
cs378

Programming at Fast Scale:
Consistency + Lock Freedom

Today

Questions?

Administrivia
• Faux Quiz
• Project Proposal Comments

Agenda:
• Consistency
• Lock Freedom

Faux Quiz Questions: 5 min, pick any 2
• What is the CAP theorem? What does “PACELC” stand for and how does it relate to CAP?
• What is the difference between ACID and BASE?
• Why do NoSQL systems claim to be more horizontally scalable than RDMBSes? List some features NoSQL

systems give up toward this goal?
• What is eventual consistency? Give a concrete example of how of why it causes a complex programming

model (relative to a strongly consistent model).
• Define and contrast the following consistency properties:

• strong consistency, eventual consistency, consistent prefix, monotonic reads, read-my-writes, bounded staleness

• What is causal consistency?
• What is chain replication?
• What is obstruction freedom, wait freedom, lock freedom?
• How can one compose lock free data structures?
• What is the difference between linearizability and strong consistency? Between linearizability and

serializability?
• What is the ABA problem? Give an example.
• How do lock-free data structures deal with the “inconsistent view” problem?

Project proposal updates

• Project foci: concurrency, and empiricism

UDP Echo

memcached

Load balancer IP middlebox

0
100
200
300
400
500
600
700
800

NoOp Internet
Explorer

IIS Excel
11KB

Excel
20MB

Excel
100MB

Co
m

m
itt

ed
 M

em
or

y
(M

B)

Windows
Drawbridge
Hyper-V

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400 450 500 550

Co
m

m
itt

ed
 M

em
or

y
(G

B)

Hyper-V

Drawbridge

Windows Process

Project proposal updates

Key ask: state what the centerpiece data visualizations will be.

• It makes it clear what your hypothesis really is
• It clarifies that empirical endeavor is the point of this exercise.
• Makes it easier to judge whether you’re taking on too much.

Review: Consistency

Partitions
How to keep data in sync?
• Partitioning à single row spread over multiple machines
• Redundancy à single datum spread over multiple machines

Review: Many Consistency Models

Eventual Strong
(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Question: How to choose what
to use or support?

• Amazon S3 – eventual consistency

• Amazon Simple DB – eventual or strong

• Google App Engine – strong or eventual

• Yahoo! PNUTS – eventual or strong

• Windows Azure Storage – strong (or eventual)

• Cassandra – eventual or strong (if R+W > N)

• ...

Hold the phone!
How can all these different guarantees come up?

wR1

rR1
client1 ClientX

Write(k,v) Read(k,v)

wR2

wR3

rR1

rR1

rR1

client2
Write(k,v)

client3
Write(k,v)

Example: elastic read and writes
• Writers hit replicas wR1..wR3
• Readers hit replicas rR1..rR4
• Writes propagated
• What happens: c1 reads own writes?
• Different guarantees à

different sync policies
different w/r routing policies

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Tthreshold

[Writer]
[others]

Official scorekeeper:
score = Read (“visitors”);

Write (“visitors”, score + 1);

Statistician:
Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Referee:

Radio reporter:
do {

vScore = Read (“visitors”);

hScore = Read (“home”);

report vScore and hScore;

sleep (30 minutes);

}

Sportswriter:
While not end of game {

drink beer;

smoke cigar; }

go out to dinner;

vScore = Read (“visitors”);

hScore = Read (“home”);

write article;

Strong ConsistencyStrong Consistency

Monotonic Reads

Read My Writes

Consistent Prefix

Bounded Staleness

Read My Writes

Stat watcher:
stat = Read (“season-runs”);

discuss stats with friends;Eventual Consistency

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order
• each process issues operations in program order

• Any valid interleaving is allowed
• All agree on the same interleaving
• Each process preserves its program order

• Why is this weaker than strict/strong?

• Nothing is said about “most recent write”

Linearizability

• Assumes sequential consistency and
• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency
• Difference between linearizability and serializability?

