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Outline for Today

• Questions?
• Administrivia 

• Re: Exams
• Keep thinking about projects!
• Website updates

• Agenda
• FPGAs: POTPOURRI of things you need to know
• NW
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Faux Quiz Questions

• Why/when might one prefer an FPGA over an ASIC, CPU, or GPU?
• Define CLB, BRAM, and LUT. What role do these things play in FPGA 

programming?
• What is the difference between blocking and non-blocking 

assignment in Verilog?
• What is the difference between structural and behavioral modeling? 
• How is synthesizable Verilog different from un-synthesizable? Give an 

example of each?
• What is discrete event simulation?
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Review: FPGA Design/Build Cycle

• HW design in Verilog/VHDL
• Behavioral modeling + some 

structural elements
• Simulate to check functionality
• Synthesis à netlist generated
• Static analysis to check timing



Verilog

• Originally: modeling language for event-driven digital logic simulator
• Later: specification language for logic synthesis
• Consequence:
• Combines structural and behavioral modeling styles



Components of Verilog

• Concurrent, event-triggered processes (behavioral)
• Initial and Always blocks
• Imperative code à standard data manipulation (assign, if-then, case)
• Processes run until triggering event (or #delay expire)

• Structure
• Verilog program builds from modules with I/O interfaces
• Modules may contain instances of other modules
• Modules contain local signals, etc.
• Module configuration is static and all run concurrently



Discrete-event Simulation

• Key idea: only do work when something changes
• Core data structure: event queue
• Contains events labeled with the target simulated time

• Algorithmic idea:
• Execute every event for current simulated time
• May change system state and may schedule events in the future (or now)
• No events left at current time à advance simulated time (next event in Q)



Two Main Data Types

• Nets represent connections between things
• Do not hold their value
• Take their value from a driver such as a gate or other module
• Cannot be assigned in an initial or always block

• Regs represent data storage
• Behave exactly like memory in a computer
• Hold their value until explicitly assigned in an initial or always block
• Model latches, flip-flops, etc., but do not correspond exactly
• Shared variables

• Similar known shared state issues 



Four-valued Data and Logic

Nets and regs hold four-valued data
• 0, 1 à Umm…
• Z

• Output for undriven tri-state (hi-Z)
• Nothing is setting a wire’s value

• X
• Simulator can’t decide the value
• Initial state of registers
• Wire driven to 0 and 1 simultaneously
• Output of gate with Z inputs

• Data representation
• Binary à 6’b100101
• Hex à 6’h25

0 1 X Z

0 0 0 0 0

1 0 1 X X

X 0 X X X

Z 0 X X X

Output 0 if one input is 0

Output X if inputs are junk

• Logical operators work on three-
valued logic



Structural Modeling
• Specification 
• Netlist: gates and connections
• Primitives/components (e.g logic gates)
• Connected by wires

• Easy to translate to physical circuit



Dataflow Modeling

• Specification 
• Components (similar to logical equations)
• Connected by wires

• Easy to translate to structure, then to physical circuit



Behavioral Modeling

• Specification 
• In terms of expected behavior
• Closest to natural language

• Most difficult to synthesize

• Easier for testbenches
• Easier for abstract models of circuits
• Simulates faster

• Provides sequencing



Signals
• Nets

• Physical connection between hardware elements

• Registers 
• Store value even if disconnected



Nets
• wire/tri
• wand/triand
• wor/trior
• Force synthesis to insert gates
• (e.g. AND, OR)

Using just wire



Ports and Registered Output

Output ports can be type register
• Add reg type to declaration
• Output holds state



Examples of Nets and Registers
Wires and registers can be bits, vectors, and arrays

wire a; // Simple wire
tri [15:0] dbus; // 16-bit tristate bus
tri #(5,4,8) b; // Wire with delay
reg [-1:4] vec; // Six-bit register
trireg (small) q; // Wire stores a small charge
integer imem[0:1023]; // Array of 1024 integers
reg [31:0] dcache[0:63]; // A 32-bit memory



Continuous Assignment

• Another way to describe combinational function
• Convenient for logical or datapath specifications

wire [8:0] sum;
wire [7:0] a, b;
wire carryin;

assign sum = a + b + carryin;

