
End-of-semester Review
cs378h

Outline/Administrivia

• Questions?
• Review
• Can someone please act as scribe?
• Requested review content:

• GPUs: SIMT vs SIMD, schedulers, limitations on threads/blocks and num blocks,
divergence, sharing global memory

• FPGAs/Verilog: CLB, BRAM, and LUT
• MPI, distributed systems, shared nothing architectures, PGAS
• Distributed systems (like CAP and NoSQL)
• Consistency guarantees?
• Linearizability vs. Serializability

Your requests

Review: what is a vector processor?
Dont decode same instruction

over and over…
Implementation:
• Instruction fetch control logic shared
• Same instruction stream executed on
• Multiple pipelines
• Multiple different operands in parallel

4

Hardware multi-threading

• Address memory bottleneck
• Share exec unit across
• Instruction streams
• Switch on stalls

• Looks like multiple cores to the OS
• Three variants:
• Coarse
• Fine-grain
• Simultaneous

SIMT = SIMD + Hw MT

SIMD vs. SIMT

SISD SIMD

MISD MIMD

Data Streams
In

st
ru

ct
io

n
St

re
am

s

Register File

+

Loosely synchronized threads
Multiple threads

Synchronous operation

RFRF RF RF

Single Scalar Thread

SIMT

Flynn Taxonomy

e.g., pthreads

e.g., SSE/AVX

e.g., PTX, HSA

6

Review

• Each SM has multiple vector units (4)
• 32 lanes wide à warp size

• Vector units use hardware multi-threading
• Execution à a grid of thread blocks (TBs)

• Each TB has some number of threads
7

Thread block scheduler
warp (thread) scheduler

GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

• Occupancy captures
• which resources can be dynamically shared
• how to reason about resource demands of a CUDA kernel
• Enables device-specific online tuning of kernel parameters

8

Shouldn’t we just create as many
threads as possible?

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

Limits the #thread blocks

Limits the #threads

Limits the #thread blocks

Limits the #threads

SM – Stream Multiprocessor

SP – Stream Processor

9

Occupancy:
• (#Active Warps) /(#MaximumActive Warps)
• Limits on the numerator:

• Registers/thread
• Shared memory/thread block
• Number of scheduling slots: blocks, warps

• Limits on the denominator:
• Memory bandwidth
• Scheduler slots What is the performance impact of varying kernel resource demands?

Impact of Thread Block Size

Example: v100:
• max active warps/SM == 64 (limit: warp context)
• max active blocks/SM == 32 (limit: block control)

• With 512 threads/block how many blocks can execute (per SM) concurrently?
• Max active warps * threads/warp = 64*32 = 2048 threads à
• With 128 threads/block? à

• Consider HW limit of 32 thread blocks/SM @ 32 threads/block:
• Blocks are maxed out, but max active threads = 32*32 = 1024
• Occupancy = .5 (1024/2048)

• To maximize utilization, thread block size should balance
• Limits on active thread blocks vs.
• Limits on active warps

10

4
16

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!
V100:
• Registers per thread max: 255
• 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256
• Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM

• Uses all 2048 thread slots (8 blocks * 256 threads/block)
• 8192 regs/block * 8 block/SM = 64k registers
• FULLY Occupied!

• What is the impact of increasing number of registers by 2?
• Recall: granularity of management is a thread block!
• Loss of concurrency of 256 threads!
• 34 regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,
• 8 blocks would over-subscribe register file
• Occupancy drops to .875!

11

12

Control Flow Divergence
• Performance concern with branching: divergence

• Threads within a single warp take different paths
• Different execution paths are serialized

• The control paths taken by the threads in a warp are traversed one at a
time until there is no more.

• Common case: branch condition is a function of thread ID
• Example with divergence:

• If (threadIdx.x > 2) { }
• This creates two different control paths for threads in a block
• Branch granularity < warp size; threads 0, 1 and 2 follow different path

than the rest of the threads in the first warp
• Example without divergence:

• If (threadIdx.x / WARP_SIZE > 2) { }
• Also creates two different control paths for threads in a block
• Branch granularity is a whole multiple of warp size; all threads in any

given warp follow the same path

FPGAs/Verilog

• CLB, BRAM, and LUT?
• CLB: combinational logic block
• BRAM: block random access memory
• LUT: lookup table
• Other questions?

Blocking vs Non-blocking Behavior

• A sequence of nonblocking assignments don’t communicate

a = 1;
b = a;
c = b;

Blocking assignment:
a = b = c = 1

a <= 1;
b <= a;
c <= b;

Nonblocking assignment:
a = 1
b = old value of a
c = old value of b

MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)
Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Cluster of SMPs
• Shared memory in SMP

node
• Messaging ßà SMP nodes

• also regarded as MPP if
processor # is large

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP
network
interface

Multicore SMP+GPU Cluster
• Shared mem in SMP node
• Messaging between nodes

• GPU accelerators attached

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP

PGAS = partitioned global
address space
How is that different from
shared nothing?

