
Race Detection cs378h

Pro Forma

• Questions?

• Administrivia:
• Course/Instructor Survey :
https://utdirect.utexas.edu/ctl/ecis/

• Thoughts on exam
• Thoughts on project presentation day

• Agenda
• Linearizability clarification
• Race Detection

• Acknowledgements:
• https://ecksit.wordpress.com/2015/09/07/difference-between-sequential-

consistency-serializability-and-linearizability/
• https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
• http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition-

and.html
• http://swtv.kaist.ac.kr/courses/cs492b-spring-16/lec6-data-race-bug.pptx
• https://www.cs.cmu.edu/~clegoues/docs/static-analysis.pptx
• http://www.cs.sfu.ca/~fedorova/Teaching/CMPT401/Summer2008/Lectures/Lectur

e8-GlobalClocks.pptx

https://utdirect.utexas.edu/ctl/ecis/
https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition-and.html
http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition-and.html
http://swtv.kaist.ac.kr/courses/cs492b-spring-16/lec6-data-race-bug.pptx
https://www.cs.cmu.edu/~clegoues/docs/static-analysis.pptx
http://www.cs.sfu.ca/~fedorova/Teaching/CMPT401/Summer2008/Lectures/Lecture8-GlobalClocks.pptx
http://www.cs.sfu.ca/~fedorova/Teaching/CMPT401/Summer2008/Lectures/Lecture8-GlobalClocks.pptx

Race
Detection
Faux Quiz

Are linearizable objects composable? Why/why not? Is
serializable code composable?

What is a data race? What kinds of conditions make them
difficult to detect automatically?

What is a consistent cut in a distributed causality interaction
graph?

List some tradeoffs between static and dynamic race detection

What are some pros and cons of happens-before analysis for
race detection? Same for lockset analysis?

Why might one use a vector clock instead of a logical clock?

What are some advantages and disadvantages of combined
lock-set and happens-before analysis?

Review: Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

5

Linearizability:
• Is there a correct sequential history:

• Same results as the concurrent one
• Consistent with the timing of the

invocations/responses?
• Start/end impose ordering constraints

Total Order:
1. Insert(10)
2. Find(20)
3. Insert(20)
• Is consistent with real-time order
• 2, 3 overlap, but return order OK

Why is this one OK?

Review: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

6

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• Neither is consistent w return values
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT
linearizable?

1. Delete(10)
2. Insert(10)
3. Insert(10)Assumptions:

• The set is initially empty
• Return values are meaningful:

• Insert returns true à item wasn’t present
• Insert returns false à item already present
• Delete returns true à item was present

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

•Why is it important?
• Serializability is not composable.

Linearizability Properties

7

Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

void move(list s, list d, Obj key){
tmp = s.remove(key);
d.insert(key, tmp);

}

T * list::remove(Obj key){
LOCK(this);
tmp = __do_remove(key);
UNLOCK(this);
return tmp;

}

void list::insert(Obj key, T * val){
LOCK(this);
__do_insert(key, val);
UNLOCK(this);

}

void move(list s, list d, Obj key){
LOCK(s);
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);

}

Painting with a very broad brush
Composition with linearizability is really
about composed schedules

More on Composability and Compositionality

• High level /informal meaning:
• Can you compose codes that provide property P
• …and expect the composition to preserve P?

• More nuanced meanings:
• Can you compose codes
• Can you compose schedules

• These are related but differ in subtle ways
• Non-composability of serializability is really about composing

schedules

Consider A Concurrent Register

• Threads A, B write integers to a register R
• Because it’s concurrent, method invocations overlap

Two Concurrent Registers

• Register value is initially zero
• The following operations occur:
• Thread A:

• write r1 = 1
• read r2 à ?

• Thread B:
• B: write r2 -> 2
• B: read r1 à ?