Define bus widths

• Continuous/”blocking” assignment: sets 
the value of sum to be a+b+carryin

• Recomputed when a, b, or carryin
changes



Behavioral Modeling



Initial and Always Blocks

• Basic components for behavioral modeling

initial
begin

… imperative statements …
end

Runs when simulation starts
Terminates when control reaches the end
Good for providing stimulus

always
begin

… imperative statements …
end

Runs when simulation starts
Restarts when control reaches the end
Good for modeling/specifying hardware

Not synthesizable
Great for debugging

synthesizable
workhorse of sequential logic



Initial and Always

• Run until they encounter a delay

initial begin
#10 a = 1; b = 0;
#10 a = 0; b = 1;

end

• or a wait for an event

always @(posedge clk) q = d;
always begin wait(i); a = 0; wait(~i); a = 1; end



Procedural Assignment

• Inside an initial or always block:

sum = a + b + cin;

• Just like in C: 
• RHS evaluated
• assigned to LHS 
• before next statement executes

• RHS may contain wires and regs
• Two possible sources for data

• LHS must be a reg
• Primitives or cont. assignment may set wire values



Imperative Statements

if (select == 1) y = a;
else y = b;

case (op)
2’b00: y = a + b;
2’b01: y = a – b;
2’b10: y = a ^ b;
default: y = ‘hxxxx;

endcase



For and While Loops

• Increasing sequence of values on an output

reg [3:0] i, output;

for ( i = 0 ; i <= 15 ; i = i + 1 ) begin
output = i;
#10;

end

reg [3:0] i, output;

i = 0;
while (I <= 15) begin

output = i;
#10 i = i + 1;

end



A Flip-Flop With Always

Edge-sensitive flip-flop

reg q;

always @(posedge clk)
q = d;

• q = d assignment 
• runs when clock rises
• exactly the behavior you expect



Blocking vs. Nonblocking

• Verilog has two types of procedural assignment

• Fundamental problem:
• In a synchronous system, all flip-flops sample simultaneously
• In Verilog, always @(posedge clk) blocks run in some undefined sequence



A Shift Register
aka Blocking vs Non-blocking assignment

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;
always @(posedge clk) d3 = d2;
always @(posedge clk) d4 = d3;

• These run in some order, but you don’t know which
• So…might not work as you’d expect

“Blocking assignment”



Non-blocking Assignments

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;
always @(posedge clk) d3 <= d2;
always @(posedge clk) d4 <= d3;

Nonblocking rule:
RHS evaluated when 
assignment runs

LHS updated only after all 
events for the current instant 
have run

• Blocking vs. Non-blocking: misnomer
• prefer “continuous” to “blocking”
• Guideline: blocking for combinational
• Guideline: non-blocking for sequential



Non-blocking Behavior

• A sequence of nonblocking assignments don’t communicate

a = 1;
b = a;
c = b;

Blocking assignment:
a = b = c = 1

a <= 1;
b <= a;
c <= b;

Nonblocking assignment:
a = 1
b = old value of a
c = old value of b



Dirty/tricky question: 
which assignment type yields a correct shift register?

reg d1, d2, d3, d4;

always @(posedge clk) begin 
d2 op d1;
d3 op d2;
d4 op d3;

end

Should op be = or <= ?



Implementation: Building FSMs

• Many ways to do it
• Define the next-state logic combinationally
• define the state-holding latches explicitly

• Define the behavior in a single always @(posedge clk)  block
• Define behavior per signal in different @(posedge clk)  blocks
• Variations on these themes



FSM with Combinational Logic

module FSM(o, a, b, reset);
output o;
reg o;
input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)
case (state)

2’b00: begin
nextState = a ? 2’b00 : 2’b01;
o = a & b;

end
2’b01: begin nextState = 2’b10; o = 0; end

endcase

Combinational block must be 
sensitive to any change on 
any of its inputs
(Implies state-holding 
elements otherwise)



FSM with Combinational Logic

module FSM(o, a, b, reset);
…

always @(posedge clk or reset)
if (reset)

state <= 2’b00;
else

state <= nextState;

Latch implied by sensitivity 
to the clock or reset only



FSM from Combinational Logic

always @(a or b or state)
case (state)

2’b00: begin
nextState = a ? 2’b00 : 2’b01;
o = a & b;

end
2’b01: begin nextState = 2’b10; o = 0; end

endcase

always @(posedge clk or reset)
if (reset)
state <= 2’b00;

else
state <= nextState;



