I Programming at Scale:
Consistency

cs378h

I Today

Questions?

Administrivia

Agenda:
* Concurrency & Consistency at Scale

lines = LOAD '/user/hadoop/HDFS File.txt' AS (line:chararray);

Systems

words FOREACH lines GENERATE FLATTEN(TOKENIZE(line)) as word;

grouped = GROUP words BY word;

wordcount = FOREACH grouped GENERATE group, COUNT(words);

DUMP wordcount;
ApJ

SQL Sawzall =SQL LINQ, SQL
R Sawzall)(Pig, Hive j DryadLINQ
Language 7~ N2 S
CREATE EXTERNAL TABLE lines(line string)
LOAD DATA INPATH ‘books’ OVERWRITE INTO TABLE lines;
Execution Paralle
Databas
SELECT word, count(*) FROM lines
LATERAL VIEW explode(split(text, ' ')) 1lTable as word
Storage GROUP BY word;

count: table sum of int;

total: table sum of float;

sum_of squares: table sum of float;
x: float = input;

emit count <- 1;

emit total <- x;

emit sum of squares <- x * x;

BieTable [S3 | - I
- AN JSQL Server/

(Yet) Another Framework

Still not a perfect framework

Cons: L e e e - T)
e

o Many dimensions contain sub-dimensions &)

Be=yment Stores | <
o Many concerns fundamentally coupled B g+ Basically Available

. . . : H « Soft State
© Dimensions are often un- or partially-gfderd ® Consistency - — - L IC _
« |solation © Eventually Consistent
Pros: * Durability
rrac—cvlumi Stores

* Makes important concerns expli

* Cleanly taxonomizes most modern systems Shared-Disk

* Range-Sharding

————————————————————— . * Primary-Backup
o (Commit-Consenstis

Storage
————————————————————— e Secondary Indexing —

Query Support * Query Planning
* Materialized Views
* Analytics

Logging

age

Consistency

Partitions

How to keep data in sync?
* Partitioning =2 single row spread over multiple machines

e Redundancy =2 single datum spread over multiple machines

Consistency: the core problem

Write(k,v) Read(k,v)
l writer : > : reader I

) . * How should we implement write?
Clients perform reads and writes e How to implement read?

Data is replicated among a set of servers
Writes must be performed at all servers
Reads return the result of one or more past writes

Data Model

Consistency: CAP Theorem —

aaaaaaa

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:
« system allows operations all the time, Why is this “theorem” true?
* and operations return quickly JUSRI

3. Partition-tolerance:
e system continues to work in spite of netwol

| Write(k,v) Read(k,v)

‘ writer | 1 reader ‘

e

- —— e —

if(partition) { keep going } = !consistent && available
if(partition) { stop } =2 consistent && !available

CAP Implications

PACELC:

distributed if(partition) {
e A distributed storage M
system c:n achievegat gC"SlStency choose A or C

most two of C, A, and P. } else {

* When partition- choose latency or consistency

tolerance is important,
you have to choose

between consistency and HBase, HyperTable,
availability BigTable, Spanner

RDBMSs
(non-replicated)

Partition-tolerance Availability

Cassandra, RIAK,
Dynamo, Voldemort

Consistency Spectrum

&
N

Faster reads and writes

More consistency Strong
(e.g., Sequential)

v

Eventual

Spectrum Ends: Eventual Consistency

e Eventual Consistency
* |f writes to a key stop, all replicas of key will converge
* Originally from Amazon’s Dynamo and LinkedIn’s Voldemort systems

Faster reads and writes

More consistency Strong

N

Eventual (e.g., Sequential)

Spectrum Ends: Strong Consistency

* Strict:
» Absolute time ordering of all shared accesses, reads always return last write

* Linearizability:
* Each operation is visible (or available) to all other clients in real-time order

* Sequential Consistency [Lamport]:

« "... the result of any execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program.

» After the fact, find a “reasonable” ordering of the operations (can re-order operations)
that obeys sanity (consistency) at all clients, and across clients.

* ACID properties

Many Many Consistency Models

Red-Blue
Causal Probabilistic
Eventual Per-key sequential Strong

CRDTs (e.g., Sequential, Strict)

* Amazon S3 — eventual consistency
* Amazon Simple DB — eventual or strong
* Google App Engine — strong or eventual
* Yahoo! PNUTS — eventual or strong

* Windows Azure Storage — strong (or eventual)

* Cassandra — eventual or strong (if R+W > N) QueStlon: HOW to Choose What
: to use or support?

