
cs378h

Programming at Scale:
Consistency

Today

Questions?

Administrivia

Agenda:
• Concurrency & Consistency at Scale

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Cosmos
Azure

SQL Server

Dryad

DryadLINQ
Scope

Sawzall

Hadoop

HDFS
S3

Pig, Hive

Parallel
Databases

SQL ≈SQL LINQ, SQLSawzall

Cosmos,
HPC, Azure

Spark

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

Da
ta

M
od

el

Consistency

Im
ple

men
tat

ion
Te

ch
niquesSharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Shared-Disk
• Range-Sharding
• Hash-Sharding
• Consistent Hashing

• Primary-Backup
• Commit-Consensus

Protocol
• Sync/Async

• Logging
• Update In Place
• Caching
• In-Memory Storage

• Secondary Indexing
• Query Planning
• Materialized Views
• Analytics

Still not a perfect framework

Cons:

● Many dimensions contain sub-dimensions

● Many concerns fundamentally coupled

● Dimensions are often un- or partially-ordered

Pros:

• Makes important concerns explicit

• Cleanly taxonomizes most modern systems

• Basically Available
• Soft State
• Eventually Consistent

• Atomicity
• Consistency
• Isolation
• Durability

Consistency

Partitions
How to keep data in sync?
• Partitioning à single row spread over multiple machines
• Redundancy à single datum spread over multiple machines

Consistency: the core problem

• Clients perform reads and writes
• Data is replicated among a set of servers
• Writes must be performed at all servers
• Reads return the result of one or more past writes

R1 R2writer reader
Write(k,v) Read(k,v)

• How should we implement write?
• How to implement read?

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time
• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,
• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

• Reads/writes complete reliably and quickly.
• E.g. Amazon, each ms latency à $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

if(partition) { keep going } à !consistent && available

if(partition) { stop } à consistent && !available

CAP Implications

• A distributed storage
system can achieve at
most two of C, A, and P.

• When partition-
tolerance is important,
you have to choose
between consistency and
availability

Consistency

Partition-tolerance Availability

RDBMSs
(non-replicated)

Cassandra, RIAK,
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner

PACELC:

if(partition) {
choose A or C

} else {
choose latency or consistency

}

CAP is
flawed

Consistency Spectrum

Strong
(e.g., Sequential)Eventual

More consistency

Faster reads and writes

Spectrum Ends: Eventual Consistency

• Eventual Consistency
• If writes to a key stop, all replicas of key will converge
• Originally from Amazon’s Dynamo and LinkedIn’s Voldemort systems

Strong
(e.g., Sequential)Eventual

More consistency

Faster reads and writes

Spectrum Ends: Strong Consistency

• Strict:
• Absolute time ordering of all shared accesses, reads always return last write

• Linearizability:
• Each operation is visible (or available) to all other clients in real-time order

• Sequential Consistency [Lamport]:
• "... the result of any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program.

• After the fact, find a “reasonable” ordering of the operations (can re-order operations)
that obeys sanity (consistency) at all clients, and across clients.

• ACID properties

Many Many Consistency Models

Eventual Strong
(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Question: How to choose what
to use or support?

• Amazon S3 – eventual consistency

• Amazon Simple DB – eventual or strong

• Google App Engine – strong or eventual

• Yahoo! PNUTS – eventual or strong

• Windows Azure Storage – strong (or eventual)

• Cassandra – eventual or strong (if R+W > N)

• ...

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

co
ns

ist
en

cy
pe

rfo
rm

an
ce

av
ai

la
bi

lit
y

Strong

RMWMonotonicBoundedPrefix

Eventual

metric =
set of
allowable
read
results

strength

The Game of Soccer
for half = 1 .. 2 {

while half not over {

kick-the-ball-at-the-goal

for each goal {

if visiting-team-scored {

score = Read (“visitors”);

Write (“visitors”, score + 1);

} else {

score = Read (“home”);

Write (“home”, score + 1);

} } }

hScore = Read(“home”);

vScore = Read(“visit”);

if (hScore == vScore)

play-overtime

Official Scorekeeper

Desired consistency?
Strong
= Read My Writes!

15

score = Read (“visitors”);
Write (“visitors”, score + 1);

Referee

Desired consistency?
Strong consistency

16

vScore = Read (“visitors”);
hScore = Read (“home”);
if vScore == hScore

play-overtime

Radio Reporter

Desired consistency?
Consistent Prefix
Monotonic Reads

or Bounded Staleness
17

do {
BeginTx();

vScore = Read (“visitors”);
hScore = Read (“home”);

EndTx();
report vScore and hScore;
sleep (30 minutes);

}

Sportswriter

Desired consistency?
Eventual
Bounded Staleness

18

While not end of game {
drink beer;
smoke cigar;

}
go out to dinner;
vScore = Read (“visitors”);
hScore = Read (“home”);
write article;

Statistician

Desired consistency?
Strong Consistency (1st read)

Read My Writes (2nd read)

19

Wait for end of game;
score = Read (“home”);
stat = Read (“season-goals”);
Write (“season-goals”, stat + score);

Stat Watcher

Desired consistency?
Eventual Consistency

20

do {
stat = Read (“season-goals”);
discuss stats with friends;
sleep (1 day);

}

Official scorekeeper:
score = Read (“visitors”);

Write (“visitors”, score + 1);

Statistician:
Wait for end of game;

score = Read (“home”);

stat = Read (“season-goals”);

Write (“season-goals”, stat + score);

Referee:

Radio reporter:
do {

vScore = Read (“visitors”);

hScore = Read (“home”);

report vScore and hScore;

sleep (30 minutes);

}

Sportswriter:
While not end of game {

drink beer;

smoke cigar;

}

go out to dinner;

vScore = Read (“visitors”);

hScore = Read (“home”);

write article;

Strong ConsistencyStrong Consistency

Monotonic Reads

Read My Writes

Consistent Prefix

Bounded Staleness

Read My Writes

Stat watcher:
stat = Read (“season-runs”);

discuss stats with friends;Eventual Consistency

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order
• each process issues operations in program order

• Any valid interleaving is allowed
• All agree on the same interleaving
• Each process preserves its program order

• Why is this weaker than strict/strong?

• Nothing is said about “most recent write”

Linearizability

• Assumes sequential consistency and
• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency
• Difference between linearizability and serializability?

• Granularity: reads/writes versus transactions

•Example:
•Stay tuned…relevant for lock free data structures
•Importantly: a property of concurrent objects

Causal consistency
• Causally related writes seen by all processes in same order.

• Causally?
• Concurrent writes may be seen in different orders on different

machines

Causal:
If a write produces a value that
causes another write, they are causally related

X = 1
if(X > 0) {

Y = 1
}
Causal consistency à all see X=1, Y=1 in same order

Not permitted Permitted

Consistency models summary
Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability All processes must see all shared accesses in the same order. Accesses are furthermore ordered
according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order. Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO All processes see writes from each other in the order they were used. Writes from different processes
may not always be seen in that order

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)

