
FPGAs:
Verilog

Sequence Alignment (maybe)
Chris Rossbach
cs378 Fall 2018

11/5/2018

1

Outline for Today

• Questions?
• Administrivia

• Re: Exams
• Keep thinking about projects!
• Website updates

• Agenda
• FPGAs: POTPOURRI of things you need to know
• NW

Acknowledgements/References:

• https://s3-us-west-2.amazonaws.com/cse291personalgenomics/Lectures2017/Lecture12_AlignmentVariantCalling.pptx

• https://web.stanford.edu/~jurafsky/slp3/slides/2_EditDistance.pptx

• https://moodle.med.lu.se/pluginfile.php/45044/mod_resource/content/0/sequence_alignment_2015.pptx

• http://www.cbs.dtu.dk/phdcourse/cookbooks/PairwiseAlignmentPhD2.ppt

• http://cwcserv.ucsd.edu/~billlin/classes/ECE111/lectures/Lecture1.pptx

• http://www.cs.unc.edu/~montek/teaching/Comp541-Fall16/VerilogPrimer.pptx

• Evita_verilog Tutorial, www.aldec.com

• http://www.asic-world.com/verilog/
2

https://s3-us-west-2.amazonaws.com/cse291personalgenomics/Lectures2017/Lecture12_AlignmentVariantCalling.pptx
https://web.stanford.edu/~jurafsky/slp3/slides/2_EditDistance.pptx
https://moodle.med.lu.se/pluginfile.php/45044/mod_resource/content/0/sequence_alignment_2015.pptx
http://www.cbs.dtu.dk/phdcourse/cookbooks/PairwiseAlignmentPhD2.ppt
http://cwcserv.ucsd.edu/~billlin/classes/ECE111/lectures/Lecture1.pptx
http://www.cs.unc.edu/~montek/teaching/Comp541-Fall16/VerilogPrimer.pptx
http://www.aldec.com/

Faux Quiz Questions

• Why/when might one prefer an FPGA over an ASIC, CPU, or GPU?
• Define CLB, BRAM, and LUT. What role do these things play in FPGA

programming?
• What is the difference between blocking and non-blocking

assignment in Verilog?
• What is the difference between structural and behavioral modeling?
• How is synthesizable Verilog different from un-synthesizable? Give an

example of each?
• What is discrete event simulation?

3

Review: FPGA Design/Build Cycle

• HW design in Verilog/VHDL
• Behavioral modeling + some

structural elements
• Simulate to check functionality
• Synthesis à netlist generated
• Static analysis to check timing

Verilog

• Originally: modeling language for event-driven digital logic simulator
• Later: specification language for logic synthesis
• Consequence:
• Combines structural and behavioral modeling styles

Components of Verilog

• Concurrent, event-triggered processes (behavioral)
• Initial and Always blocks
• Imperative code à standard data manipulation (assign, if-then, case)
• Processes run until triggering event (or #delay expire)

• Structure
• Verilog program builds from modules with I/O interfaces
• Modules may contain instances of other modules
• Modules contain local signals, etc.
• Module configuration is static and all run concurrently

Discrete-event Simulation

• Key idea: only do work when something changes
• Core data structure: event queue
• Contains events labeled with the target simulated time

• Algorithmic idea:
• Execute every event for current simulated time
• May change system state and may schedule events in the future (or now)
• No events left at current time à advance simulated time (next event in Q)

Two Main Data Types

• Nets represent connections between things
• Do not hold their value
• Take their value from a driver such as a gate or other module
• Cannot be assigned in an initial or always block

• Regs represent data storage
• Behave exactly like memory in a computer
• Hold their value until explicitly assigned in an initial or always block
• Model latches, flip-flops, etc., but do not correspond exactly
• Shared variables

• Similar known shared state issues

Four-valued Data and Logic

Nets and regs hold four-valued data
• 0, 1 à Umm…
• Z

• Output for undriven tri-state (hi-Z)
• Nothing is setting a wire’s value

• X
• Simulator can’t decide the value
• Initial state of registers
• Wire driven to 0 and 1 simultaneously
• Output of gate with Z inputs