• Serializability:
• Execution equivalent to some serial order
• All see same order

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)

A sees r2 à 2

A sees r2 à 0

Both are serializable histories
from the perspective of A

Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)
• Call them “sub-histories”: from A, B “perspective”

Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

From the perspective threads A, B, all sub-histories are serializable
• They respect program order for each of A, B
• And are equivalent to *some* serial execution
• If we “compose” these histories, some composed histories not serializable

…

Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories
• Composition of serializable histories à non-serializable histories
• Ex. H1ab is not serializable
Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

History Effect

H1ab A writes r1=1, B writes r2=2
reads r2 à 0, B reads r1 à 0

H2ab A writes r1=1, B writes r2=2
reads r2 à 0, B reads r1 à 1

H3ab A writes r1=1, B writes r2=2
reads r2 à 2, B reads r1 à 0

H4ab A writes r1=1, B writes r2=2
reads r2 à 2, B reads r1 à 1

4 serializable sub-histories composed
To form 4 complete histories,
Only H4ab is actually serializable

• non-blocking
• one method is never forced to wait to sync with another.

• local property:
• a system is linearizable iff each individual object is linearizable.
• gives us composability.

•Why is it important?
• Serializability is not composable.
• A system composed of linearizable objects remains linearizable
• Does this mean you get txn or lock-like composition for free?

• In general no
• Serializability is a property of transactions, or groups of updates
• Linearizability is a property of concurrent objects
• The two are often conflated (e.g. because txns update only a single object)

Linearizability Properties

15

Race Detection

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Use locks!
• But automate bug-finding!

Races

1 Lock(lock);
2 Read-Write(X);
3 Unlock(lock);

1
2 Read-Write(X);
3

• Is there a race here?
• What is a race?
• Informally: accesses with missing/incorrect synchronization
• Formally:

• >1 threads access same item
• No intervening synchronization
• At least one access is a write

How to detect races:
forall(X) {

if(not_synchronized(X))
declare_race()

}

Races
1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

Is there a race here?
How can a race detector tell?

Unsynchronized access can be

• Benign due to fork/join

• Benign due to view serializability
• Benign due to application-level constraints

• E.g. approximate stats counters

Detecting Races

• Static
• Run a tool that analyses just code
• Maybe code is annotated to help
• Conservative: detect races that never occur

• Dynamic
• Instrument code
• Check synchronization invariants on accesses
• More precise
• Difficult to make fast
• Lockset vs happens-before

How to detect races:
forall(X) {

if(not_synchronized(X))
declare_race()

}

1 Lock(lock);
2 Read-Write(X);
3 Unlock(lock);

1
2 Read-Write(X);
3

Static Data Race Detection
• Type-based analysis

• Language type system augmented
• express common synchronization relationships”: correct typing→no data races

• Difficult to do
• Restricts the type of synchronization primitives

• Language features
• e.g., use of monitors
• Only works for static data – not dynamic data

• Model Checking
• Path analysis

• Doesn’t scale well
• Too many false positives

1 Lock(lock);
2 Read-Write(X);
3 Unlock(lock);

1
2 Read-Write(X);
3

What if these *never* run
concurrently? (False Positive)

Lockset Algorithm

• Locking discipline
• Every shared mutable variable is protected by some locks

• Core idea
• Track locks held by thread t
• On access to var v, check if t holds the proper locks
• Challenge: how to know what locks are required?

• Infer protection relation
• Infer which locks protect which variable from execution history.
• Assume every lock protects every variable
• On each access, use locks held by thread to narrow that assumption

Narrow down set of
locks maybe
protecting v

Lockset Algorithm Example

23

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

ACK! race
Pretty clever!
Why isn’t this

a complete
solution?

