End-of-semester Review
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Outline/Administrivia

e Questions?

e Review

* Can someone please act as scribe?

* Requested review content:

* GPUs: SIMT vs SIMD, schedulers, limitations on threads/blocks and num blocks,
divergence, sharing global memory

* FPGAs/Verilog: CLB, BRAM, and LUT

* MPI, distributed systems, shared nothing architectures, PGAS
* Distributed systems (like CAP and NoSQL)

* Consistency guarantees?

* Linearizability vs. Serializability



Your requests

4 votes (21%)

8 votes (42%)

7 votes (37%)

6 votes (32%)
5 votes (26%)
9 votes (47%)

2 votes (11%)

2 votes (11%)

MPI

MapReduce / Spark / Dataflow

NoSQL

Consistency

Lock-freedom and Linearizability

FPGAs

Research topic: accelerator virtualization

GPUs / Occupancy
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Hardware multi-threading

* Address memory bottleneck

¢ Share exec unit across
* |nstruction streams
e Switch on stalls

* Looks like multiple cores to the OS

* Three variants:
* Coarse
* Fine-grain
e Simultaneous

SIMT = SIMD + Hw MT
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Sl I\/I D VS . Sl I\/IT Single Scalar Thread

Flynn Taxonomy —
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e.g., pthreads e.g., PTX, HSA




Thread block schedulerWarp (thread) scheduler
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* Vector units use hardware multi-threading 1200 1ot Gche s err

» Execution = a grid of thread blocks (TBs)
e Each TB has some number of threads



GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared

* how to reason about resource demands of a CUDA kerne| @eSirrerm ey
* Enables device-specific online tuning of kernel paramete rlEEEEEEN R o X




Hardware Resources Are Finite
|

Kernel K Thread Block Control
Distributor d J_IJ Limits the #thread blocks
/ : >
¥ ,' TB O
SM
Scheduler ; Warp Schedulers
‘l' ‘l' \l: \l: Warp Context -l_ Limits the #threads
| | | | | | | |'I 1 -|

Occupancy:

* (#Active Warps) /(#MaximumActive Warps)

* Limits on the numerator:
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* Registers/thread sp |[ sp ][ sp ][ sp
* Shared memory/thread block — Limits the #threads
* Number of scheduling slots: blocks, warps Register File B ,E _
Limits the #thread blocks
e Limits on the denominator: L1/Shared Memory >

* Memory bandwidth

* Scheduler slots What is the performance impact of varying kernel resource demands?



Impact of Thread Block Size

Example: v100:

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?

Limits the #thread blocks

Limits the #threads

rrrrrrrrrrrrrrrrrr

* Max active warps * threads/warp = 64*32 = 2048 threads 2>

* With 128 threads/block? =

e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:

* Blocks are maxed out, but max active threads = 32*32 = 1024

e Occupancy =.5(1024/2048)

 To maximize utilization, thread block size should balance

e Limits on active thread blocks vs.
* Limits on active warps

Limits the #threads

Limits the #thread blocks

10



el ; Thread Block Control |
utor Limits the #thread blocks

uler

Impact of #Registers Per Thread &g

DRAM

Limits the #threads

Limits the #threads

Limits the #thread blocks

) Register File
—St tiprocessor
SP— Stream Processor L1/Shared Memory —_—

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?
e Recall: granularity of management is a thread block!
* Loss of concurrency of 256 threads!
» 34 regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,
* 8 blocks would over-subscribe register file
e Occupancy drops to .875!



Control Flow Divergence

 Performance concern with branching: divergence
 Threads within a single warp take different paths

 Different execution paths are serialized

* The control paths taken by the threads in a warp are traversed one at a
time until there is no more.

e Common case: branch condition is a function of thread ID

 Example with divergence:
e If (threadldx.x > 2) { }
* This creates two different control paths for threads in a block

* Branch granularity < warp size; threads 0, 1 and 2 follow different path
than the rest of the threads in the first warp

 Example without divergence:
* If (threadIdx.x / WARP SIZE > 2) { }
* Also creates two different control paths for threads in a block

* Branch granularity is a whole multiple of warp size; all threads in any
given warp follow the same path

12



FPGAs/Verilog

* CLB, BRAM, and LUT?