• Data representation
• Binary à 6’b100101
• Hex à 6’h25

0 1 X Z

0 0 0 0 0

1 0 1 X X

X 0 X X X

Z 0 X X X

Output 0 if one input is 0

Output X if inputs are junk

• Logical operators work on three-
valued logic

Structural Modeling
• Specification
• Netlist: gates and connections
• Primitives/components (e.g logic gates)
• Connected by wires

• Easy to translate to physical circuit

Dataflow Modeling

• Specification
• Components (similar to logical equations)
• Connected by wires

• Easy to translate to structure, then to physical circuit

Behavioral Modeling

• Specification
• In terms of expected behavior
• Closest to natural language

• Most difficult to synthesize

• Easier for testbenches
• Easier for abstract models of circuits
• Simulates faster

• Provides sequencing

Signals
• Nets

• Physical connection between hardware elements

• Registers
• Store value even if disconnected

Nets
• wire/tri
• wand/triand
• wor/trior
• Force synthesis to insert gates
• (e.g. AND, OR)

Using just wire

Ports and Registered Output

Output ports can be type register
• Add reg type to declaration
• Output holds state

Examples of Nets and Registers
Wires and registers can be bits, vectors, and arrays

wire a; // Simple wire
tri [15:0] dbus; // 16-bit tristate bus
tri #(5,4,8) b; // Wire with delay
reg [-1:4] vec; // Six-bit register
trireg (small) q; // Wire stores a small charge
integer imem[0:1023]; // Array of 1024 integers
reg [31:0] dcache[0:63]; // A 32-bit memory

Continuous Assignment

• Another way to describe combinational function
• Convenient for logical or datapath specifications

wire [8:0] sum;
wire [7:0] a, b;
wire carryin;

assign sum = a + b + carryin;

Define bus widths

• Continuous/”blocking” assignment: sets
the value of sum to be a+b+carryin

• Recomputed when a, b, or carryin
changes

Behavioral Modeling

Initial and Always Blocks

• Basic components for behavioral modeling

initial
begin

… imperative statements …
end

Runs when simulation starts
Terminates when control reaches the end
Good for providing stimulus

always
begin

… imperative statements …
end

Runs when simulation starts
Restarts when control reaches the end
Good for modeling/specifying hardware

Not synthesizable
Great for debugging

synthesizable
workhorse of sequential logic

Initial and Always

• Run until they encounter a delay

initial begin
#10 a = 1; b = 0;
#10 a = 0; b = 1;

end

• or a wait for an event

always @(posedge clk) q = d;
always begin wait(i); a = 0; wait(~i); a = 1; end

Procedural Assignment

• Inside an initial or always block:

sum = a + b + cin;

• Just like in C:
• RHS evaluated
• assigned to LHS
• before next statement executes

• RHS may contain wires and regs
• Two possible sources for data

• LHS must be a reg
• Primitives or cont. assignment may set wire values

Imperative Statements

if (select == 1) y = a;
else y = b;

case (op)
2’b00: y = a + b;
2’b01: y = a – b;
2’b10: y = a ^ b;
default: y = ‘hxxxx;

endcase

For and While Loops

• Increasing sequence of values on an output

reg [3:0] i, output;

for (i = 0 ; i <= 15 ; i = i + 1) begin
output = i;
#10;

end

reg [3:0] i, output;

i = 0;
while (I <= 15) begin

output = i;
#10 i = i + 1;

end

A Flip-Flop With Always

Edge-sensitive flip-flop

reg q;

always @(posedge clk)
q = d;

• q = d assignment
• runs when clock rises
• exactly the behavior you expect

Blocking vs. Nonblocking

• Verilog has two types of procedural assignment

• Fundamental problem:
• In a synchronous system, all flip-flops sample simultaneously
• In Verilog, always @(posedge clk) blocks run in some undefined sequence

A Shift Register
aka Blocking vs Non-blocking assignment

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;
always @(posedge clk) d3 = d2;
always @(posedge clk) d4 = d3;

• These run in some order, but you don’t know which
• So…might not work as you’d expect