• Granularity: reads/writes versus transactions

•Example:
•Stay tuned…relevant for lock free data structures
•Importantly: a property of concurrent objects

Causal consistency
• Causally related writes seen by all processes in same order.

• Causally?
• Concurrent writes may be seen in different orders on different

machines

Causal:
If a write produces a value that
causes another write, they are causally related

X = 1
if(X > 0) {

Y = 1
}
Causal consistency à all see X=1, Y=1 in same order

Not permitted Permitted

Consistency models summary
Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability All processes must see all shared accesses in the same order. Accesses are furthermore ordered
according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order. Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO All processes see writes from each other in the order they were used. Writes from different processes
may not always be seen in that order

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

Non-Blocking Synchronization

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Solution: don’t use locks

Lock-free programming

• Subset of a broader class: Non-blocking Synchronization
• Thread-safe access shared mutable state without mutual exclusion
• Possible without HW support
• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks
• Lock-free algorithms are hard, so
• General approach: encapsulate lock-free algorithms in data structures
• Queue, list, hash-table, skip list, etc.
• New LF data structure à research result

Basic List Append

• Is this thread safe?
• What can go wrong?

Example: List Append

• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically

Example: SP-SC Queue

• Single-producer single-consumer
• Why/when does this work?

next(x):
if(x == Q_size-1) return 0;
else return x+1;

Q_get(data): Q_put(data):
t = Q_tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
; ;

data = Q_buf[t]; Q_buf[h] = data;
Q_tail = next(t); Q_head = next(h);

1. Q_head is last write in Q_put, so Q_get
never gets “ahead”.

2. *single* p,c only (as advertised)
3. Requires fence before setting Q head
4. Devil in the details of “wait”
5. No lock à “optimistic”

Lock-Free Stack

• Why does is it work?
• Does it enforce all invariants?

Lock-Free Stack: ABA Problem

ABA Problem

• Thread 1 observes shared variable à ‘A’
• Thread 1 calculates using that value
• Thread 2 changes variable to B
• if Thread 1 wakes up now and tries to CAS, CAS fails and Thread 1 retries

• Instead, Thread 2 changes variable back to A!
• CAS succeeds despite mutated state
• Very bad if the variables are pointers • Keep update count à DCAS

• Avoid re-using memory
• Multi-CAS support à HTM

Correctness: Searching a sorted list

• find(20):

H 10 30 T

20?

find(20) -> false

25

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 ® 20ü

insert(20) -> true

26

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 ® 20

25

30 ® 25
ü
û

• insert(25):

27

Searching and finding together
• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

This thread saw 20
was not in the set...

...but this thread
succeeded in putting

it in!

• Is this a correct implementation?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of operations?

28

Correctness criteria

29

Informally:

Look at the behavior of the data structure
• what operations are called on it
• what their results are

If behavior is indistinguishable from atomic calls to a
sequential implementation then the concurrent
implementation is correct.

Sequential history

time

T1: insert(10)

->
 tr

ue

T2: insert(20)

->
 tr

ue
T1: find(15) ->
 fa

lse

• No overlapping invocations

10 10, 20 10, 20

30

Linearizability: concurrent behaviour should be similar
• even when threads can see intermediate state
• Recall: mutual exclusion precludes overlap

Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

31

Linearizability:
• Is there a correct sequential history:

• Same results as the concurrent one
• Consistent with the timing of the

invocations/responses?
• Start/end impose ordering constraints

Total Order:
1. Insert(10)
2. Find(20)
3. Insert(20)
• Is consistent with real-time order
• 2, 3 overlap, but return order OK

Why is this one OK?

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false
A valid sequential history:
this concurrent execution

is OK
Note: linearization point

32

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

33

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)

How can things like this happen?