Some Consistency Guarantees

strength
[Strong } '
metric =
set of
allowable
[Prefix } [Bounded } [Monotonic} [RMW } read
results

[Eventual }

The Game of Soccer

forhalf=1..2 {

while half not over {

kick-the-ball-at-the-goal

Visitors’ score Home score

for each goal { o o e e By

if visiting-team-scored {
score = Read (“visitors”);
Write (“visitors”, score + 1);
} else {
score = Read (“home”);

Write (“home”, score + 1);

9 N\ -/
hScore = Read(“home”); \?larln::r
vScore = Read(“visit”); reads)

if (hScore == vScore)

play-overtime

Official Scorekeeper

score = Read (“visitors”);
Write (“visitors”, score + 1);

Desired consistency?
Strong
= Read My Writes!

Write (“home”, 1);
Weite (“visitors”,
Write (“home”, 2);
Write (“home”, 3);
Write (“visitors”,
Write (“home”, 4);
Write (“home”, 5);
Visitors = 2

Home = 5

1);

2);

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

Visitors’ score Home score

2~ _S3— _—S4&— _—S5 56—

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Referee

vScore = Read (“visitors”);

hScore = Read (“home”);

if vScore == hScore
play-overtime

Desired consistency?
Strong consistency

Visitors’ score Home score
S1

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

—S2—~ —S3 —S4&~ = S5~ = —56

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Radio Reporter

do {
BeginTx();
vScore = Read (“visitors”);
hScore = Read (“home”);
EndTx();
report vScore and hScore;
sleep (30 minutes);

Desired consistency?
Consistent Prefix

Monotonic Reads
or Bounded Staleness

Visitors’ score Home score
C St)

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

S22 S8 _Ss4— 5 6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Sportswriter

While not end of game {
drink beer;
smoke cigar;
}
go out to dinner;
vScore = Read (“visitors”);
hScore = Read (“home”);
write article;

Desired consistency?
Eventual
Bounded Staleness

Visitors’ score Home score
ST

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

s _-s3 sS4 S5 6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Statistician

Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Desired consistency?

Strong Consistency (1st read)

Read My Writes (2 read)

Visitors’ score Home score
(Sl)

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

S22 S8 _Ss4— S5 6

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Stat Watcher

do {
stat = Read (“season-goals”);
discuss stats with friends;
sleep (1 day);

Desired consistency?
Eventual Consistency

Visitors’ score Home score

st

Strong Consistency
Eventual Consistency
Consistent Prefix
Monotonic Reads
Read My Writes

Bounded Staleness

—S2—~ —S3 —S4&~ = S5~ = —56

See all previous writes.

See subset of previous writes.

See initial sequence of writes.

See increasing subset of writes.
See all writes performed by reader.

See all “old” writes.

Official scorekeeper:

score = Read (“visitors”);

Sportswriter:

While not end of game {

Write (“visitor

drink beer;

smoke cigar;

}

go out to dinner;

Referee:

icte —
m Statistictg:article;

i Wait for end of game;
Radio reporter:

do {

vScore = Read (“visitors”);

score = Read (“home”);

hScore = Read (“home”);

Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order

e each process issues operations in program order
* Any valid interleaving is allowed

* All agree on the same interleaving
e Each process preserves its program order

P1: W(x)a P1: Wx)a

P2 Wx)b P2: Wx)b

P3. R(x)b R(x)a P3. R(x)b R(x)a

P4; R{x)b R(x)a P4: R{x)a R(x)b
* Why is this weaker than strict/strong?) ()

* Nothing is said about “most recent write”

Linearizability

* Assumes sequential consistency and
e If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
e Stronger than sequential consistency
* Difference between linearizability and serializability?
* Granularity: reads/writes versus transactions

*Example:

Stay tuned...relevant for lock free data structures
*Importantly: a property of concurrent objects

Causal consistency

Causal:
e Causally related writes seer If a write produces a value that
. Causally? causes another write, they are causally related
* Concurrent writes may be se
machines -
if(X>0) {
Y=1
P1: W(x)a }
P2: RXa WX)b Causal consistency =2 all see X=1, Y=1 in same order
P3: RX)b Rx)a P3: Rx)b Rx)a
P4: R(x)a R)b P4: R(x)a R{x)b

(@) (b)

Not permitted Permitted

Consistency models summary

Consistency

Description

Strict

Absolute time ordering of all shared accesses matters.

Linearizability

All processes must see all shared accesses in the same order. Accesses are furthermore ordered
according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order. Accesses are not ordered in time
Causal All processes see causally-related shared accesses in the same order.
FIFO All processes see writes from each other in the order they were used. Writes from different processes

may not always be seen in that order

(@)

Consistency

Description

Weak Shared data can be counted on to be consistent only after a synchronization is done
Release Shared data are made consistent when a critical region is exited
Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)