FSM with a Single Always Block

module FSM(o, a, b);
output o; reg o;
input a, b;
reg [1:0] state;

always @(posedge clk or reset)
if (reset) state <= 2’b00;
else case (state)
2’b00: begin

state <= a ? 2’b00 : 2’b01;
o <= a & b;

end
2’b01: begin state <= 2’b10; o <= 0; end

endcase

Outputs are latched
Inputs only sampled at clock 
edges

Nonblocking assignments 
used throughout.
RHS refers to values 
calculated in previous clock 
cycle



Parameters

• localparam keyword

localparam state1 = 4'b0001,
state2 = 4'b0010,
state3 = 4'b0100,
state4 = 4'b1000;

localparam A = 2'b00,
G = 2’b01,
C = 2’b10,
T = 4’b11;

2010 DSD 37



Operations for HDL simulation/build

• Compilation/Parsing

• Elaboration
• Binding modules to instances
• Build hierarchy
• Compute parameter values
• Resolve hierarchical names
• Establish net connectivity

• …(simulate, place/route, etc)
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Generate Block

• Dynamically generate Verilog code at elaboration time

• Usage: 
• Parameterize modules when the parameter value determines the module contents

• Can generate
• Modules
• User defined primitives
• Verilog gate primitives
• Continuous assignments
• initial and always blocks

2010 DSD 39



Generate Loop
module bitwise_xor (output [N-1:0] out, input [N-1:0] i0, i1);

parameter N = 32; // 32-bit bus by default

genvar j; // This variable does not  exist during simulation

generate for (j=0; j<N; j=j+1) begin: xor_loop
//Generate the bit-wise Xor with a single loop

xor g1 (out[j], i0[j], i1[j]);

end

endgenerate //end of the generate block

/* An alternate style using always blocks:

reg [N-1:0] out;

generate for (j=0; j<N; j=j+1) begin: bit

always @(i0[j] or i1[j]) out[j] = i0[j] ^ i1[j];

end

endgenerate

endmodule */
40
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Generate Conditional
module multiplier (output [product_width -1:0] product, input [a0_width-1:0] a0, input [a1_width-1:0] a1);

parameter a0_width = 8; 
parameter a1_width = 8; 

localparam product_width = a0_width + a1_width;

generate
if (a0_width <8) || (a1_width < 8)

cla_multiplier #(a0_width, a1_width)   m0 (product, a0, a1);
else

tree_multiplier #(a0_width, a1_width)   m0 (product, a0, a1);
endgenerate

endmodule

2010 42



Generate Case
module adder(output co, output [N-1:0] sum, input [N-1:0] a0, a1, input ci); 

parameter N = 4; 

// Parameter N that can be redefined at instantiation time.
generate

case (N)
1: adder_1bit adder1(c0, sum, a0, a1, ci); 
2: adder_2bit adder2(c0, sum, a0, a1, ci); 
default: adder_cla #(N) adder3(c0, sum, a0, a1, ci);

endcase
endgenerate

endmodule
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Nesting
• Generate blocks can be nested
• Nested loops cannot use the same genvar variable
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Logic Synthesis

• Verilog: two use-cases
• Model for discrete-event simulation
• Specification for a logic synthesis system

• Logic synthesis: convert subset of Verilog language à netlist

Two stages
1. Translate source to a netlist

• Register inference

2. Optimize netlist for speed and area
• Most critical part of the process
• Awesome algorithms



What Can/Can’t Be Translated

• Structural definitions
• Everything

• Behavioral blocks
• When they have reasonable 

interpretation as 
combinational logic, edge, 
or level-sensitive latches

• User-defined primitives
• Primitives defined with 

truth tables
• Some sequential UDPs can’t 

be translated (not latches or 
flip-flops)

• Initial blocks
• Used to set up initial state or 

describe finite testbench stimuli
• Don’t have obvious hardware 

component
• Delays

• May be in the Verilog source, but 
are simply ignored

• Other obscure language features
• In general, things dependent on 

discrete-event simulation semantics
• Certain “disable” statements
• Pure events
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FPGAs and Programming in 
Cascade
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Agenda
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FPGAs
What’s so good about them? What’s so bad about them?