Improving over lockset

1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

Lockset detects a race
There is no race: why not?
• A-1 happens before B-3
• B-3 happens before A-6
• Insight: races occur when “happens-before” cannot be known

thread A thread B

Thread 2

Happens-before

• Happens-before relation
• Within single thread
• Between threads

• Accessing variables not ordered
by “happens-before” is a race
• Captures locks and dynamism
• How to track “happens-before”?
• Sync objects are ordering events
• Generalizes to fork/join, etc

Thread 1 Thread 2

T1 access to V
“Happens-before”
T2 access to V

Ordering and Causality

A, B, C have local orders
• Want total order

• But only for causality

Different types of clocks
• Physical
• Logical

• TS(A) later than others A knows about
• Vector

• TS(A): what A knows about other TS’s
• Matrix

• TS(A) is N^2 showing pairwise
knowledge

A Naïve Approach

• Each system records each event it performed and its timestamp
• Suppose events in the this system happened in this real order:
• Time Tc0: System C sent data to System B (before C stopped

responding)
• Time Ta0: System A asked for work from System B
• Time Tb0: System B asked for data from System C

Tc0 Ta0 Tb0

A Naïve Approach (cont)

• Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A

System B

System C

System C
sent data

Tc

Ta

System A
asked for
work Tb

System B
asked for
data

A Naïve Approach (cont)

• But in reality, we do not know if Tc occurred before Ta and Tb, because
in an asynchronous distributed system clocks are not synchronized!

System A

System B

System C

System C
sent data

Tc

Ta

System A
asked for
work Tb

System B
asked for
data

System C
sent data

Tc

Rules for Ordering of Events

• local events precede one another à precede one another globally:
• If eik ,eimЄ hi and k < m, then eik→eim

• Sending a message always precedes receipt of that message:
• If ei= send(m) and ej= receive(m), then ei→ej

• Event ordering is transitive:
• If e → e’ and e’ → e”, then e → e”

Space-time Diagram for Distributed Computation

p1
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

p2
e2

1 e2
2 e2

3

p3
e3

1 e3
2 e3

3 e3
4 e3

5 e3
6

e2
1→e3

6 e2
2 || e3

6

local events precede one another à precede one another globally:
If eik ,eimЄ hi and k < m, then eik→eim

Sending a message always precedes receipt of that message:
If ei = send(m) and ej= receive(m), then ei→ej

Event ordering is associative:
If e → e’ and e’ → e”, then e → e”

Cuts of a Distributed Computation

• Suppose there is an external monitor process
• External monitor constructs a global state:
• Asks processes to send it local history

• Global state constructed from these local histories is:
a cut of a distributed computation

Example Cuts

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C C’

p1

p2

p3

Consistent vs. Inconsistent Cuts

• A cut is consistent if
• for any event e included in the cut
• any event e’ that causally precedes e is also included in that cut

• For cut C:
(e Є C) Λ (e’→ e) => e’ Є C

Are These Cuts Consistent?

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C

p1

p2

p3

Are These Cuts Consistent?

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C’

inconsistent
included

in C

causally
precedes e3

6

…but not
included

in C

A consistent cut corresponds to a consistent global state

What Do We Need to Know to
Construct a Consistent Cut?

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3 e3

4 e3
5 e3

6

C’

inconsistent
included

in C

causally
precedes e3

6

…but not
included

in C
We must know the causal
ordering of events. If we

do we can detect an
inconsistent cut

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

• LC(ei) – the logical clock value at process pi at event ei
• Suppose we had a distributed system with only a single process

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Logical Clocks (cont.)

• In a system with more than one process logical clocks are updated as
follows:
• Each message m that is sent contains a timestamp TS(m)
• TS(m) is the logical clock value associated with sending event at the

sending process
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

LC=1 send(m)

TS(m) = 1

Logical Clocks (cont)

• When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1
e1

1 e1
2 e1

3 e1
4 e1

5 e1
6

LC=1 send(m) TS(m) = 1

e2
2

What is the LC
value of e2

2?

LC=2

e2
1

LC=1

Illustration of a Logical Clock

1 2 4 5 6 7

1 5 6

1 2 3 4 5 7

3\p1

p1

p1

Awesome, right?
Any drawbacks?

e_x < e_y à TS(e_x) < TS(e_y), but
TS(e_x) < TS(e_y) doesn’t guarantee e_x < e_y

Vector Clock

Replace Single Logical value with Vector!

