Language-level

Concurrency Support:
Go

Chris Rossbach

Outline for Today

* Questions?
* Administrivia

* Lab 3 looms large: Go go go!
* Agenda

* Message Passing background

* Concurrency in Go
* Thoughts and guidance on Lab 3

* Acknowledgements: Rob Pike’s 2012 Go presentation is excellent, and | borrowed from it:
https://talks.golang.org/2012/concurrency.slide

Faux Quiz guestions

* How are promises and futures different or the same as goroutines
* What is the difference between a goroutine and a thread?

* What is the difference between a channel and a lock?

* How is a channel different from a concurrent FIFO?

* What is the CSP model?

* What are the tradeoffs between explicit vs implicit naming in
message passing?

* What are the tradeoffs between blocking vs. non-blocking
send/receive in a shared memory environment? In a distributed one?

Event-based Programming: Motivation

* Threads have a *lot* of down-sides:
* Tuning parallelism for different environments
* Load balancing/assignment brittle
* Shared state requires locks =
* Priority inversion

Remember
this slide?
* Incorrect synchronization

* Deadlock

e Events: restructure programming model to have no threads!

. o © e Mt

* Threads have a *lot* of down-sides:
* Tuning parallelism for different environments
* Load balancing/assignment brittle

* Shared state requires locks =
* Priority inversion

Remember

* Deadlock this slide?
* Incorrect synchronization

e Events: restructure programming model to have no threads!

Message Passing: Motivation

Message Passing: Motivation

* Threads have a *lot* of down-sides:
* Tuning parallelism for different environments
* Load balancing/assignment brittle

* Shared state requires locks =
* Priority inversion
* Deadlock
* Incorrect synchronization

Message Passing: Motivation

* Threads have a *lot* of down-sides:
* Tuning parallellsm for different environments
* Load bala sfassignment brittle

hared state requires lock
* Priority inversion

* Deadlock

* Incorrect synchronization

Message Passing: Motivation

* Threads have a *lot* of down-sides:
* Tuning paraIIellsm for different environments
* Load bala ignment brittle

hared state requires lock
* Priority inversion

* Deadlock

* Incorrect synchronization

* Message passing:
* Threads aren’t the problem, shared memory is

* restructure programming model to avoid communication through shared memory
(and therefore locks)

Message Passing

Message

7N\

Object A Object B

Sending Object Receiving Object

Message Passing

Message Passing

* Threads/Processes send/receive messages

Message

Sending Object Receiving Object

Message Passing

Message Passing

* Threads/Processes send/receive messages

* Three desigh dimensions

 Naming/Addressing: how do processes refer to each other?
* Synchronization: how to wait for messages (block/poll/notify)?
 Buffering/Capacity: can messages wait in some intermediate structure?

Message

Sending Object Receiving Object

Message Passing

Naming: Explicit vs Implicit

Also: Direct vs Indirect

Naming: Explicit vs Implicit

Also: Direct vs Indirect

e Explicit Naming
e Each process must explicitly name the other party
* Primitives:
* send(receiver, message) ?
L =

* receive(sender, message)

Naming: Explicit vs Implicit

Also: Direct vs Indirect

e Explicit Naming
e Each process must explicitly name the other party
* Primitives:
* send(receiver, message) .
* receive(sender, message)
* Implicit Naming
* Messages sent/received to/from mailboxes
* Mailboxes may be named/shared
* Primitives:

e send(mailbox, message)
* receive(mailbox, message)

@ 9 =

Synchronization

Synchronization

* Synchronous vs. Asynchronous
* Blocking send: sender blocks until received
* Nonblocking send: send resumes before message received
* Blocking receive: receiver blocks until message available
* Non-blocking receive: receiver gets a message or null

Synchronization

* Synchronous vs. Asynchronous
* Blocking send: sender blocks until received
* Nonblocking send: send resumes before message received
* Blocking receive: receiver blocks until message available
* Non-blocking receive: receiver gets a message or null

Blocking:
+ simple
+ avoids wasteful spinning

Non-blocking:
+ maximal flexibility

Synchronization

* Synchronous vs. Asynchronous
* Blocking send: sender blocks until received
* Nonblocking send: send resumes before message received
* Blocking receive: receiver blocks until message available
* Non-blocking receive: receiver gets a message or null

