Race Detection

cs378h

Pro Forma

- Questions?
- Administrivia:
 - Course/Instructor Survey :
 https://utdirect.utexas.edu/ctl/ecis/
 - Thoughts on exam
 - Thoughts on project presentation day
- Agenda
 - Linearizability clarification
 - Race Detection
- Acknowledgements:
 - https://ecksit.wordpress.com/2015/09/07/difference-between-sequential-consistency-serializability-and-linearizability/
 - https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
 - http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition and.html
 - http://swtv.kaist.ac.kr/courses/cs492b-spring-16/lec6-data-race-bug.ppt
 - https://www.cs.cmu.edu/~clegoues/docs/static-analysis.pptx
 - http://www.cs.sfu.ca/~fedorova/Teaching/CMPT401/Summer2008/Lectures/ e8-GlobalClocks.pptx

Race Detection Faux Quiz

Are linearizable objects composable? Why/why not? Is serializable code composable?

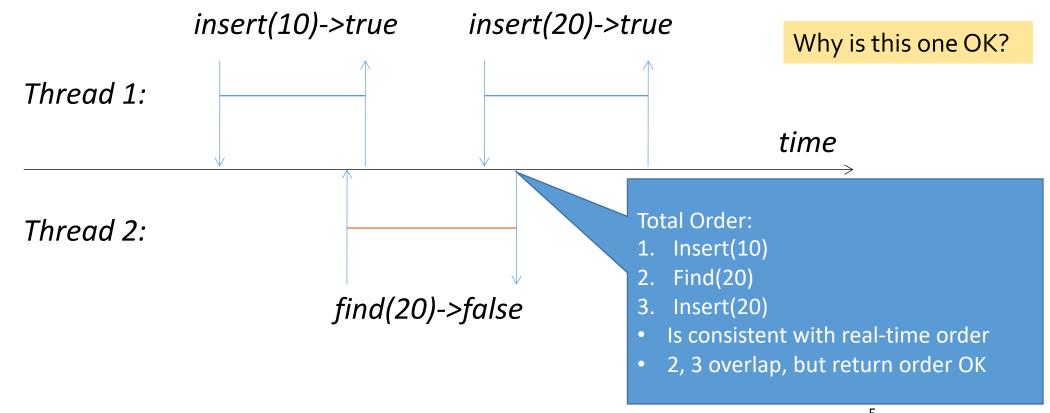
What is a data race? What kinds of conditions make them difficult to detect automatically?

What is a consistent cut in a distributed causality interaction graph?

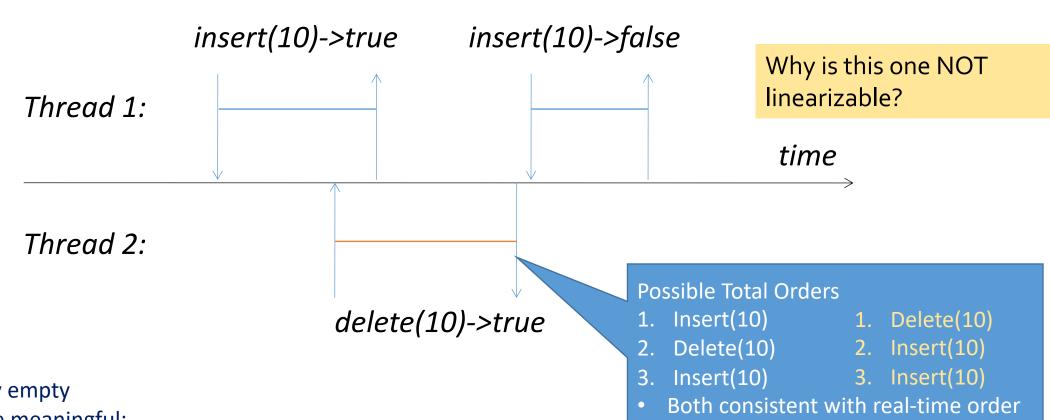
List some tradeoffs between static and dynamic race detection

What are some pros and cons of happens-before analysis for race detection? Same for lockset analysis?

Why might one use a vector clock instead of a logical clock?


What are some advantages and disadvantages of combined lock-set and happens-before analysis?

Review: Concurrent history


Allow overlapping invocations

Linearizability:

- Is there a correct sequential history:
 - Same results as the concurrent one
 - Consistent with the timing of the invocations/responses?
 - Start/end impose ordering constraints

Review: not linearizable

Assumptions:

- The set is initially empty
- Return values are meaningful:
 - Insert returns true → item wasn't present
 - Insert returns false → item already present
 - Delete returns true → item was present

Neither is consistent w return values

1, 2 overlap, but 3 doesn't

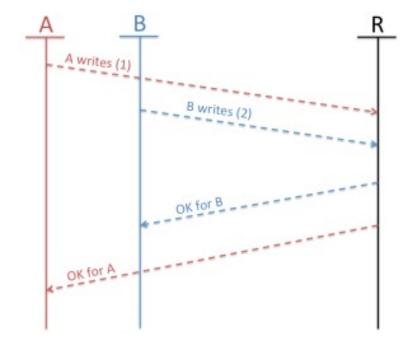
Linearizability Properties

- non-blocking
 - one method is never forced to wait to sync with another.
- local property:
 - a system is linearizable iff each individual object is linearizable.
 - gives us composability.
- Why is it important?
 - Serializability is not composable.