Cascade
How we make the good stuff better, and the bad stuff 
less awful

Live Demo
Writing a simple program in Cascade

Time Permitting
How Cascade works? Verilog minutiae?
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• FPGAs make sense when:
• A workload is high-performance but also predictable
• Application requirements change relatively frequently

What are FPGAs good for?

Performance Generality  

FPGA CPUASIC



50Confidential   │ ©2018 VMware, Inc.

But programming an FPGA is HARD!
• Verilog is complicated:

• Mix of concurrent and sequential semantics
• Awkward type system
• Half-baked meta-programming
• Synthesizable vs unsynthesizable code

• Domain-specific Languages
• Chisel, Halide, etc…

Bad Design Good Design
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And compilation takes FOREVER!
• Software Compilers:

• O(seconds)
• Reason about programs locally
• Pre-defined O(n^k) rules

• Software Development:
• Compile-test-debug cycle
• Test and deploy in the same environment

• Hardware Compilers:
• O(minutes to hours)
• Reason about programs globally
• NP-hard constraint satisfaction

• Hardware Development:
• Debug behavior in a simulator 
• Debug timing in hardware 
• Test and deploy in different environments
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• CASCADE
• Makes programming hardware 

feel like programming software
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Design Goals

• Interactivity
Modify a running 
program, I/O side 

effects visible 
immediately

• Expressiveness
Eliminate 

synthesizable vs 
non-synthesizable 

distinction

• Portability
Write code once, 

run on many 
platforms with little 

modification

• Performance
Don’t pay for 

features you don’t 
use
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Interactivity
• Just-in-Time Compilation

• Code runs immediately in a simulator
• Compilation takes place in the background
• Control switches when compilation is done
• Code appears to run faster over time

• Why can we do this?
• What’s the meaning of a Verilog program?
• What’s the meaning of any program?
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Interactivity
• Just-in-Time Compilation

• Code runs immediately in a simulator
• Compilation takes place in the background
• Control switches when compilation is done
• Code appears to run faster over time

• Why can we do this?
• What’s the meaning of a Verilog program?
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Expressiveness
• Unsynthesizable Verilog in hardware

• Display statements
• Finish statements
• Longer term: support for the entire 

unsynthesizable language subset

• Why can we do this?
• What is Cascade doing differently compared to a 

traditional compiler?
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Expressiveness
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Limitations and Future Work
• Non-Monotonic language features

• Code deletion
• Genvar statements

• Timing-sensitive applications
• A giga-bit ethernet switch?
• A peripheral which expects inputs on a perfectly 

periodic clock?

• FPGA Virtualization:
• Share one FPGA between two instances of 

Cascade
• Use Cascade to transparently run one very large 

program on two separate FPGAs

• Speculative Optimization:
• Specialize the implementation of a program to 

the values that it sees at runtime
• Generate smaller / faster code
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Thank You
Questions on Piazza

Bug Reports on https://github.com/vmware/cascade



AmorphOS Motivation

Bigger, faster FPGAs deployed in the cloud
• Microsoft Catapult/Azure
• Amazon F1

• FPGAs: Reconfigurable Accelerators 
• ASIC Prototyping, Video & Image 

Proc., DNN, Blockchain 
• Potential solution to accelerator 

provisioning challenge

Our position: FPGAs will be shared
• Sharing requires protection
• Abstraction layers provide compatibility
• Beneficiary: provider à consolidation
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FPGA Background
• Field Programmable Gate Array (FPGA)

• Reconfigurable interconnect à custom data paths
• FPGAs attached as coprocessors to a CPU 

• FPGA Build Cycle
• Synthesis: HDL à Netlist (~seconds)
• Place and Route: Netlist à Bitstream (~min--

hours)
• Reconfiguration/Partial Reconfiguration (PR)

• Production systems: No multi-tenancy
• Emerging/Research Systems use fixed 

slots/PR
• Fixed-sized slots à fragmentation (50% or more)
• Elastic resource management needed
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Host

bus

AmorphOS Goals

• Protected Sharing/Isolation
• Mutually distrustful applications

• Compatibility / Portability
• HDL written to AmorphOS interfaces
• 14 benchmarks run unchanged on 