 If both send and receive block

e “Rendezvouz” Blocking:
+ simple

Operation acts as an ordering primitive
Sender knows receiver succeded
Receiver knows sender succeeded

Particularly appealing in distributed environment JRASIRsIEN]:
+ maximal flexibility

+ avoids wasteful spinning

Communicating Sequential Processes
Hoare 19/8

\ 4

CSP: language for multi-processor machines
* Non-buffered message passing
* No shared memory
* Send/recv are blocking v
 Explicit naming of src/dest processes
* Also called direct naming
* Receiver specifies source process
e Alternatives: indirect

sequential communication
process channel

v

* Port, mailbox, queue, socket = single thread of control = synchronous
 Guarded commands to let processes wait ® autonomous m reliable
m encapsulated m unidirectional
m named m point-to-point
m static m fixed topology

Communicating Sequential Processes
Hoare 19/8

\ 4

CSP: language for multi-processor machines
* Non-buffered message passing
* No shared memory
* Send/recv are blocking v
 Explicit naming of src/dest processes
* Also called direct naming
* Receiver specifies source process
e Alternatives: indirect

sequential communication
process channel

* Port, mailbox, queue, socket = single thread of control = synchronous
 Guarded commands to let processes wait ® autonomous m reliable
m encapsulated m unidirectional
®m named m point-to-point
m static m fixed topology

HEEEEEE

EEEEEE 0

< Transputer!

An important problem in the CSP model:

An important problem in the CSP model:

* Processes need to receive messages from different senders

An important problem in the CSP model:

* Processes need to receive messages from different senders

* Only primitive: blocking receive(<name>, message)

An important problem in the CSP model:

* Processes need to receive messages from different senders

* Only primitive: blocking receive(<name>, message)

An important problem in the CSP model:

* Processes need to receive messages from different senders

* Only primitive: blocking receive(<name>, message)

Q]
R
S

P

recv_multi(Q) {
receive(Q, message)
receive(R, message)
receive(S, message)

}

An important problem in the CSP model:

* Processes need to receive messages from different senders

* Only primitive: blocking receive(<name>, message)

. - recv_multi(Q) {

receive(Q, message)
- receive(R, message)

- / receive(S, message)
}

Is there a problem
with this?

An important problem in the CSP model:

* Processes need to receive messages from different senders

* Only primitive: blocking receive(<name>, message)

. - recv_multi(Q) {

receive(Q, message)
receive(R, message)

/ receive(S, message)
}

-X
5] X

Is there a problem
with this?

Blocking with Indirect Naming

* Processes need to receive messages from different senders

* blocking receive with indirect naming
* Process waits on port, gets first message first message arriving at that port

Blocking with Indirect Naming

* Processes need to receive messages from different senders

* blocking receive with indirect naming
* Process waits on port, gets first message first message arriving at that port

Q
R P | receive(port, message)
S|

Blocking with Indirect Naming

* Processes need to receive messages from different senders

* blocking receive with indirect naming
* Process waits on port, gets first message first message arriving at that port

P | receive(port, message)

OK to block (good)
Requires indirection (less good)

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming
* Requires receiver to poll senders

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming
* Requires receiver to poll senders

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming

while(...) {

* Requires receiver to poll senders

ol 2 0

}

try_receive(Q, message)
try_receive(R, message)
try_receive(S, message)

Non-blocking with Direct Naming

* Processes need to receive messages from different senders

* Non-blocking receive with direct naming
* Requires receiver to poll senders

while(...) {
. try_receive(Q, message)
try_receive(R, message)
. . try_receive(S, message)

B }

Polling (bad)
No indirection (good)

Blocking and Direct Naming

Blocking and Direct Naming

e How to achieve it?

Blocking and Direct Naming

* How to achieve it?
* CSP provides abstractions/primitives for it

Alternative / Guarded Commands

Guarded command is delayed until either Alternative command:

e guard succeeds - cmd executes or e |ist of one or more guarded commands

e guard fails > command aborts e separated by ”||”
e surrounded by square brackets
Guarded Commands

<guard>— <command list>
1 [x=y->max:=x || y=x->max:=y]

boolean expression

at most one ? , must be at end of
guard, considered true iff

Examples message pending

n <10—Alindex(n); n :=n + 1;
n < 10; A?index(n)—next = MyArray(n);