What is NoSQL?
• Next Generation Compute/Storage engines (databases)

• non-relational

• distributed

• open-source

• horizontally scalable

• One view: “no” à elide SQL/database functionality to achieve scale
• Another view: “NoSQL” is actually misleading.

• more appropriate term is actually “Not Only SQL”

What NoSQL gives up in exchange for scale:

● Relationships between entities are non-existent

● Limited or no ACID transactions
● No standard language for queries (SQL)

● Less structured

Why talk about NoSQL in concurrency class?

● Principle
● Most tradeoffs are a direct result of concurrency

● Practice
● NoSQL systems are ubiquitous

● Relevant aspects
● scale/performance tradeoff space
● Correctness/programmability tradeoff space

Wide-Column Stores

Review: noSQL Taxonomy

17

Strong: ACID Eventual: BASE

Da
ta

M
od

el

Consistency

Im
ple

men
tat

ion
Te

ch
niquesSharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Shared-Disk
• Range-Sharding
• Hash-Sharding
• Consistent Hashing

• Primary-Backup
• Commit-Consensus

Protocol
• Sync/Async

• Logging
• Update In Place
• Caching
• In-Memory Storage

• Secondary Indexing
• Query Planning
• Materialized Views
• Analytics

• Basically Available
• Soft State
• Eventually Consistent

• Atomicity
• Consistency
• Isolation
• Durability

Consistency

Partitions• Clients perform reads and writes
• Data is replicated among a set of servers
• Writes must be performed at all servers
• Reads return the result of one or more past writes
• How to keep data in sync?

Consistency != Correctess
• consistency: no internal contradictions
• Correct: higher-level property
• Inconsistency à code does wrong things

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time
• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,
• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

• Reads/writes complete reliably and quickly.
• E.g. Amazon, each ms latency à $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

if(partition) { keep going } à !consistent && available

if(partition) { stop } à consistent && !available

CAP Implications

• A distributed storage
system can achieve at
most two of C, A, and P.

• When partition-
tolerance is important,
you have to choose
between consistency and
availability

Consistency

Partition-tolerance Availability

RDBMSs
(non-replicated)

Cassandra, RIAK,
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner

PACELC:

if(partition) {
choose A or C

} else {
choose latency or consistency

}

CAP is
flawed

Consistency Spectrum

Strong
(e.g., Sequential)Eventual

More consistency

Faster reads and writes

• Strict:
• Absolute time ordering of all shared accesses, reads always return

last write

• Linearizability:
• Each operation is visible (or available) to all other clients in real-time

order

• Sequential Consistency [Lamport]:
• "... the result of any execution is the same as if the operations of all the

processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by
its program.

• After the fact, find a “reasonable” ordering of the operations (can re-order
operations) that obeys sanity (consistency) at all clients, and across clients.

• ACID properties

• Eventual Consistency
• If writes to a key stop, all replicas of key will

converge
• Originally from Amazon’s Dynamo and LinkedIn’s

Voldemort systems

BASE:

• Basically Available
• Soft State

• Eventually Consistent

Strong: ACIDEventual: BASE

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order
• each process issues operations in program order

• Any valid interleaving is allowed
• All agree on the same interleaving
• Each process preserves its program order

• Why is this weaker than strict/strong?

• Nothing is said about “most recent write”

Causal consistency
• Causally related writes seen by all processes in same order.

• Causally?
• Concurrent writes may be seen in different orders on different

machines

Causal:
If a write produces a value that
causes another write, they are causally related

X = 1
if(X > 0) {

Y = 1
}
Causal consistency à all see X=1, Y=1 in same order

Not permitted Permitted

Linearizability vs. Serializability
• Linearizability assumes sequential consistency and

• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
• Stronger than sequential consistency

• Difference between linearizability and serializability?
• Granularity: reads/writes versus transactions

http://www.bailis.org/blog/linearizability-versus-serializability/

Serializability:
• Talks about groups of 1 or more ops on

one or more objects
• Txns over multiple items equivalent to

serial order of txns
• Only requires *some* equivalent serial

order

Linearizability:
• Single-operation, single-object, real-time order
• Talks about order of ops on single object (e.g.

atomic register)
• Ops should appear instantaneous, reflect real

time order

Serializability + Linearizability == “Strict Serializability”
• Txn order equivalent to some serial order that respects real time order
• Linearizability: degenerate case of Strict Ser: txns are single op single object

http://www.bailis.org/blog/linearizability-versus-serializability/

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

co
ns

ist
en

cy
pe

rfo
rm

an
ce

av
ai

la
bi

lit
y

NoSQL faux quiz:

• What is the CAP theorem? What does “PACELC” stand for and how does it
relate to CAP?
• What is the difference between ACID and BASE?
• Why do NoSQL systems claim to be more horizontally scalable than RDMBSes?