“Blocking assignment”

Non-blocking Assignments

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;
always @(posedge clk) d3 <= d2;
always @(posedge clk) d4 <= d3;

Nonblocking rule:
RHS evaluated when
assignment runs

LHS updated only after all
events for the current instant
have run

• Blocking vs. Non-blocking: misnomer
• prefer “continuous” to “blocking”
• Guideline: blocking for combinational
• Guideline: non-blocking for sequential

Non-blocking Behavior

• A sequence of nonblocking assignments don’t communicate

a = 1;
b = a;
c = b;

Blocking assignment:
a = b = c = 1

a <= 1;
b <= a;
c <= b;

Nonblocking assignment:
a = 1
b = old value of a
c = old value of b

Dirty/tricky question:
which assignment type yields a correct shift register?

reg d1, d2, d3, d4;

always @(posedge clk) begin
d2 op d1;
d3 op d2;
d4 op d3;

end

Should op be = or <= ?

Implementation: Building FSMs

• Many ways to do it
• Define the next-state logic combinationally
• define the state-holding latches explicitly

• Define the behavior in a single always @(posedge clk) block
• Define behavior per signal in different @(posedge clk) blocks
• Variations on these themes

FSM with Combinational Logic

module FSM(o, a, b, reset);
output o;
reg o;
input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)
case (state)

2’b00: begin
nextState = a ? 2’b00 : 2’b01;
o = a & b;

end
2’b01: begin nextState = 2’b10; o = 0; end

endcase

Combinational block must be
sensitive to any change on
any of its inputs
(Implies state-holding
elements otherwise)

FSM with Combinational Logic

module FSM(o, a, b, reset);
…

always @(posedge clk or reset)
if (reset)

state <= 2’b00;
else

state <= nextState;

Latch implied by sensitivity
to the clock or reset only

FSM from Combinational Logic

always @(a or b or state)
case (state)

2’b00: begin
nextState = a ? 2’b00 : 2’b01;
o = a & b;

end
2’b01: begin nextState = 2’b10; o = 0; end

endcase

always @(posedge clk or reset)
if (reset)
state <= 2’b00;

else
state <= nextState;

FSM with a Single Always Block

module FSM(o, a, b);
output o; reg o;
input a, b;
reg [1:0] state;

always @(posedge clk or reset)
if (reset) state <= 2’b00;
else case (state)
2’b00: begin

state <= a ? 2’b00 : 2’b01;
o <= a & b;

end
2’b01: begin state <= 2’b10; o <= 0; end

endcase

Outputs are latched
Inputs only sampled at clock
edges

Nonblocking assignments
used throughout.
RHS refers to values
calculated in previous clock
cycle

Parameters

• localparam keyword

localparam state1 = 4'b0001,
state2 = 4'b0010,
state3 = 4'b0100,
state4 = 4'b1000;

localparam A = 2'b00,
G = 2’b01,
C = 2’b10,
T = 4’b11;

2010 DSD 37

Operations for HDL simulation/build

• Compilation/Parsing

• Elaboration
• Binding modules to instances
• Build hierarchy
• Compute parameter values
• Resolve hierarchical names
• Establish net connectivity

• …(simulate, place/route, etc)

38

Generate Block

• Dynamically generate Verilog code at elaboration time

• Usage:
• Parameterize modules when the parameter value determines the module contents

• Can generate
• Modules
• User defined primitives
• Verilog gate primitives
• Continuous assignments
• initial and always blocks

2010 DSD 39

Generate Loop
module bitwise_xor (output [N-1:0] out, input [N-1:0] i0, i1);

parameter N = 32; // 32-bit bus by default

genvar j; // This variable does not exist during simulation

generate for (j=0; j<N; j=j+1) begin: xor_loop
//Generate the bit-wise Xor with a single loop

xor g1 (out[j], i0[j], i1[j]);

end

endgenerate //end of the generate block

/* An alternate style using always blocks:

reg [N-1:0] out;

generate for (j=0; j<N; j=j+1) begin: bit

always @(i0[j] or i1[j]) out[j] = i0[j] ^ i1[j];

end

endgenerate

endmodule */
40

Can do this with code but
requires different numbers
of xor modules depending
on N