Alternative / Guarded Commands

Guarded command is delayed until either Alternative command:

e guard succeeds - cmd executes or e |ist of one or more guarded commands

e guard fails > command aborts e separated by ”||”
e surrounded by square brackets
Guarded Commands

<guard>— <command list>
1 [x=y->max:=x || y=x->max:=y]

boolean expression

at most one ? , must be at end of
guard, considered true iff

Examples message pending

* Enable choice preserving concurrency

n <10—Alindex(n); n :=n + 1; * Hugely influential
n <10; A?index(n) —next = MyArray(n);

e goroutines, channels, select, defer:
* Trying to achieve the same thing

Go Concurrency

* CSP: the root of many languages
* Occam, Erlang, Newsqueak, Concurrent ML, Alef, Limbo

* Go is a Newsqueak-Alef-Limbo derivative
 Distinguished by first class channel support
* Program: goroutines communicating through channels
* Guarded and alternative-like constructs in select and defer

A boring function

func boring(msg string) {
for 1 := 0; ; i++ {
fmt.Println(msg, 1)
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

}

func main() {
boring("boring!")
}

A boring function

func boring(msg string) {
for 1 := 0; ; i++ {
fmt.Println(msg, 1)
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

}

func main() {
boring("boring!")
}

lgnoring a boring function

Go statement runs the function
Doesn’t make the caller wait
Launches a goroutine

Analagous to & on shell command

package main

import (
L1 .Fmtu
"math/rand"
n timE‘“

)

func main() {
go boring("boring!")
s

lgnoring a boring function

package main

e Go statement runs the function import (

, . "Fmt"
* Doesn’t make the caller wait R A
* Launches a goroutine "time"

e Analagous to & on shell command)

func main() {
go boring("boring!")
s

func main() {

 Keep main() around a while go boring(thorangl™).
)] fmt.Println("I'm listening.")
* See goroutine actually running fine.Sleen(2 % time S=cond)

fmt.Println("You're boring; I'm leaving.")

lgnoring a boring function

Go statement runs the function
Doesn’t make the caller wait
Launches a goroutine

Analagous to & on shell command

 Keep main() around a while
* See goroutine actually running

package main

I'm listening.

import (boring! 0
" fmt" boring!
"math/rand" boring!
“time” boring!

) boring!

boring! 5

func main() { You're boring; I'm leaving.

go boring("bor
s

Program exited.

func main() {
go boring("boring!")
fmt.Println("I'm listening.")
time.Sleep(2 * time.Second)
fmt.Println("You're boring; I'm leaving.")

Goroutines

Goroutines

* Independently executing function launched by go statement

Goroutines

* Independently executing function launched by go statement
* Has own call stack

Goroutines

* Independently executing function launched by go statement
* Has own call stack
* Cheap: Ok to have 1000s...100,000s of them

Goroutines

* Independently executing function launched by go statement
* Has own call stack
* Cheap: Ok to have 1000s...100,000s of them

* Not a thread
* One thread may have 1000s of go routines!

Goroutines

* Independently executing function launched by go statement
* Has own call stack
* Cheap: Ok to have 1000s...100,000s of them

* Not a thread
* One thread may have 1000s of go routines!

* Multiplexed onto threads as needed to ensure forward progress
* Deadlock detection built in

Channels

e Connect goroutines allowing them to communicate

// Declaring and initializing.
var c¢ chan int

c = make(chan 1int)

// or

c := make(chan int)

// Sending on a channel.
c <-1

// Recelving from a channel.
// The "arrow" indicates the direction of data flow.
value = <-c

Channels

e Connect goroutines allowing them to communicate

Channels

* Connect goroutines allowing them to communicate

func main() {
c := make(chan string)
go boring("boring!", c)
for 1 :=0; 1 <5; i++ {
fmt.Printf("You say: %q\n", <-c) // Receive expression is just a value.
s

fmt.Println("You're boring; I'm leaving.")

func boring(msg string, c chan string) {
for 1 :=0; ; i++ {
c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any suitable value.
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

Channels

* Connect goroutines allowing them to communicate

func main() {
c := make(chan string)
go boring("boring!", c)
for 1 :=0; 1 <5; i++ {
fmt.Printf("You say: %q\n", <-c) // Receive expression is just a value.
s

fmt.Println("You're boring; I'm leaving.")