Composability

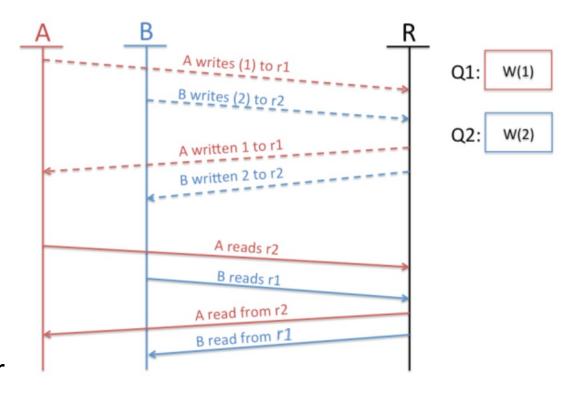
```
void move(list s, list d, Obj key){
T * list::remove(Obj key){
                                          tmp = s.remove(key);
  LOCK(this);
                                          d.insert(key, tmp);
  tmp = do remove(key);
                                        void move(list s, list d, Obj key) {
  UNLOCK(this);
                                          LOCK(s);
  return tmp;
                                          LOCK(d);
                                          tmp = s.remove(key);
void list::insert(Obj key, T * val){
                                          d.insert(key, tmp);
  LOCK(this);
                                          UNLOCK (d);
    do insert(key, val);
                                          UNLOCK(s);
  UNLOCK(this);
```

- Lock-based code doesn't compose
- If list were a linearizable concurrent data structure, composition OK?

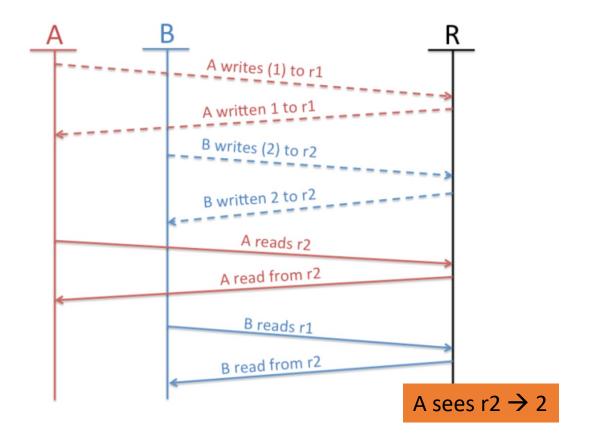

Painting with a very broad brush Composition with linearizability is really about composed schedules

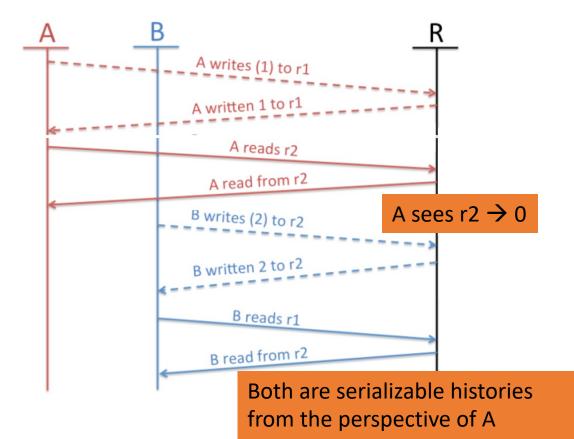
More on Composability and Compositionality

- High level /informal meaning:
 - Can you compose codes that provide property P
 - ...and expect the composition to preserve P?
- More nuanced meanings:
 - Can you compose codes
 - Can you compose schedules
- These are related but differ in subtle ways
- Non-composability of serializability is really about composing schedules


Consider A Concurrent Register

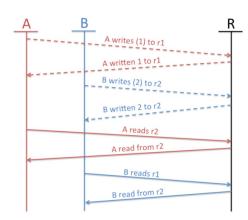
- Threads A, B write integers to a register R
- Because it's concurrent, method invocations overlap

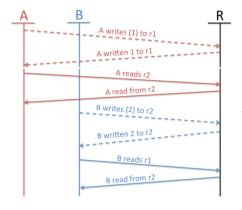

Two Concurrent Registers


- Register value is initially zero
- The following operations occur:
 - Thread A:
 - write r1 = 1
 - read r2 \rightarrow ?
 - Thread B:
 - B: write r2 -> 2
 - B: read r1 \rightarrow ?
- Serializability:
 - Execution equivalent to some serial order
 - All see same order

Histories for multiple concurrent registers

- Consider all possible permutations of atomic invocations
 - (That respect program order)


Histories for multiple concurrent registers


- Consider all possible permutations of atomic invocations
 - (That respect program order)
 - Call them "sub-histories": from A, B "perspective"

Sub-History	Outcome
H1a	A writes r1=1, reads r2 \rightarrow 0
H2a	A writes r1=1, reads r2 \rightarrow 2
H1b	B writes r2=2, reads r1 \rightarrow 0
H2b	B writes r2=2, reads r1 \rightarrow 1

From the perspective threads A, B, all sub-histories are serializable

- They respect program order for each of A, B
- And are equivalent to *some* serial execution
- If we "compose" these histories, some composed histories not serializable

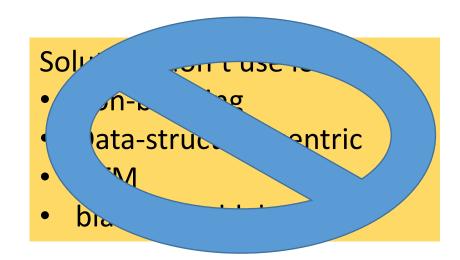
Histories for multiple concurrent registers

- Compose sub-histories to form all possible histories
- Composition of serializable histories \rightarrow non-serializable histories
- Ex. H1ab is not serializable

Sub-History	Outcome
H1a	A writes r1=1, reads r2 \rightarrow 0
H2a	A writes r1=1, reads r2 \rightarrow 2
H1b	B writes r2=2, reads r1 \rightarrow 0
H2b	B writes r2=2, reads r1 \rightarrow 1

4 serializable sub-histories composed To form 4 complete histories,
Only H4ab is actually serializable