Microsoft Catapult and Amazon F1

• Elasticity
• User logic scales with resource 

availability
• Sharing density scales with availability 

DRAM

App A

App B
FPGA Fabric

I/O
QSFP

USB

eth

I2C

App A

App B

App A

App B
FPGA FabricFPGA FabricApp A

App A

App B

App B
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AmorphOS Abstractions

• Zone: Allocatable Unit of Fabric
• 1 Global zone
• N dynamically sized, sub-dividable PR 

zones
• Hull: OS/Protection Layer

• Memory Protection, I/O Mediation
• Interfaces form a compatibility layer

• Morphlet: Protection Domain
• Extends Process abstraction
• Encapsulate user logic on PR or global 

zone

• Registry: Bitstream Cache
• Hides latency of place-and-route (PaR)

FPGA FabricFPGA FabricFPGA Fabric

Global         Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

PR 
Zone

Morph
let

Host

bus

A

B Morph
letC

Morphlet

Morphlets Bitstream

<A,B> 0x0a1…

<A,B,C> 0x0fb01…

<B,C> 0x11ad…
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gi
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Scheduling Morphlets

• Tradeoff 
• Fixed zones + PR à fast, fragmentation
• Global zone + PaR à eliminates fragmentation, slow

• AmorphOS: best of both worlds
• Low Latency Mode

• Fixed zones + PR
• Default Morphlet bitstream

• High Throughput Mode
• Combine multiple Morphlets
• Co-schedule on a global zone
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FPGA Fabric

Host DRAM

FPGA Fabric

Morphlet AApp A
Morphlet A

Host DRAM

FPGA Fabric

Morphlet A

App A

App B

Morphlet A

Morphlet B

Host DRAM

FPGA FabricMorphlet A’

App A

App B

Morphlet A

Morphlet B

Host DRAM
App A

Morphlet A
App B

Morphlet B
App C

Morphlet C
App D

Morphlet D

Morphlet A''
Morphlet B'
Morphlet C
Morphlet D

T0 T1 T2 T3

Low-Latency Mode High-Throughput Mode Low-Latency Mode High-Throughput Mode
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AmorphOS Hull

• Hardens and extends vendor Shells
• Microsoft Catapult 
• Amazon F1 

• AmorphOS Interfaces
• Control: CntrlReg
• Virtual Memory: AMI
• Bulk Data Transfer: Simple-PCIe

8 GB DDR3

64 GB DDR4 AXI4

SoftReg PCIe

BAR-1-AXI4-Lite DMA-AXI4

Catapult Shell

F1 Shell

Catapult Accelerator

F1 Accelerator

AmorphOS HullMorphlet

AMICntrlReg PCIe
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AmorphOS Hull

• Hardens and extends vendor Shells
• Microsoft Catapult à Higher Level
• Amazon F1 à Lower Level 

• AmorphOS Interfaces
• Control: CntrlReg
• Virtual Memory: AMI
• Bulk Data Transfer: Simple-PCIe

• Multiplexing of interfaces 
• Isolation/data protection
• Scalable, 32 accelerators

• Tree of multiplexers

8 GB DDR3SoftReg PCIe

Morphlet0

AMICntrl
Reg PCIe

Morphlet1

AMICntrl
Reg PCIe

Morphlet2

AMICntrl
Reg PCIe

Morphlet3

AMICntrl
Reg PCIe

Catapult Shell

AMICntrlReg PCIe

67



Implementation & Methodology

• Catapult Prototype
• Altera Mt. Granite Stratix V GS 2x4GB DDR3, Windows Server
• Segment-based protection, partial reconfiguration (PR)

• Amazon F1 Prototype
• Xilinx UltraScale+ VU9P, 4x16GB GDDR4, CentOS 7.5
• No PR, but much more fabric than Catapult

• Workloads
• DNNWeaver – DNN inference
• MemDrive – Memory Bandwidth 
• Bitcoin – blockchain hashing
• CHStone – 11 accelerators (e.g. AES, jpeg, etc)
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Scalability

• F1: Xilinx UltraScale+ VU9P, 4x16GB GDDR4, CentOS 7.5
• Higher is better, Homogenous Morphlets

MemDrive: BW contention Bitcoin: compute-bound

DNNWeaver:
• 32X density
• 23X throughput

Takeaway: Massive throughput/density 
improvement possible, awareness of 
contended resources necessary 
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Throughput

• 8 Bitcoin Morphlets
• Catapult Altera Stratix V GS 2x4GB DDR3, Windows
• Registry pre-populated: ctxt sw. 200ms
• Log Scale, Lower is better

No-Sharing: serialized

Fixed Zones: worse 
than no sharing due 
to down-scaling!