Generate Conditional
module multiplier (output [product_width -1:0] product, input [a0_width-1:0] a0, input [a1_width-1:0] a1);

parameter a0_width = 8;
parameter a1_width = 8;

localparam product_width = a0_width + a1_width;

generate
if (a0_width <8) || (a1_width < 8)

cla_multiplier #(a0_width, a1_width) m0 (product, a0, a1);
else

tree_multiplier #(a0_width, a1_width) m0 (product, a0, a1);
endgenerate

endmodule

2010 42

Generate Case
module adder(output co, output [N-1:0] sum, input [N-1:0] a0, a1, input ci);

parameter N = 4;

// Parameter N that can be redefined at instantiation time.
generate

case (N)
1: adder_1bit adder1(c0, sum, a0, a1, ci);
2: adder_2bit adder2(c0, sum, a0, a1, ci);
default: adder_cla #(N) adder3(c0, sum, a0, a1, ci);

endcase
endgenerate

endmodule

43

Nesting
• Generate blocks can be nested
• Nested loops cannot use the same genvar variable

44

Logic Synthesis

• Verilog: two use-cases
• Model for discrete-event simulation
• Specification for a logic synthesis system

• Logic synthesis: convert subset of Verilog language à netlist

Two stages
1. Translate source to a netlist

• Register inference

2. Optimize netlist for speed and area
• Most critical part of the process
• Awesome algorithms

What Can/Can’t Be Translated

• Structural definitions
• Everything

• Behavioral blocks
• When they have reasonable

interpretation as
combinational logic, edge,
or level-sensitive latches

• User-defined primitives
• Primitives defined with

truth tables
• Some sequential UDPs can’t

be translated (not latches or
flip-flops)

• Initial blocks
• Used to set up initial state or

describe finite testbench stimuli
• Don’t have obvious hardware

component
• Delays

• May be in the Verilog source, but
are simply ignored

• Other obscure language features
• In general, things dependent on

discrete-event simulation semantics
• Certain “disable” statements
• Pure events

Confidential │ ©2018 VMware, Inc.

FPGAs and Programming in
Cascade
eric schkufza

November 7, 2018

Agenda

48Confidential │ ©2018 VMware, Inc.

FPGAs
What’s so good about them? What’s so bad about them?

Cascade
How we make the good stuff better, and the bad stuff
less awful

Live Demo
Writing a simple program in Cascade

Time Permitting
How Cascade works? Verilog minutiae?

49Confidential │ ©2018 VMware, Inc.

• FPGAs make sense when:
• A workload is high-performance but also predictable
• Application requirements change relatively frequently

What are FPGAs good for?

Performance Generality

FPGA CPUASIC

50Confidential │ ©2018 VMware, Inc.

But programming an FPGA is HARD!
• Verilog is complicated:

• Mix of concurrent and sequential semantics
• Awkward type system
• Half-baked meta-programming
• Synthesizable vs unsynthesizable code

• Domain-specific Languages
• Chisel, Halide, etc…

Bad Design Good Design

W
id

el
y

U
se

d
N

ic
he Haskell

C/C++
Java

JavaScript
R

Verilog

51Confidential │ ©2018 VMware, Inc.

And compilation takes FOREVER!
• Software Compilers:

• O(seconds)
• Reason about programs locally
• Pre-defined O(n^k) rules

• Software Development:
• Compile-test-debug cycle
• Test and deploy in the same environment

• Hardware Compilers:
• O(minutes to hours)
• Reason about programs globally
• NP-hard constraint satisfaction

• Hardware Development:
• Debug behavior in a simulator
• Debug timing in hardware
• Test and deploy in different environments

52Confidential │ ©2018 VMware, Inc.

• CASCADE
• Makes programming hardware

feel like programming software

53Confidential │ ©2018 VMware, Inc.