History	Effect
H1ab	A writes r1=1, B writes r2=2 reads r2 \rightarrow 0, B reads r1 \rightarrow 0
H2ab	A writes r1=1, B writes r2=2 reads r2 \rightarrow 0, B reads r1 \rightarrow 1
H3ab	A writes r1=1, B writes r2=2 reads r2 \rightarrow 2, B reads r1 \rightarrow 0
H4ab	A writes r1=1, B writes r2=2 reads r2 \rightarrow 2, B reads r1 \rightarrow 1


Linearizability Properties

- non-blocking
 - one method is never forced to wait to sync with another.
- local property:
 - a system is linearizable iff each individual object is linearizable.
 - gives us composability.
- Why is it important?
 - Serializability is not composable.
 - A system composed of linearizable objects remains linearizable
 - Does this mean you get txn or lock-like composition for free?
 - In general no
 - Serializability is a property of transactions, or groups of updates
 - Linearizability is a property of concurrent objects
 - The two are often conflated (e.g. because txns update only a single object)

Race Detection

Locks: a litany of problems

- Deadlock
- Priority inversion
- Convoys
- Fault Isolation
- Preemption Tolerance
- Performance

Use locks!

But automate bug-finding!

Races

```
1 Lock(lock);
2 Read-Write(X);
3 Unlock(lock);
3
1 2 Read-Write(X);
3
```

- Is there a race here?
- What is a race?
- Informally: accesses with missing/incorrect sy
- Formally:
 - >1 threads access same item
 - No intervening synchronization
 - At least one access is a write

```
How to detect races:
forall(X) {
  if(not_synchronized(X))
    declare_race()
}
```

Races

Is there a race here?
How can a race detector tell?

Unsynchronized access can be

- Benign due to fork/join
- Benign due to view serializability
- Benign due to application-level constraints
- E.g. approximate stats counters

Detecting Races

Static

- Run a tool that analyses just code
- Maybe code is annotated to help
- Conservative: detect races that never occur
- Dynamic
 - Instrument code
 - Check synchronization invariants on accesses
 - More precise
 - Difficult to make fast
 - Lockset vs happens-before

```
How to detect races:
forall(X) {
  if(not_synchronized(X))
    declare_race()
}
```

Static Data Race Detection

- Type-based analysis
 - Language type system augmented
 - express common synchronization relationships": correct typing→no data races
 - Difficult to do
 - Restricts the type of synchronization primitives
- Language features
 - e.g., use of monitors
 - Only works for static data not dynamic dat What if these *never* run
- Model Checking
- Path analysis

 - Too many false

```
1 Lock(lock);
• Doesn't scale w 2 Read-Write(X);
                                       2 Read-Write(X);
              3 Unlock (lock);
                                       3
```

concurrently? (False Positive)

Lockset Algorithm

- Locking discipline
 - Every shared mutable variable is protected by some locks
- Core idea
 - Track locks held by thread t

```
Let locks\_held(t) be the set of locks held by thread t.
 For each v, initialize C(v) to the set of all locks.
 On each access to v by thread t, set C(v) := C(v) \cap locks\_held(t); if C(v) = \{ \}, then issue a warning.
```

y luck protects every variable

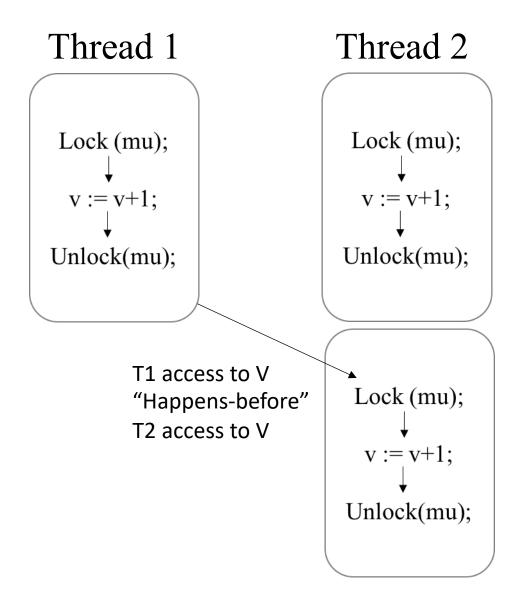
On each access, use locks held by thread to narrow that assumption

Narrow down set of locks maybe protecting v

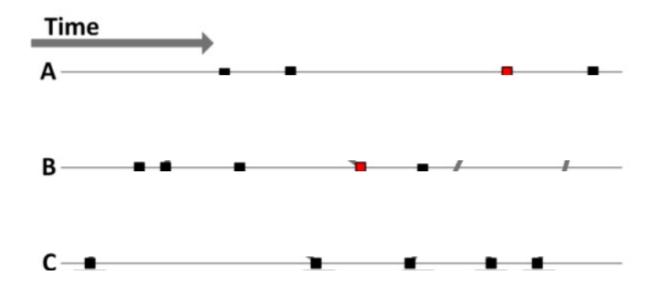
Lockset Algorithm Example

```
thread t
                     locks held(t)
                                   {lockA, lockB}
lock(lockA);
                     {lockA}
                                   {lockA}
                                              C(v) \cap locks\_held(t)
V++;
unlock(lockA);
lock(lockB);
                     {lockB}
                                                      Pretty clever!
                                      C(v) \cap locks\_held
V++;
                                                       Why isn't this
unlock(lockB);
                     {}
                                                        a complete
                                                         solution?
```

Improving over lockset


Lockset detects a race

There is no race: why not?