* CLB: combinational logic block

* BRAM: block random access memory
e LUT: lookup table

e Other questions?



Blocking vs Non-blocking Behavior

* A sequence of nonblocking assignments don’t communicate

’

1
.
b

-

O T o
I

’

Blocking assignment:
a=b=c=1

a<=1;
b <= a;
c <= b;

Nonblocking assignment:
a=1

b = old value of a

c =old value of b



I mp

Distributed Memory Cluster of SMPs Multicore SMP+GPU Cluster W c/AKYEN Yo g 14[e)i1-{s Ne]le]]1o]]
Multiprocessor * Shared memory in SMP * Shared mem in SMP n{e /e [0 [{=X33T 1o o=
Messaging between nodes node NV Il How is that different from

* Messaging €<—> SMP nodes S

shared nothing:

[memory | [ memory|

interconnection network network

interface

Massively Parallel Processor (MPP)

Many, many processors * alsoregarded as MPP if * GPU accelerators attached
processor # is large

interconnection network




What is NoSQL?

. Next Generation Compute/Storage engines (databases)

. non-relational
. distributed

. open-source
P What NoSQL gives up in exchange for scale:

- horizontally scalable Why talk about NoSQL in concurrency class?
. One view: “no” =2 elide SQL/da Principle

Most tradeoffs are a direct result of concurrency

. 7 7
. Another view: “NoSQL” is actua Practice

. more appropriate term is actually "No NoSQL systems are ubiquitous
Relevant aspects
scale/performance tradeoff space
Correctness/programmability tradeoff space



Review: noSQL Taxonomy

D==yment Stores
* Atomicity
_____ | ¢+ Consistency o
* |solation
* Durability
rrrae—<0 UM Stores
Strong?/ ACID Con sistency Eventual: BASE

NAtn A Odel

Basically Available
Soft State
Eventually Consistent

Storage

e Shared-Disk
* Range-Sharding

Primary-Backup
Commit-Consenstis

Logging

Query Support

Secondary Indexing
Query Planning
Materialized Views

Analytics

age
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Consistency

Clients perform reads and writes
Data is replicated among a set of servers
Writes must be performed at all servers

N S

Partitions

Consistency != Correctess

consistency: no internal contradictions

Reads return the result of one or more past writ ®© Correct: higher-level property

How to keep data in sync?

Inconsistency = code does wrong things



Consistency: CAP Theorem —

aaaaaaa

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:
« system allows operations all the time, Why is this “theorem” true?
* and operations return quickly JUSRI

3. Partition-tolerance:
e system continues to work in spite of netwol

| Write(k,v) Read(k,v)

‘ writer | 1 reader ‘

e

- —— e —

if(partition) { keep going } = !consistent && available
if(partition) { stop } =2 consistent && !available



CAP Implications

PACELC:

distributed if(partition) {
e A distributed storage M
system c:n achievegat gC"SlStency choose A or C

most two of C, A, and P. } else {

* When partition- choose latency or consistency

tolerance is important,
you have to choose

between consistency and  HBase, HyperTable,
availability BigTable, Spanner

RDBMSs
(non-replicated)

Partition-tolerance Availability

Cassandra, RIAK,
Dynamo, Voldemort




Consistency Spectrum

e Eventual Consistency

* |f writes to a key stop, all replicas of key will
converge

* Originally from Amazon’s Dynamo and LinkedIn’s
Voldemort systems

BASE:
« Basically Available
* Soft State

* Eventually Consistent

Consistency

4 Replication

/ Storage

/&
/ &'
’ 7 Query Support &
s Q
o - - \‘(\

Strict:

. iAbsqute time ordering of all shared accesses, reads always return
ast write

Linearizability:

. Ea(tj:h operation is visible (or available) to all other clients in real-time
order

Sequential Consistency [Lamport]:

» ... the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by
its program.