Takeaway: Co-scheduling on a 
global zone can perform better 
than fixed-sized slots and PR
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Partitioning Policies

Non-Sharing
• Everything runs serially
• Single context

Global Zone
• Multiple Morphlets
• No fixed size zones

Single-level zone scheme
• Two PR zones
• One Morphlet each

Co-schedule
• Multiple Morphlets in 

a single PR zone

Subdivide
• Divide top-level PR zone into 

smaller PR zones
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Partitioning Policies

• Bitcoin Morphlets
• Catapult: Altera Mt. Granite Stratix V GS 2x4GB DDR3, Windows
• Registry pre-populated: ctxt sw. 200ms
• Higher is better

Single-level partititioning
Better than recursive subdivision
(cause: downscaling)

• Non-sharing: serialized
• Global: multi-context on global zone
• Single-level: only two fixed slots
• Co-schedule: morph multiple in fixed slot
• Subdivide: hierarchical partitions

Co-schedule on global zone best

Takeaway: 
• Hierarchical PR on limited HW not worth it 
• See paper for projections on F1 72



Related Work
• Access to OS-managed resources

• Borph: So [TECS ’08, Thesis ‘07]
• Leap: Adler [FPGA ‘11]
• CoRAM: Chung [FPGA ‘11]

• First-class OS support
• HThreads: Peck [FPL’06], ReconOS: Lϋbbers [TECS ‘09] -- extend threading to 

FPGA SoCs
• MURAC: Hamilton [FCCM ‘14] – extend process abstraction to FPGAs

• Single-application Frameworks
• Catapult: Putnam [ISCA ‘14] / Amazon F1

• Fixed-slot + PR
• OpenStack support: Chen [CF ‘14], Byma [FCCM ’14]; Fahmy [CLOUDCOM ‘15]; 
• Disaggregated FPGAs: Weerasinghe [UIC-ATC-ScalCom ‘15]

• Overlays
• Zuma: Brant [FCCM ‘12], 
• Hoplite: Kapre [FPL ‘15], 
• ReconOS+Zuma: [ReConfig ’14]

73



Conclusions & Future Work

• Compatibility Improved
• without restricting programming model
• Comprehensive set of stable interfaces
• Port AmorphOS per platform not each accelerator per platform

• Scalability achieved within and across accelerators
• AmorphOS transparently scales morphlets up/down
• Powerful combination of slots/Partial Reconfiguration and full FPGA bitstreams

• Future work
• Transparently scale across multiple FPGAs
• Scale across more than just FPGAs
• Open source AmorphOS/port to more platforms

Questions?
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Example alignment view

Reference genome

Aligned reads



Sequence alignment: Scoring

• Scoring matrices are used to assign scores to each comparison of a pair of characters

• Identities and substitutions by similar amino acids are assigned positive scores

• Mismatches, or matches that are unlikely to have been a result of evolution, are given negative scores

A C D E F G H I K

A C Y E F G R I K

+5 +5 -5 +5 +5 +5 -5 +5 +5
762015-12-09

T A C G G G C A G

- A C - G G C - G

Option 1

T A C G G G C A G

- A C G G - C - G

Option 2

T A C G G G C A G

- A C G - G C - G

Option 3



Pairwise alignment: the problem
The number of possible pairwise alignments increases explosively with the 
length of the sequences:
Two protein sequences of length 100 amino acids can be aligned in 
approximately 1060 different ways

Time needed to test all possibilities is same order of magnitude as the entire 
lifetime of the universe.



Pairwise alignment: the canonical solution
Dynamic programming

(the Needleman-Wunsch algorithm)



Alignment depicted as path in matrix
T  C  G  C  A

T
C
C
A

T  C  G  C  A

T
C
C
A

TCGCA
TC-CA

TCGCA
T-CCA



Dynamic programming: computing scores

T  C  G  C  A

T
C
C
A

x

Any given point in matrix can only be 
reached from three possible positions 
(you cannot “align backwards”).
=> Best scoring alignment ending in any 
given point in the matrix can be found 
by choosing the highest scoring of the 
three possibilities. 