Vi[i] : #events occurred at i

Vi[j] : #events i knows occurred at j

Update
• On local-event: increment Vi[I]
• On send-message: increment,

piggyback entire local vector V
• On recv-message: Vj[k] = max(

Vj[k],Vi[k])
• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of

events sender knows occurred
elsewhere

Vector Clock Example

Each process i maintains a vector Vi

• Vi[i] : number of events that have occurred at i
• Vi[j] : number of events I knows have occurred at

process j

Update
• Local event: increment Vi[I]
• Send a message :piggyback entire vector V
• Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the
sender knows occurred at another process k

• Also Vj[i] = Vj[i]+1

• Need to order operations
• Can’t rely on real-time
• Vector clock: timestamping algorithm s.t.

• TS(A) < TS(B) à A happens before B
• Independent ops remain unordered

See any drawbacks?

Thread 2

Happens-before

• Happens-before relation
• Within single thread
• Between threads

• Accessing variables not ordered
by “happens-before” is a race
• Captures locks and dynamism
• How to track “happens-before”?
• Sync objects are ordering events
• Generalizes to fork/join, etc

Thread 1 Thread 2

T1 access to V
“Happens-before”
T2 access to V

Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving
produced by the scheduler

• Example
• T1-acc(v) happens before T2-acc(v)
• T1-acc(y) happens before T1-acc(v)
• T2-acc(v) happens before T2-acc(y)
• Conclusion: no race on Y!
• Finding doesn’t generalize

y := y+1;

Lock(mu);

v := v+1;

Unlock(mu);

Lock(mu);

v := v+1;

Unlock(mu);

y := y+1;

Thread 1

Thread 2

y := y+1;

Lock(mu);

v := v+1;

Unlock(mu);

Thread 1

Lock(mu);

v := v+1;

Unlock(mu);

y := y+1;

Thread 2

Dynamic Race Detection Summary

l Lockset: verify locking discipline for shared memory
üDetect race regardless of thread scheduling
û False positives because other synchronization primitives

(fork/join, signal/wait) not supported

l Happens-before: track partial order of program events
ü Supports general synchronization primitives
û Higher overhead compared to lockset
û False negatives due to sensitivity to thread scheduling

RaceTrack = Lockset + Happens-before

False positive using Lockset

Inst State Lockset
1 Virgin { }
3 Exclusive:t { }
6 Shared Modified {a}

9 Report race { }

Tracking accesses to X

RaceTrack Notations
Notation Meaning

Lt Lockset of thread t

Cx Lockset of memory x

Bu Vector clock of thread u

Sx Threadset of memory x

ti Thread t at clock time i

RaceTrack Algorithm
Notation Meaning

Lt Lockset of thread t

Cx Lockset of memory x

Bt Vector clock of thread t

Sx Threadset of memory x

t1 Thread t at clock time 1

Avoiding Lockset's false positive (1)

Inst Cx Sx Lt Bt Lu Bu
0 All { } { } {t1} - -

1 {t2} { } { t1,u1 }

2 {a}

3 {a} {t2}

4 { }
5 {a}
6 {t2,u1}

7 { }
8 {t2,u1} - -

Notation Meaning

Lt Lockset of thread t

Cx Lockset of memory x

Bt Vector clock of thread t

Sx Threadset of memory x

t1 Thread t at clock time 1

Avoiding Lockset's false positive (2)

Inst Cx Sx Lt Bt Lv Bv
8 {a} {t2,u1} { } {t2,u1} - -

9 { } {t2}
10 {t3,u1} { } {t2,v1}

11 {a}

12 {a} {t3}
13 { }
14 {a}

15 {t3,v1}
16 { }

Notation Meaning

Lt Lockset of thread t

Cx Lockset of memory x

Bt Vector clock of thread t

Sx Threadset of memory x

t1 Thread t at clock time 1

Only one thread!
Are we done?