- A-1 happens before B-3
- B-3 happens before A-6
- Insight: races occur when "happens-before" cannot be known

Happens-before

- Happens-before relation
 - Within single thread
 - Between threads
- Accessing variables not ordered by "happens-before" is a race
- Captures locks and dynamism
- How to track "happens-before"?
 - Sync objects are ordering events
 - Generalizes to fork/join, etc

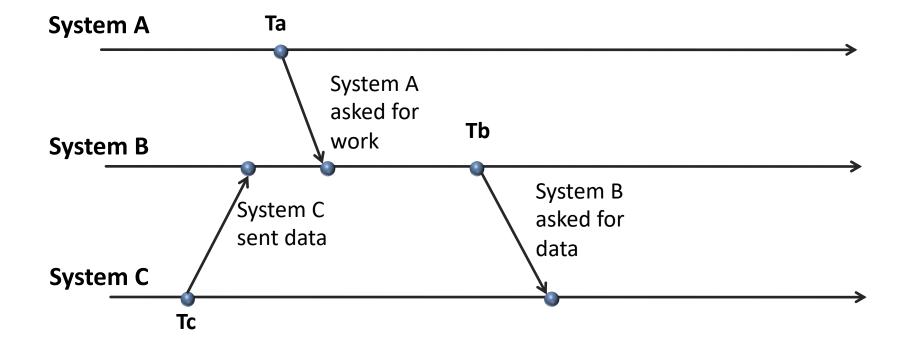
Ordering and Causality

A, B, C have local orders

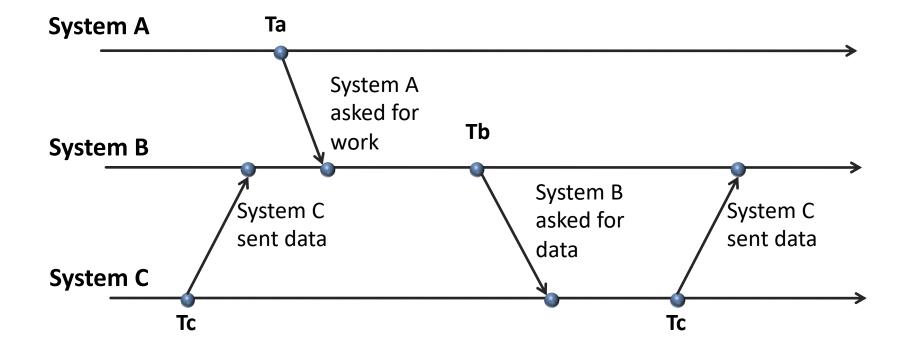
- Want total order
 - But only for causality

Different types of clocks

- Physical
- Logical
 - TS(A) later than others A knows about
- Vector
 - TS(A): what A knows about other TS's
- Matrix
 - TS(A) is N^2 showing pairwise knowledge

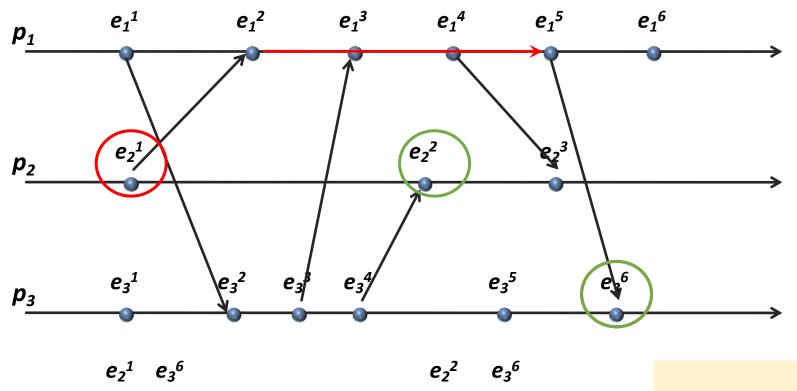

A Naïve Approach

- Each system records each event it performed and its timestamp
- Suppose events in the this system happened in this real order:
 - Time Tc0: System C sent data to System B (before C stopped responding)
 - Time Ta0: System A asked for work from System B
 - Time Tb0: System B asked for data from System C


A Naïve Approach (cont)

• Ideally, we will construct real order of events from local timestamps and detect this dependency chain:

A Naïve Approach (cont)


• But in reality, we do not know if Tc occurred **before** Ta and Tb, because in an asynchronous distributed system **clocks are not synchronized**!

Rules for Ordering of Events

- local events precede one another \rightarrow precede one another globally:
 - If e_i^k , $e_i^m \in h_i$ and k < m, then $e_i^k \rightarrow e_i^m$
- Sending a message always precedes receipt of that message:
 - If $e_i = send(m)$ and $e_j = receive(m)$, then $e_i \rightarrow e_j$
- Event ordering is transitive:
 - If $e \rightarrow e'$ and $e' \rightarrow e''$, then $e \rightarrow e''$

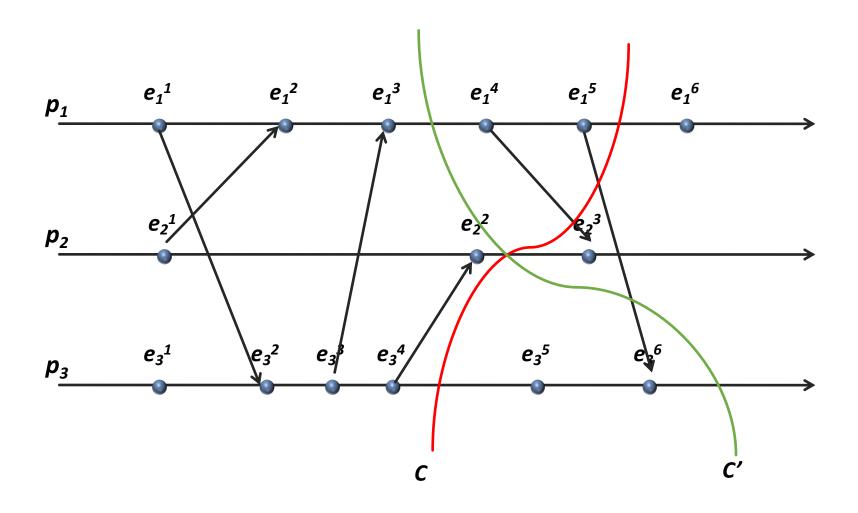
Space-time Diagram for Distributed Computation

local events precede one another \rightarrow precede one another globally:

