambda (elem) ;

GetGroup (key)R’

.Add(elem); g

IWhy Is MapReduce backwards?

Map == group-by

Reduce == aggregate

SELECT job, COUNT(*) as “numemps"
FROM employees
WHERE salary > 1000
GROUP BY job;

* Where is the aggregate in this example?
* |sthe DBMS analogy clear?

IWhy Is MapReduce backwards?

Schemas are good (what’s a schema?)

Separation of schema from app is good (why?)

High-level access languages are good (why?)

Bl:=288--% »»E8x8 D 0~

Ty

e
e
N
= Re———
— —— r~— 3
s —_T
e
i e = paaoat.
o=
b —— w—v.-
ot d m—
ey e e
bty
g
7 i
= e camaess
—
P
= -
v -
—— -
", ~ — fouy s
- - — r—
S EE R DA U = o,
o =
r—— v
e
===
— = oot cae
osae i
—
= | o= = o —r
e s poioy e o e
o —— —] -
- — :
s e
e
——n
= -
=
-
ey

e
-

Mgy