Note: return values are meaningful!
Linearizable à consistent with return values

Example Revisited
• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history:
this concurrent execution

is OK because a
linearization point exists

34

Recurring Techniques:
• For updates

• Perform an essential step of an
operation by a single atomic
instruction

• E.g. CAS to insert an item into a list
• This forms a “linearization point”

• For reads
• Identify a point during the operation’s

execution when the result is valid
• Not always a specific instruction

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Wait-free
• A thread finishes its own operation if it continues executing steps

40

time

Start

Finish

Finish
Start

Finish

Start

Lock-free
• Some thread finishes its operation if threads continue taking steps

time

Start

Start

Finish

Finish

Start

Start

Finish

41

• Red never finishes
• Orange does
• Still lock-free

Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Meaning, if you de-schedule contenders

time

Start

Start

FinishInterference here can prevent
any operation finishing

42

Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes

Blocking
1. Blocking
2. Starvation-Free

Obstruction-Free
3. Obstruction-Free

Lock-Free
4. Lock-Free (LF)

Wait-Free
5. Wait-Free (WF)
6. Wait-Free Bounded (WFB)
7. Wait-Free Population Oblivious (WFPO)

s
t
r
o
n
g
e
r

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

•Why is it important?
• Serializability is not composable.

Linearizability Properties

44

Huh? Composable?

Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

void move(list s, list d, Obj key){
tmp = s.remove(key);
d.insert(key, tmp);

}

T * list::remove(Obj key){
LOCK(this);
tmp = __do_remove(key);
UNLOCK(this);
return tmp;

}

void list::insert(Obj key, T * val){
LOCK(this);
__do_insert(key, val);
UNLOCK(this);

}

void move(list s, list d, Obj key){
LOCK(s);
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);

}

Thread-safe?

Painting with a very broad brush
Composition with linearizability is really
about composed schedules

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

•Why is it important?
• Serializability is not composable.
• Core hypotheses:

• structuring all as concurrent objects buys composability
• structuring all as concurrent objects is tractable/possible

Linearizability Properties

46

More on Composability and Compositionality

• High level /informal meaning:
• Can you compose codes that provide property P
• …and expect the composition to preserve P?

• More nuanced meanings:
• Can you compose codes
• Can you compose schedules

• These are related but differ in subtle ways
• Non-composability of serializability is really about composing

schedules

Consider A Concurrent Register

• Threads A, B write integers to a register R
• Because it’s concurrent, method invocations overlap

Two Concurrent Registers

• Register value is initially zero
• The following operations occur:
• Thread A:

• write r1 = 1
• read r2 à ?

• Thread B:
• B: write r2 -> 2
• B: read r1 à ?

• Serializability:
• Execution equivalent to some serial order
• All see same order

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

A sees r2 à 2

A sees r2 à 0

Both are serializable histories
from the perspective of A

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)
• Call them “sub-histories”: from A, B “perspective”

Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

From the perspective threads A, B, all sub-histories are serializable
• They respect program order for each of A, B
• And are equivalent to *some* serial execution
• If we “compose” these histories, some composed histories not serializable

…

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories
• Composition of serializable histories à non-serializable histories
• Ex. H1ab is not serializable
Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

History Effect

H1ab A writes r1=1, B writes r2=2
reads r2 à 0, B reads r1 à 0

H2ab A writes r1=1, B writes r2=2
reads r2 à 0, B reads r1 à 1

H3ab A writes r1=1, B writes r2=2
reads r2 à 2, B reads r1 à 0

H4ab A writes r1=1, B writes r2=2
reads r2 à 2, B reads r1 à 1

4 serializable sub-histories composed
To form 4 complete histories,
Only H4ab is actually serializable

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

•Why is it important?
• Serializability is not composable.
• A system composed of linearizable objects remains linearizable
• Does this mean you get txn or lock-like composition for free?

• In general no
• Serializability is a property of transactions, or groups of updates
• Linearizability is a property of concurrent objects
• The two are often conflated (e.g. because txns update only a single object)

Linearizability Properties

53

Practical difficulties:

• Key-value mapping
• Population count
• Iteration
• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

54