If e_i^k , $e_i^m \in h_i$ and k < m, then $e_i^k \rightarrow e_i^m$

Sending a message always precedes receipt of that message:

If $e_i = send(m)$ and $e_j = receive(m)$, then $e_i \rightarrow e_j$ Event ordering is associative:

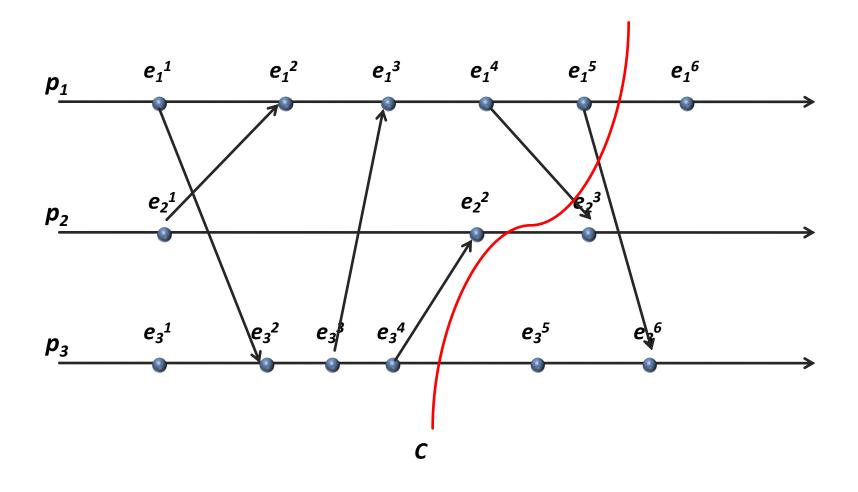

ordering is associative.

If $e \rightarrow e'$ and $e' \rightarrow e''$, then $e \rightarrow e''$

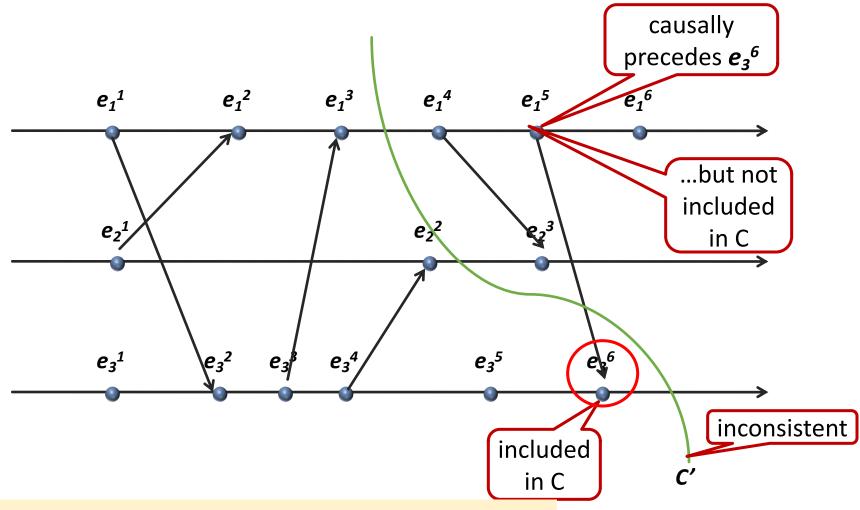
Cuts of a Distributed Computation

- Suppose there is an *external monitor* process
- External monitor constructs a global state:
 - Asks processes to send it local history
- Global state constructed from these local histories is:
- a cut of a distributed computation

Example Cuts

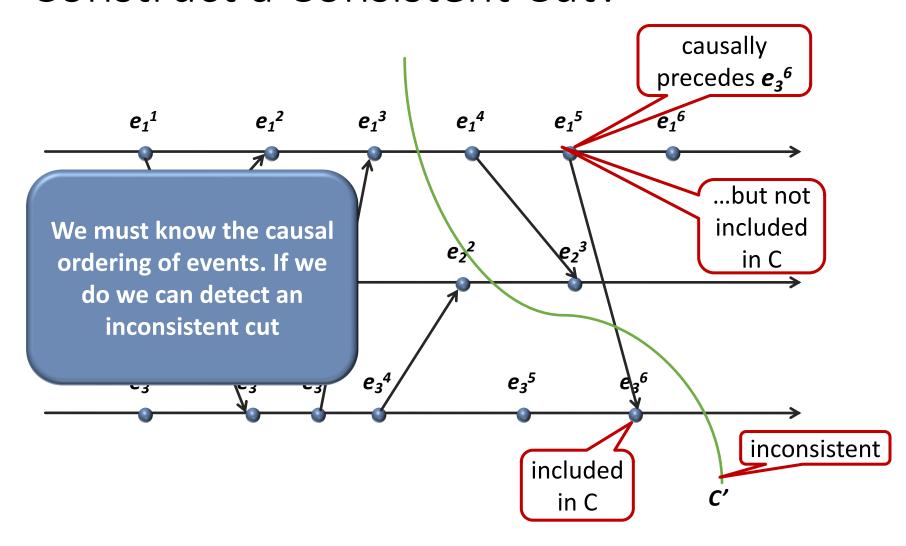


Consistent vs. Inconsistent Cuts

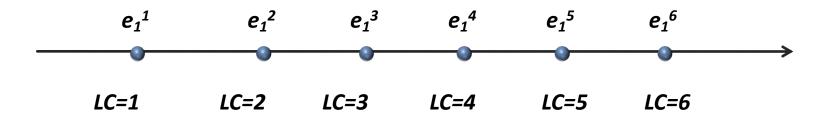

- A cut is consistent if
 - for any event *e* included in the cut
 - any event e' that causally precedes e is also included in that cut
- For cut *C*:

$$(e \in C) \land (e' \rightarrow e) \Longrightarrow e' \in C$$

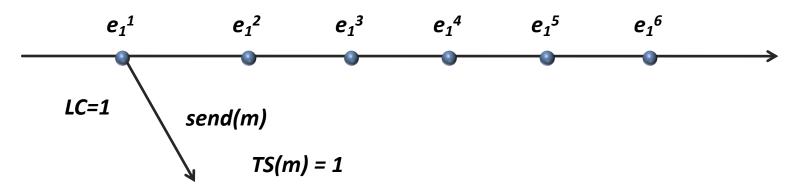
Are These Cuts Consistent?