List some features NoSQL systems give up toward this goal?
• What is eventual consistency? Give a concrete example of how of why it

causes a complex programming model (relative to a strongly consistent
model).
• Compare and contrast Key-Value, Document, and Wide-column Stores
• Define and contrast the following consistency properties:

• strong consistency, eventual consistency, consistent prefix, monotonic reads, read-my-
writes, bounded staleness

NoSQL faux quiz:

• What is the CAP theorem? What does “PACELC” stand for and how does it
relate to CAP?
• What is the difference between ACID and BASE?
• Why do NoSQL systems claim to be more horizontally scalable than RDMBSes?

List some features NoSQL systems give up toward this goal?
• What is eventual consistency? Give a concrete example of how of why it

causes a complex programming model (relative to a strongly consistent
model).
• Compare and contrast Key-Value, Document, and Wide-column Stores
• Define and contrast the following consistency properties:

• strong consistency, eventual consistency, consistent prefix, monotonic reads, read-my-
writes, bounded staleness

Dataflow

• MR is a dataflow engine
• So are Lots of others
• Dryad
• DryadLINQ
• Dandelion
• CIEL
• GraphChi/PowerGraph/Pregel
• Spark

Spark faux quiz (5 min, any 2):

• What is the difference between transformations and actions in Spark?
• Spark supports a persist API. When should a programmer want to use it?

When should she [not] use use the “RELIABLE” flag?
• Compare and contrast fault tolerance guarantees of Spark to those of

MapReduce. How are[n’t] the mechanisms different?
• Is Spark a good system for indexing the web? For computing page rank

over a web index? Why [not]?
• List aspects of Spark’s design that help/hinder multi-core parallelism

relative to MapReduce. If the issue is orthogonal, explain why.

Collections and Iterators

30

class Collection<T> : IEnumerable<T>;

public interface IEnumerable<T> {
IEnumerator<T> GetEnumerator();

}

public interface IEnumerator <T> {
T Current { get; }
bool MoveNext();
void Reset();

}

DryadLINQ Data Model

31

Partition

Collection

.Net objects

Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

var results = from c in collection
where IsLegal(c.key)
select new { Hash(c.key), c.value};

32

DryadLINQ = LINQ + Dryad

C#

collection

results

C# C# C#

Vertex
code

Query
plan
(Dryad job)Data

Language Summary

33

Where
Select
GroupBy
OrderBy
Aggregate
Join
Apply
Materialize

Example: Histogram

34

public static IQueryable<Pair> Histogram(
IQueryable<LineRecord> input, int k)

{
var words = input.SelectMany(x => x.line.Split(' '));
var groups = words.GroupBy(x => x);
var counts = groups.Select(x => new Pair(x.Key, x.Count()));
var ordered = counts.OrderByDescending(x => x.count);
var top = ordered.Take(k);
return top;

}

“A line of words of wisdom”

[“A”, “line”, “of”, “words”, “of”, “wisdom”]

[[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]]

[{“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}]

[{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}]

[{“of”, 2}, {“A”, 1}, {“line”, 1}]

Iterative Computations: PageRank

Map

Map

Map

Reduce

Reduce

Input Output

Map

Map

Map

Reduce

Reduce

Output

Map

Map

Map

Reduce

Reduce

Output

RDD Operations

Transformations
(define a new RDD)

map
filter
sample
union
groupByKey
reduceByKey
join
persist/cache
…

Parallel operations
(return a result to driver)

reduce
collect
count
save
lookupKey
…

RDD Fault Tolerance

• RDDs maintain lineage information that can be used
to reconstruct lost partitions

• Ex:
cachedMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))

.persist()

HdfsRDD
path: hdfs://…

FilteredRDD
func: contains(...)

MappedRDD
func: split(…)

CachedRDD

RDDs vs Distributed Shared Memory

Concern RDDs Distr. Shared Mem.
Reads Fine-grained Fine-grained
Writes Bulk transformations Fine-grained
Consistency Trivial (immutable) Up to app / runtime
Fault recovery Fine-grained and low-

overhead using lineage
Requires checkpoints
and program rollback

Straggler
mitigation

Possible using
speculative execution

Difficult

Work placement Automatic based on
data locality

Up to app (but runtime
aims for transparency)