*  After the fact, find a “reasonable” ordering of the operations (can re-order
operations) that obeys sanity (consistency) at all clients, and across clients.

ACID properties

N

Eventual: BASE

Strong: ACID

Faster reads and writes
More consistency Strong
Eventual ” (e.g., Sequential)




Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order

e each process issues operations in program order
* Any valid interleaving is allowed

* All agree on the same interleaving
e Each process preserves its program order

P1: W(x)a P1: Wx)a

P2 Wx)b P2: Wx)b

P3. R(x)b R(x)a P3. R(x)b R(x)a

P4; R{x)b R(x)a P4: R{x)a R(x)b
* Why is this weaker than strict/strong? ) ()

* Nothing is said about “most recent write”



Causal consistency

Causal:
e Causally related writes seer If a write produces a value that
. Causally? causes another write, they are causally related
* Concurrent writes may be se
machines -
if(X>0) {
Y=1
P1: W(x)a }
P2: RXa  WX)b Causal consistency =2 all see X=1, Y=1 in same order
P3: RX)b Rx)a P3: Rx)b Rx)a
P4: R(x)a R)b P4: R(x)a R{x)b

(@) (b)

Not permitted Permitted



Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

e Difference between linearizability and serializability?
* Granularity: reads/writes versus transactions

Linearizability: Serializability:
* Single-operation, single-object, real-time order * Talks about groups of 1 or more ops on
* Talks about order of ops on single object (e.g. one or more objects
atomic register) * Txns over multiple items equivalent to
* Ops should appear instantaneous, reflect real serial order of txns
time order . Oraly requires *some* equivalent serial
order

Serializability + Linearizability == “Strict Serializability”
* Txn order equivalent to some serial order that respects real time order
* Linearizability: degenerate case of Strict Ser: txns are single op single object

http://www.bailis.org/blog/linearizability-versus-serializability/



http://www.bailis.org/blog/linearizability-versus-serializability/

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.
Bounded Staleness See all “old” writes.
Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.



NoSQL faux quiz:

e What is the CAP theorem? What does “PACELC” stand for and how does it
relate to CAP?

e What is the difference between ACID and BASE?

* Why do NoSQL systems claim to be more horizontally scalable than RDMBSes?
List some features NoSQL systems give up toward this goal?

* What is eventual consistency? Give a concrete example of how of why it
caugels)a complex programming model (relative to a strongly consistent
model).

 Compare and contrast Key-Value, Document, and Wide-column Stores

* Define and contrast the following consistency properties:

* strong consistency, eventual consistency, consistent prefix, monotonic reads, read-my-
writes, bounded staleness



NoSQL faux quiz:

e What is the CAP theorem? What does “PACELC” stand for and how does it
relate to CAP?

e What is the difference between ACID and BASE?

* Why do NoSQL systems claim to be more horizontally scalable than RDMBSes?
L E NoSO] ! Lthi 2

* What is eventual consistency? Give a concrete example of how of why it
caugels)a complex programming model (relative to a strongly consistent
model).

* Define and contrast the following consistency properties:

* strong consistency, eventual consistency, consistent prefix, monotonic reads, read-my-
writes, bounded staleness



Dataflow

* MR is a dataflow engine

* So are Lots of others

* Dryad
DryadLINQ
Dandelion
CIEL
GraphChi/PowerGraph/Pregel
Spark

Map Shuffle Reduce

:' ). ()
. o SN "
Processing” ™\ ,,/'T\‘\ O ,’T\
vertices ¥ Yo P J
e 4,’ @ \\\\ /@ / ‘\'\ Channels
(. AL ) (file, pipe,

i Tl 4 shared
) ) (

4 \
0O N 7 memory)
3 \\‘\ \\ // //
N, \



Spark faux quiz (5 min, any 2):

* What is the difference between transformations and actions in Spark?

e Spark supports a persist API. When should a programmer want to use it?
When should she [not] use use the “RELIABLE” flag?