Design Goals

• Interactivity
Modify a running
program, I/O side

effects visible
immediately

• Expressiveness
Eliminate

synthesizable vs
non-synthesizable

distinction

• Portability
Write code once,

run on many
platforms with little

modification

• Performance
Don’t pay for

features you don’t
use

54Confidential │ ©2018 VMware, Inc.

Interactivity
• Just-in-Time Compilation

• Code runs immediately in a simulator
• Compilation takes place in the background
• Control switches when compilation is done
• Code appears to run faster over time

• Why can we do this?
• What’s the meaning of a Verilog program?
• What’s the meaning of any program?

55Confidential │ ©2018 VMware, Inc.

Interactivity
• Just-in-Time Compilation

• Code runs immediately in a simulator
• Compilation takes place in the background
• Control switches when compilation is done
• Code appears to run faster over time

• Why can we do this?
• What’s the meaning of a Verilog program?

56Confidential │ ©2018 VMware, Inc.

Expressiveness
• Unsynthesizable Verilog in hardware

• Display statements
• Finish statements
• Longer term: support for the entire

unsynthesizable language subset

• Why can we do this?
• What is Cascade doing differently compared to a

traditional compiler?

57Confidential │ ©2018 VMware, Inc.

Expressiveness

58Confidential │ ©2018 VMware, Inc.

Limitations and Future Work
• Non-Monotonic language features

• Code deletion
• Genvar statements

• Timing-sensitive applications
• A giga-bit ethernet switch?
• A peripheral which expects inputs on a perfectly

periodic clock?

• FPGA Virtualization:
• Share one FPGA between two instances of

Cascade
• Use Cascade to transparently run one very large

program on two separate FPGAs

• Speculative Optimization:
• Specialize the implementation of a program to

the values that it sees at runtime
• Generate smaller / faster code

Confidential │ ©2018 VMware, Inc.

Thank You
Questions on Piazza

Bug Reports on https://github.com/vmware/cascade

AmorphOS Motivation

Bigger, faster FPGAs deployed in the cloud
• Microsoft Catapult/Azure
• Amazon F1

• FPGAs: Reconfigurable Accelerators
• ASIC Prototyping, Video & Image

Proc., DNN, Blockchain
• Potential solution to accelerator

provisioning challenge

Our position: FPGAs will be shared
• Sharing requires protection
• Abstraction layers provide compatibility
• Beneficiary: provider à consolidation

60

FPGA Background
• Field Programmable Gate Array (FPGA)

• Reconfigurable interconnect à custom data paths
• FPGAs attached as coprocessors to a CPU

• FPGA Build Cycle
• Synthesis: HDL à Netlist (~seconds)
• Place and Route: Netlist à Bitstream (~min--

hours)
• Reconfiguration/Partial Reconfiguration (PR)

• Production systems: No multi-tenancy
• Emerging/Research Systems use fixed

slots/PR
• Fixed-sized slots à fragmentation (50% or more)
• Elastic resource management needed

61

Host

bus

AmorphOS Goals

• Protected Sharing/Isolation
• Mutually distrustful applications

• Compatibility / Portability
• HDL written to AmorphOS interfaces
• 14 benchmarks run unchanged on

Microsoft Catapult and Amazon F1

• Elasticity
• User logic scales with resource

availability
• Sharing density scales with availability

DRAM

App A

App B
FPGA Fabric

I/O
QSFP

USB

eth

I2C

App A

App B

App A

App B
FPGA FabricFPGA FabricApp A

App A

App B

App B

62

AmorphOS Abstractions

• Zone: Allocatable Unit of Fabric
• 1 Global zone
• N dynamically sized, sub-dividable PR

zones
• Hull: OS/Protection Layer

• Memory Protection, I/O Mediation
• Interfaces form a compatibility layer

• Morphlet: Protection Domain
• Extends Process abstraction
• Encapsulate user logic on PR or global

zone

• Registry: Bitstream Cache
• Hides latency of place-and-route (PaR)