Dynamic programming
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Any given point in matrix can only be 
reached from three possible positions 
(you cannot “align backwards”).
=> Best scoring alignment ending in any 
given point in the matrix can be found 
by choosing the highest scoring of the 
three possibilities. 

score(x,y) = max 

score(x,y-1) - gap-penalty



Dynamic programming
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Any given point in matrix can only be 
reached from three possible positions 
(you cannot “align backwards”).
=> Best scoring alignment ending in any 
given point in the matrix can be found 
by choosing the highest scoring of the 
three possibilities. 

score(x,y) = max 

score(x,y-1) - gap-penalty
score(x-1,y-1) + substitution-score(x,y)



Dynamic programming
T  C  G  C  A

T
C
C
A

x

Any given point in matrix can only be 
reached from three possible positions 
(you cannot “align backwards”).
=> Best scoring alignment ending in any 
given point in the matrix can be found 
by choosing the highest scoring of the 
three possibilities. 

score(x,y) = max 

score(x,y-1) - gap-penalty
score(x-1,y-1) + substitution-score(x,y)
score(x-1,y) - gap-penalty



Dynamic programming: example

A  C  G  T
A 1 -1 -1 -1
C -1 1 -1 -1
G -1 -1 1 -1
T -1 -1 -1 1

Gaps: -2



Dynamic programming: example



Dynamic programming: example



Dynamic programming: example



Dynamic programming: example



Dynamic programming: example

T C G C A
: :   : :
T C - C A
1+1-2+1+1 = 2

BIG MONGO HINT: 
What if each box is a 

parallel process?



References:

• Evita_verilog Tutorial, www.aldec.com

• http://www.asic-world.com/verilog/

http://www.aldec.com/


Review: Module definition

• Interface: port and parameter declaration
• Body: Internal part of module
• Add-ons (optional)



Delays on Primitive Instances

• Instances of primitives may include delays

buf b1(a, b); // Zero delay
buf #3 b2(c, d); // Delay of 3
buf #(4,5) b3(e, f); // Rise=4, fall=5
buf #(3:4:5) b4(g, h); // Min-typ-max



Register Inference

• The main trick

• reg does not always equal latch

• Rule: Combinational if outputs always depend exclusively on 
sensitivity list
• Sequential if outputs may also depend on previous values



Register Inference

• Combinational:

reg y;
always @(a or b or sel)
if (sel) y = a;
else y = b;

• Sequential:

reg q;
always @(d or clk)
if (clk) q = d;

Sensitive to changes on all of 
the variables it reads

Y is always assigned

q only assigned when clk is 1



Register Inference

• A common mistake is not completely specifying a case statement
• This implies a latch:

always @(a or b)
case ({a, b})

2’b00 : f = 0;
2’b01 : f = 1;
2’b10 : f = 1;

endcase

f is not assigned when {a,b} = 
2b’11



Register Inference

• The solution is to always have a default case

always @(a or b)
case ({a, b})

2’b00: f = 0;
2’b01: f = 1;
2’b10: f = 1;
default: f = 0;

endcase

f is always assigned



Inferring Latches with Reset

• Latches and Flip-flops often have reset inputs
• Can be synchronous or asynchronous

• Asynchronous positive reset:

always @(posedge clk or posedge reset)
if (reset)
q <= 0;

else q <= d;



Simulation-synthesis Mismatches

• Many possible sources of conflict

• Synthesis ignores delays (e.g., #10), but simulation behavior can be 
affected by them
• Simulator models X explicitly, synthesis doesn’t
• Behaviors resulting from shared-variable-like behavior of regs is not 

synthesized
• always @(posedge clk) a = 1;
• New value of a may be seen by other @(posedge clk) statements in 

simulation, never in synthesis



Compared to VHDL

• Verilog and VHDL are comparable languages
• VHDL has a slightly wider scope
• System-level modeling
• Exposes even more discrete-event machinery

• VHDL is better-behaved
• Fewer sources of nondeterminism (e.g., no shared variables)

• VHDL is harder to simulate quickly
• VHDL has fewer built-in facilities for hardware modeling
• VHDL is a much more verbose language
• Most examples don’t fit on slides