Are These Cuts Consistent?

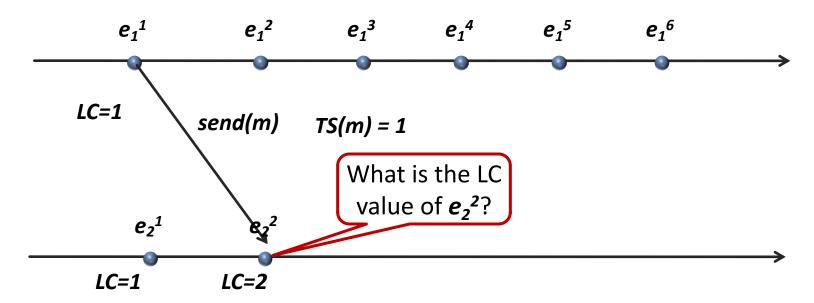

A consistent cut corresponds to a consistent global state

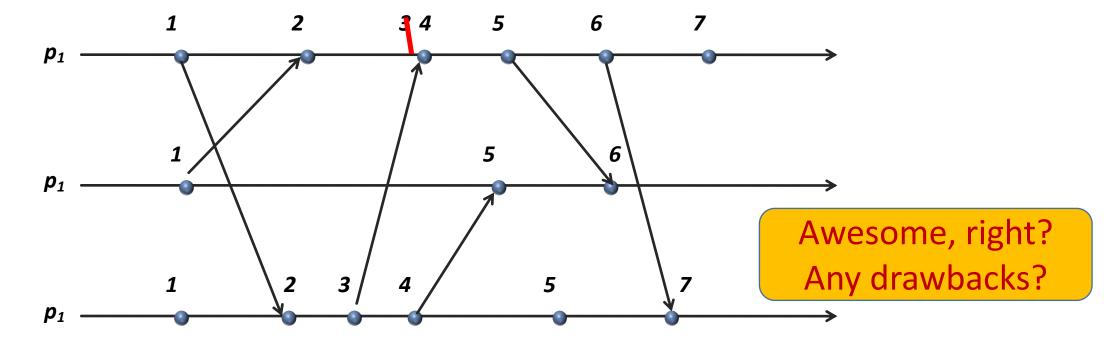
What Do We Need to Know to Construct a Consistent Cut?


Logical Clocks

- Each process maintains a local value of a logical clock LC
- Logical clock of process *p* counts **how many events in a distributed computation causally preceded the current event at** *p* **(including the current event).**
- $LC(e_i)$ the logical clock value at process p_i at event e_i
- Suppose we had a distributed system with only a single process

Logical Clocks (cont.)


- In a system with more than one process logical clocks are updated as follows:
- Each message m that is sent contains a timestamp TS(m)
- TS(m) is the logical clock value associated with sending event at the sending process


Logical Clocks (cont)

• When the receiving process receives message m, it updates its logical clock to:

$$max\{LC, TS(m)\} + 1$$

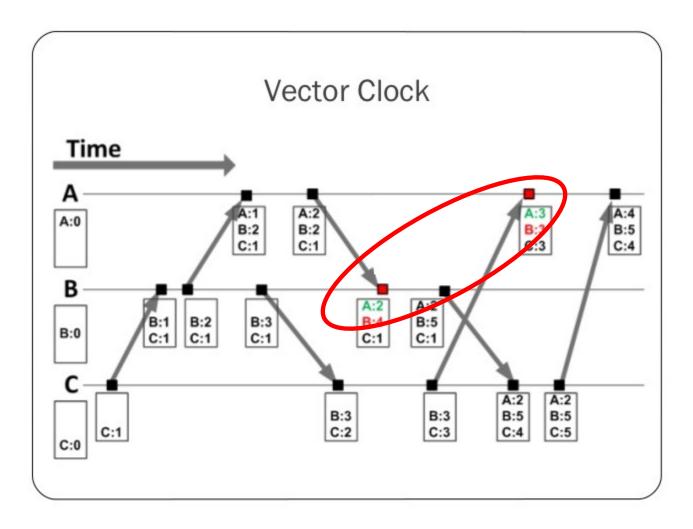
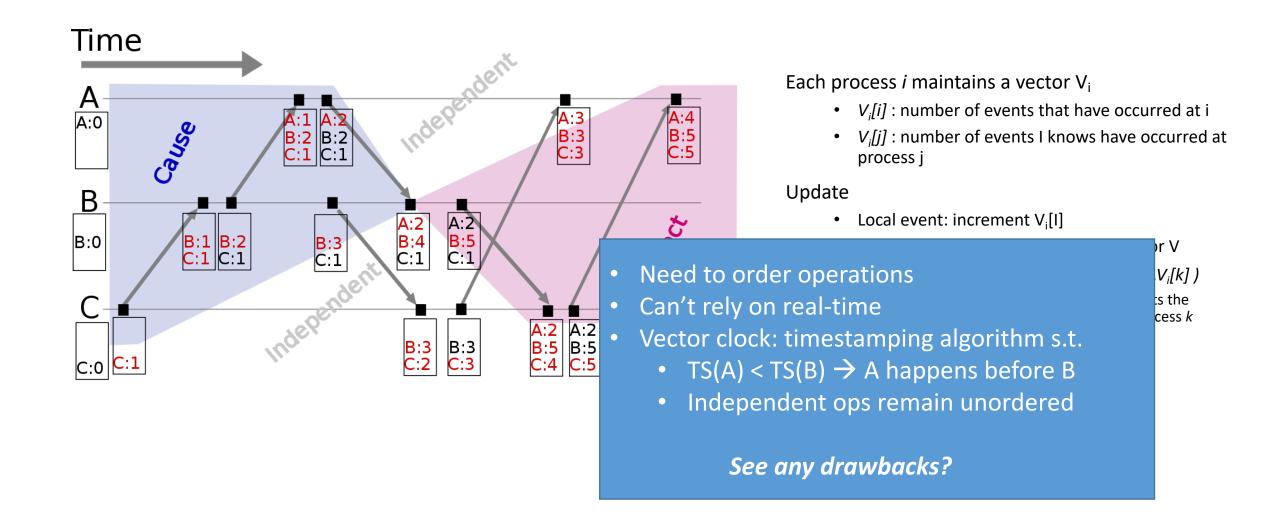