FPGA FabricFPGA FabricFPGA Fabric

Global Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

PR
Zone

Morph
let

Host

bus

A

B Morph
letC

Morphlet

Morphlets Bitstream

<A,B> 0x0a1…

<A,B,C> 0x0fb01…

<B,C> 0x11ad…

Re
gi

st
ry

63

Scheduling Morphlets

• Tradeoff
• Fixed zones + PR à fast, fragmentation
• Global zone + PaR à eliminates fragmentation, slow

• AmorphOS: best of both worlds
• Low Latency Mode

• Fixed zones + PR
• Default Morphlet bitstream

• High Throughput Mode
• Combine multiple Morphlets
• Co-schedule on a global zone

64

FPGA Fabric

Host DRAM

FPGA Fabric

Morphlet AApp A
Morphlet A

Host DRAM

FPGA Fabric

Morphlet A

App A

App B

Morphlet A

Morphlet B

Host DRAM

FPGA FabricMorphlet A’

App A

App B

Morphlet A

Morphlet B

Host DRAM
App A

Morphlet A
App B

Morphlet B
App C

Morphlet C
App D

Morphlet D

Morphlet A''
Morphlet B'
Morphlet C
Morphlet D

T0 T1 T2 T3

Low-Latency Mode High-Throughput Mode Low-Latency Mode High-Throughput Mode

65

Scheduling Case Study

AmorphOS Hull

• Hardens and extends vendor Shells
• Microsoft Catapult
• Amazon F1

• AmorphOS Interfaces
• Control: CntrlReg
• Virtual Memory: AMI
• Bulk Data Transfer: Simple-PCIe

8 GB DDR3

64 GB DDR4 AXI4

SoftReg PCIe

BAR-1-AXI4-Lite DMA-AXI4

Catapult Shell

F1 Shell

Catapult Accelerator

F1 Accelerator

AmorphOS HullMorphlet

AMICntrlReg PCIe

66

AmorphOS Hull

• Hardens and extends vendor Shells
• Microsoft Catapult à Higher Level
• Amazon F1 à Lower Level

• AmorphOS Interfaces
• Control: CntrlReg
• Virtual Memory: AMI
• Bulk Data Transfer: Simple-PCIe

• Multiplexing of interfaces
• Isolation/data protection
• Scalable, 32 accelerators

• Tree of multiplexers

8 GB DDR3SoftReg PCIe

Morphlet0

AMICntrl
Reg PCIe

Morphlet1

AMICntrl
Reg PCIe

Morphlet2

AMICntrl
Reg PCIe

Morphlet3

AMICntrl
Reg PCIe

Catapult Shell

AMICntrlReg PCIe

67

Implementation & Methodology

• Catapult Prototype
• Altera Mt. Granite Stratix V GS 2x4GB DDR3, Windows Server
• Segment-based protection, partial reconfiguration (PR)

• Amazon F1 Prototype
• Xilinx UltraScale+ VU9P, 4x16GB GDDR4, CentOS 7.5
• No PR, but much more fabric than Catapult

• Workloads
• DNNWeaver – DNN inference
• MemDrive – Memory Bandwidth
• Bitcoin – blockchain hashing
• CHStone – 11 accelerators (e.g. AES, jpeg, etc)

68

0

5

10

15

20

25

1 4 8 16 32

Sy
st

em
 T

hr
ou

gh
pu

t

Number of Morphlets

MemDrive Bitcoin DNNWeaver

Scalability

• F1: Xilinx UltraScale+ VU9P, 4x16GB GDDR4, CentOS 7.5
• Higher is better, Homogenous Morphlets

MemDrive: BW contention Bitcoin: compute-bound

DNNWeaver:
• 32X density
• 23X throughput

Takeaway: Massive throughput/density
improvement possible, awareness of
contended resources necessary

69

1
4

16
64

256

Ru
n

Ti
m

e
(s

)

End-to-End Bitcoin Run Time

No Sharing Two PR Zones AmorphOS (HT)

Throughput

• 8 Bitcoin Morphlets
• Catapult Altera Stratix V GS 2x4GB DDR3, Windows
• Registry pre-populated: ctxt sw. 200ms
• Log Scale, Lower is better

No-Sharing: serialized

Fixed Zones: worse
than no sharing due
to down-scaling!