 Compare and contrast fault tolerance guarantees of Spark to those of
MapReduce. How are[n’t] the mechanisms different?

* |s Spark a good system for indexing the web? For computing page rank
over a web index? Why [not]?

* List aspects of Spark’s design that help/hinder multi-core parallelism
relative to MapReduce. If the issue is orthogonal, explain why.



Collections and Iterators

class Collection<T> : [Enumerable<T>;

LLITITLLD

public interface IEnumerable<T> {
IEnumerator<T> GetEnumerator();

J

public interface IEnumerator <T> {
T Current { get; }
bool MoveNext();

voic®set();

30



DryadLINQ Data Model

Partition

.Net objects

/

III\
)

<// o/l \

||i|

/

~
III]\
)

<// /1 \

) 4

Collection
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DryadLINQ = LINQ + Dryad

Vertex
code

~

4 Collection<T> collection;

)

bool IsLegal(Key k);
| string Hash(Key);

N

/

var results|= from c in collection

where IsLegal(c.key)

select new { Hash(c.key), c.value}; /

J
\

™

Query
plan

(Dryad job)

() collection

() results

32



Language Summary

(NNNED) (ENED) ((HNID)

¥
Where INIBEE NGl
Select Ig;-----] g/----: EZ/----:
GroupBy glooE000) é[!ll: glamam
OrderBy flocaa) {annnn) glnnll
Aggregate
Join (Il (llp g (NNNND (HEN
Apply ===

Materialize Em Om Omg .



Example: Histogram

public static IQueryable<Pair> Histogram(
|Queryable<LineRecord> input, int k)
{

var words = input.SelectMany(x => x.line.Split(" '));

var groups = words.GroupBy(x => x);

var counts = groups.Select(x => new Pair(x.Key, x.Count()));
var ordered = counts.OrderByDescending(x => x.count);

var top = ordered.Take(k);

return top;

“A line of words of wisdom”

[“A”, “line”, “of”, “words”, “of”, “wisdom”]

[[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]]

[{“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}]
[{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}]
[{“of”, 2}, {“A”, 1}, {“line”, 1}]




iterative Computations: PageRank

Input

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to

> rank; / |neighbors||

i€neighbors

1inks
ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmap {
(ur1l, (Tinks, rank)) =>
Tinks.map(dest => (dest, rank/Tinks.size))
}.reduceBykKey(_ + _)
}

[ Output 1 Output

[ Output




RDD Operations

Transformations Parallel operations
(define a new RDD) (return a result to driver)

map reduce
filter collect
sample count
union save ﬂllllllgllll] N
groupByKey lookupKey  where ¢l 1l §7III el )
reduceByKey Select g (moana) (onen)  (oess)
join GroupBy g{oo000) ([unn) {unnn)
: OrderBy flomea) unnnn) gnnll)
persist/cache Aggregate {0
Join ¢HIN (il
Apply SDDDDDD

Materialize g @- g




RDD Fault Tolerance

* RDDs maintain lineage information that can be used
to reconstruct lost partitions

* Ex:
cachedvMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))
.persist()

HdfsRDD FilteredRDD MappedRDD
{ path: hdfs://... func: contains(...)H func: split(...) H CachedRDD }




RDDs vs Distributed Shared Memory

Concern RDDs Distr. Shared Mem.
Reads Fine-grained Fine-grained
Writes Bulk transformations Fine-grained

Consistency

Trivial (immutable)

Up to app / runtime

Fault recovery

Fine-grained and low-
overhead using lineage

Requires checkpoints
and program rollback

Straggler
mitigation

Possible using
speculative execution

Difficult

Work placement

Automatic based on
data locality

Up to app (but runtime
aims for transparency)