Illustration of a Logical Clock

 $e_x < e_y \rightarrow TS(e_x) < TS(e_y)$, but $TS(e_x) < TS(e_y)$ doesn't guarantee $e_x < e_y$

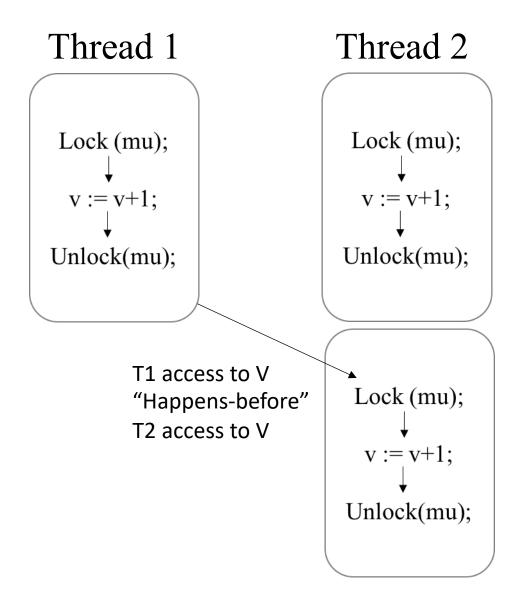
Vector Clock

Replace Single Logical value with Vector!


 $V_i[i]$: #events occurred at i

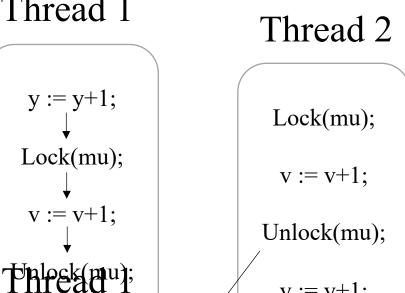
 $V_i[j]$: #events i knows occurred at j

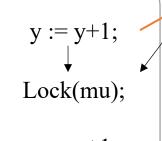
Update


- On local-event: increment V_i[I]
- On send-message: increment, piggyback entire local vector V
- On recv-message: V_j[k] = max(V_i[k],V_i[k])
 - $V_j[i] = V_j[i]+1$ (increment local clock)
 - Receiver learns about number of events sender knows occurred elsewhere

Vector Clock Example

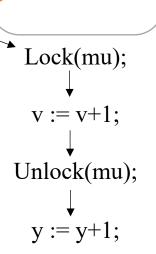
Happens-before


- Happens-before relation
 - Within single thread
 - Between threads
- Accessing variables not ordered by "happens-before" is a race
- Captures locks and dynamism
- How to track "happens-before"?
 - Sync objects are ordering events
 - Generalizes to fork/join, etc



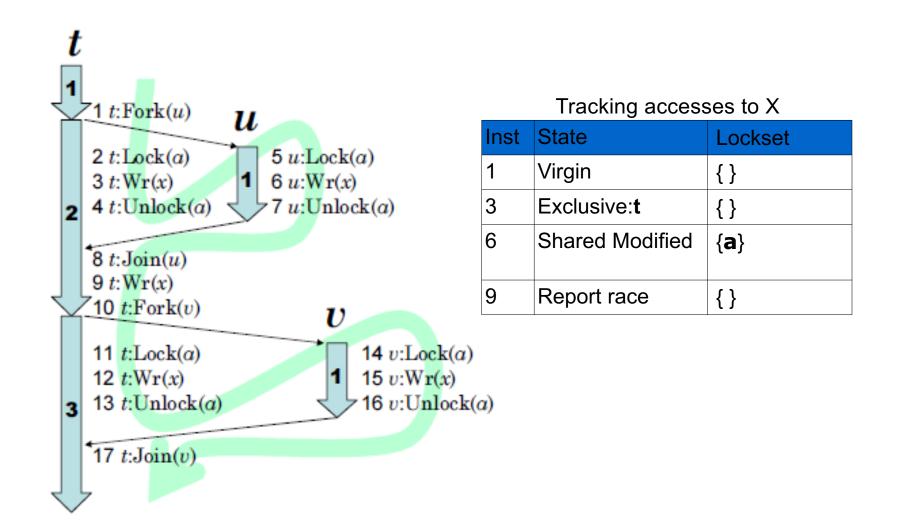
Flaws of Happens-before

- Difficult to implement
 - Requires per-thread information
- Dependent on the interleaving produced by the scheduler
- Example
 - T1-acc(v) happens before T2-acc(v)
 - T1-acc(y) happens before T1-acc(v)
 - T2-acc(v) happens before T2-acc(y)
 - Conclusion: no race on Y!
 - Finding doesn't generalize


Thread 1

$$\mathbf{v} := \mathbf{v} + \mathbf{1};$$

Unlock(mu);


y := y+1;