Takeaway: Co-scheduling on a
global zone can perform better
than fixed-sized slots and PR

70

Partitioning Policies

Non-Sharing
• Everything runs serially
• Single context

Global Zone
• Multiple Morphlets
• No fixed size zones

Single-level zone scheme
• Two PR zones
• One Morphlet each

Co-schedule
• Multiple Morphlets in

a single PR zone

Subdivide
• Divide top-level PR zone into

smaller PR zones

71

Partitioning Policies

• Bitcoin Morphlets
• Catapult: Altera Mt. Granite Stratix V GS 2x4GB DDR3, Windows
• Registry pre-populated: ctxt sw. 200ms
• Higher is better

Single-level partititioning
Better than recursive subdivision
(cause: downscaling)

• Non-sharing: serialized
• Global: multi-context on global zone
• Single-level: only two fixed slots
• Co-schedule: morph multiple in fixed slot
• Subdivide: hierarchical partitions

Co-schedule on global zone best

Takeaway:
• Hierarchical PR on limited HW not worth it
• See paper for projections on F1 72

Related Work
• Access to OS-managed resources

• Borph: So [TECS ’08, Thesis ‘07]
• Leap: Adler [FPGA ‘11]
• CoRAM: Chung [FPGA ‘11]

• First-class OS support
• HThreads: Peck [FPL’06], ReconOS: Lϋbbers [TECS ‘09] -- extend threading to

FPGA SoCs
• MURAC: Hamilton [FCCM ‘14] – extend process abstraction to FPGAs

• Single-application Frameworks
• Catapult: Putnam [ISCA ‘14] / Amazon F1

• Fixed-slot + PR
• OpenStack support: Chen [CF ‘14], Byma [FCCM ’14]; Fahmy [CLOUDCOM ‘15];
• Disaggregated FPGAs: Weerasinghe [UIC-ATC-ScalCom ‘15]

• Overlays
• Zuma: Brant [FCCM ‘12],
• Hoplite: Kapre [FPL ‘15],
• ReconOS+Zuma: [ReConfig ’14]

73

Conclusions & Future Work

• Compatibility Improved
• without restricting programming model
• Comprehensive set of stable interfaces
• Port AmorphOS per platform not each accelerator per platform

• Scalability achieved within and across accelerators
• AmorphOS transparently scales morphlets up/down
• Powerful combination of slots/Partial Reconfiguration and full FPGA bitstreams

• Future work
• Transparently scale across multiple FPGAs
• Scale across more than just FPGAs
• Open source AmorphOS/port to more platforms

Questions?

74

Example alignment view

Reference genome

Aligned reads

Sequence alignment: Scoring

• Scoring matrices are used to assign scores to each comparison of a pair of characters

• Identities and substitutions by similar amino acids are assigned positive scores

• Mismatches, or matches that are unlikely to have been a result of evolution, are given negative scores

A C D E F G H I K

A C Y E F G R I K

+5 +5 -5 +5 +5 +5 -5 +5 +5
762015-12-09

T A C G G G C A G

- A C - G G C - G

Option 1

T A C G G G C A G

- A C G G - C - G

Option 2

T A C G G G C A G

- A C G - G C - G

Option 3

Pairwise alignment: the problem
The number of possible pairwise alignments increases explosively with the
length of the sequences:
Two protein sequences of length 100 amino acids can be aligned in
approximately 1060 different ways

Time needed to test all possibilities is same order of magnitude as the entire
lifetime of the universe.

Pairwise alignment: the canonical solution
Dynamic programming

(the Needleman-Wunsch algorithm)

Alignment depicted as path in matrix
T C G C A

T
C
C
A

T C G C A

T
C
C
A

TCGCA
TC-CA

TCGCA
T-CCA

Dynamic programming: computing scores

T C G C A

T
C
C
A

x

Any given point in matrix can only be
reached from three possible positions
(you cannot “align backwards”).
=> Best scoring alignment ending in any
given point in the matrix can be found
by choosing the highest scoring of the
three possibilities.