Dynamic Race Detection Summary

- Lockset: verify locking discipline for shared memory
 - ✓ Detect race regardless of thread scheduling
 - False positives because other synchronization primitives (fork/join, signal/wait) not supported
- Happens-before: track partial order of program events
 - ✓ Supports general synchronization primitives
 - Higher overhead compared to lockset
 - False negatives due to sensitivity to thread scheduling

RaceTrack = Lockset + Happens-before

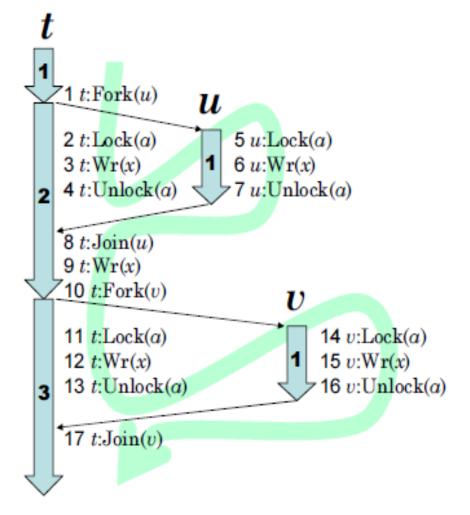
False positive using Lockset

RaceTrack Notations

Notation	Meaning
L _t	Lockset of thread t
C _x	Lockset of memory x
B _u	Vector clock of thread u
S _x	Threadset of memory x
t _i	Thread t at clock time i

$$\begin{split} |V| & \stackrel{\triangle}{=} |\{t \in T : V(t) > 0\}| \\ Inc(V,t) & \stackrel{\triangle}{=} u \mapsto \text{if } u = t \text{ then } V(u) + 1 \text{ else } V(u) \\ Merge(V,W) & \stackrel{\triangle}{=} u \mapsto \max(V(u),W(u)) \\ Remove(V,W) & \stackrel{\triangle}{=} u \mapsto \text{if } V(u) \leq W(u) \text{ then } 0 \text{ else } V(u) \end{split}$$

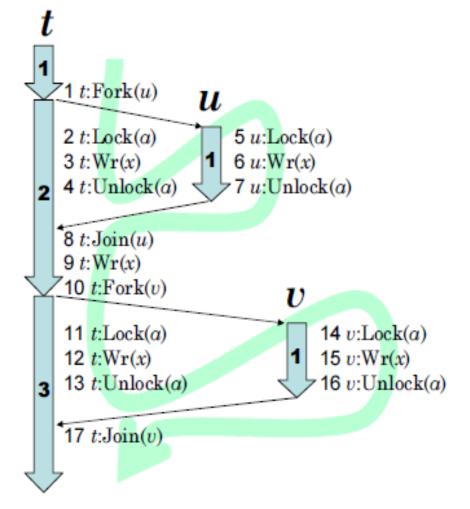
RaceTrack Algorithm


Notation	Meaning
L _t	Lockset of thread t
C _x	Lockset of memory x
B _t	Vector clock of thread t
S _x	Threadset of memory x
t ₁	Thread t at clock time 1

$$\begin{split} |V| &\stackrel{\triangle}{=} |\{t \in T : V(t) > 0\}| \\ Inc(V,t) &\stackrel{\triangle}{=} u \mapsto \text{if } u = t \text{ then } V(u) + 1 \text{ else } V(u) \\ Merge(V,W) &\stackrel{\triangle}{=} u \mapsto max(V(u),W(u)) \\ Remove(V,W) &\stackrel{\triangle}{=} u \mapsto \text{if } V(u) \leq W(u) \text{ then } 0 \text{ else } V(u) \end{split}$$

```
At t:Lock(l):
    L_t \leftarrow L_t \cup \{l\}
At t:Unlock(l):
    L_t \leftarrow L_t - \{l\}
At t:Fork(u):
    L_u \leftarrow \{\}
    B_u \leftarrow Merge(\{\langle u, 1 \rangle\}, B_t)
    B_t \leftarrow Inc(B_t, t)
At t: Join(u):
    B_t \leftarrow Merge(B_t, B_u)
At t: Rd(x) or t: Wr(x):
    S_x \leftarrow Merge(Remove(S_x, B_t), \{\langle t, B_t(t) \rangle\})
    if |S_x| > 1
        then C_x \leftarrow C_x \cap L_t
       else C_x \leftarrow L_t
    if |S_x| > 1 \wedge C_x = \{\} then report race
```

Avoiding Lockset's false positive (1)


Notation	Meaning
L _t	Lockset of thread t
C _x	Lockset of memory x
B _t	Vector clock of thread t
S _x	Threadset of memory x
t ₁	Thread t at clock time 1

Inst	C _x	S _x	L _t	B _t	L _u	B _u
0	All	{}	{}	{t ₁ }	_	-
1				{ t ₂ }	{}	{ t ₁ ,u ₁ }
2			{ a }			
3	{a}	{ t ₂ }				
4			{}			
5					{ a }	
6		$\{\mathbf{t_2},\mathbf{u_1}\}$				
7					{}	
8				{t ₂ ,u ₁ }	-	-

Avoiding Lockset's false positive (2)

Notation	Meaning
L _t	Lockset of thread t
C _x	Lockset of memory x
B _t	Vector clock of thread t
S _x	Threadset of memory x
t ₁	Thread t at clock time 1

Inst	C _x	S _x	L _t	B _t	L _v	B _v
8	{a}	$\{t_2,u_1\}$	{}	{ t ₂ , u ₁ }	-	-
9	}	$\{\mathbf t_2\}$				
10				{ t ₃ , u ₁ }	{}	$\{\mathbf{t_2,v_1}\}$
11			{a}			
12	{a}	{ t ₃ }				
13			{}			
14					{ a }	
15		$\{t_3, v_1\}$				
16					{}	

Only one thread! Are we done?