Dynamic programming
T C G C A

T
C
C
A

x

Any given point in matrix can only be
reached from three possible positions
(you cannot “align backwards”).
=> Best scoring alignment ending in any
given point in the matrix can be found
by choosing the highest scoring of the
three possibilities.

score(x,y) = max

score(x,y-1) - gap-penalty

Dynamic programming
T C G C A

T
C
C
A

x

Any given point in matrix can only be
reached from three possible positions
(you cannot “align backwards”).
=> Best scoring alignment ending in any
given point in the matrix can be found
by choosing the highest scoring of the
three possibilities.

score(x,y) = max

score(x,y-1) - gap-penalty
score(x-1,y-1) + substitution-score(x,y)

Dynamic programming
T C G C A

T
C
C
A

x

Any given point in matrix can only be
reached from three possible positions
(you cannot “align backwards”).
=> Best scoring alignment ending in any
given point in the matrix can be found
by choosing the highest scoring of the
three possibilities.

score(x,y) = max

score(x,y-1) - gap-penalty
score(x-1,y-1) + substitution-score(x,y)
score(x-1,y) - gap-penalty

Dynamic programming: example

A C G T
A 1 -1 -1 -1
C -1 1 -1 -1
G -1 -1 1 -1
T -1 -1 -1 1

Gaps: -2

Dynamic programming: example

Dynamic programming: example

Dynamic programming: example

Dynamic programming: example

Dynamic programming: example

T C G C A
: : : :
T C - C A
1+1-2+1+1 = 2

BIG MONGO HINT:
What if each box is a

parallel process?

References:

• Evita_verilog Tutorial, www.aldec.com

• http://www.asic-world.com/verilog/

http://www.aldec.com/

Review: Module definition

• Interface: port and parameter declaration
• Body: Internal part of module
• Add-ons (optional)

Delays on Primitive Instances

• Instances of primitives may include delays

buf b1(a, b); // Zero delay
buf #3 b2(c, d); // Delay of 3
buf #(4,5) b3(e, f); // Rise=4, fall=5
buf #(3:4:5) b4(g, h); // Min-typ-max

Register Inference

• The main trick

• reg does not always equal latch

• Rule: Combinational if outputs always depend exclusively on
sensitivity list
• Sequential if outputs may also depend on previous values

Register Inference

• Combinational:

reg y;
always @(a or b or sel)
if (sel) y = a;
else y = b;

• Sequential:

reg q;
always @(d or clk)
if (clk) q = d;

Sensitive to changes on all of
the variables it reads

Y is always assigned

q only assigned when clk is 1

Register Inference

• A common mistake is not completely specifying a case statement
• This implies a latch:

always @(a or b)
case ({a, b})

2’b00 : f = 0;
2’b01 : f = 1;
2’b10 : f = 1;

endcase

f is not assigned when {a,b} =
2b’11

Register Inference

• The solution is to always have a default case

always @(a or b)
case ({a, b})

2’b00: f = 0;
2’b01: f = 1;
2’b10: f = 1;
default: f = 0;

endcase

f is always assigned

Inferring Latches with Reset

• Latches and Flip-flops often have reset inputs
• Can be synchronous or asynchronous

• Asynchronous positive reset:

always @(posedge clk or posedge reset)
if (reset)
q <= 0;

else q <= d;

Simulation-synthesis Mismatches

• Many possible sources of conflict

• Synthesis ignores delays (e.g., #10), but simulation behavior can be
affected by them
• Simulator models X explicitly, synthesis doesn’t
• Behaviors resulting from shared-variable-like behavior of regs is not

synthesized
• always @(posedge clk) a = 1;
• New value of a may be seen by other @(posedge clk) statements in

simulation, never in synthesis

Compared to VHDL

• Verilog and VHDL are comparable languages
• VHDL has a slightly wider scope
• System-level modeling
• Exposes even more discrete-event machinery

• VHDL is better-behaved
• Fewer sources of nondeterminism (e.g., no shared variables)

• VHDL is harder to simulate quickly
• VHDL has fewer built-in facilities for hardware modeling
• VHDL is a much more verbose language
• Most examples don’t fit on slides