You say: "boring! 0"
You say: "boring! 1"
You say: "boring! 2"
You say: "boring! 3"

func boring(msg string, c chan string) {
for 1 :=0; ; i++ {
c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any s
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

You say: "boring! 4"
You're boring; I'm leaving.

Program exited.

Channels

 When main executes <-c, it blocks

e Connect goroutines allowing tt , _
 When boring executes c <- value it blocks

func main() { * Channels communicate and synchronize

c := make(chan string)
go boring("boring!", c)
for 1 :=0: 1 < 5; i+t {
fmt.Printf("You say: %q\n", <-c) // Receive expression is just a value.
s

fmt.Println("You're boring; I'm leaving.")

You say: "boring! 0"
You say: "boring! 1"
You say: "boring! 2"
You say: "boring! 3"

func boring(msg string, c chan string) {
for 1 = 0: § i+t 4
c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent can be any s
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

You say: "boring! 4"
You're boring; I'm leaving.

Program exited.

Select: Handling Multiple Channels

 All channels are evaluated

* Select blocks until one communication can proceed
e Cf. Linux select system call, Windows WaitForMultipleObjectsEx
» Cf. Alternatives and guards in CPS

* If multiple can proceed select chooses randomly

* Default clause executes immediately if no ready channel

select {
case vl := <-c1:

fmt.Printf("received %v from c1\n", v1)
case v2 .= <-c2:

fmt.Printf("received %v from c2\n", v1)
case c3 <- 23:
fmt.Printf("sent %v to c3\n", 23)

default:
fmt.Printf("no one was ready to communicate\n")

}

Select: Handling Multiple Channels

* All channels are evaluated

* Select blocks until one communication can proceed
e Cf. Linux select system call, Windows WaitForMultipleObjectsEx
» Cf. Alternatives and guards in CPS

* If multiple can proceed select chooses randomly

e Default clause executes immediately if no ready channel

select {
case vl := <-c1:

fmt.Printf("received %v from c1\n", v1)
case v2 .= <-c2:

fmt.Printf("received %v from c2\n", v1)
case c3 <- 23:
fmt.Printf("sent %v to c3\n", 23)

default: Without default d - y |
fmt.Printf("no one was ready to communicate\n") ifelus SISIELINE RIS DEEEIIES el 2t eIls,

}

Google Search

* Workload:
* Accept query
e Return page of results (with ugh, ads)

* Get search results by sending query to

* Web Search
* Image Search
YouTube

* Maps

* News, etc

* How to implement this?

Search 1.0

* Google function takes query and returns a slice of results (strings)
* Invokes Web, Image, Video search serially

func Google(query string) (results []JResult) {
results = append(results, Web(query))
results = append(results, Image(query))
results = append(results, Video(query))
return

Search 2.0

 Run Web, Image, Video searches concurrently, wait for results
* No locks, conditions, callbacks

func Google(query string) (results []Result) {
c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

for 1 := 0; 1 < 3; i++ {

result := <-c

results = append(results, result)
}
return

Search 2.1

 Don’t wait for slow servers: No locks, conditions, callbacks!

c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

timeout := time.After(80 * time.Millisecond)
for 1 :=0; 1 < 3; 1++ {
select {
case result := <-c:
results = append(results, result)
case <-timeout:
fmt.Println("timed out")
return

return

Search 3.0

* Reduce tail latency with replication. No locks, conditions, callbacks!

c := make(chan Result)

go func() { c <- First(query, Web1, Web2) } ()

go func() { c <- First(query, Imagel, Image2) } ()
go func() { ¢ <- First(query, Videol, Video2) } ()

timeout := time.After(80 * time.Millisecond)
for 1 := 0; 1 < 3; i++ {

select {

case result := <-c:

results = append(results, result)
case <-timeout:
fmt.Println("timed out")
return
+
}

return

func First(query string, replicas ...Search) Result {
c := make(chan Result)
searchReplica := func(i int) { c <- replicas[i](query) }
for 1 := range replicas {

go searchReplica(i)

}

return <-c

Other tools in Go

* Goroutines and channels are the main primitives

 Sometimes you just need a reference counter or lock
* “sync” and “sync/atomic” packages
* Mutex, condition, atomic operations

* Sometimes you need to wait for a go routine to finish
* Didn’t happen in any of the examples in the slides
* WaitGroups are key

WaitGroups

testQ() {

wg sync.WaitGroup
wg.Add(4)
ch := make(int)
for 1:=0; i<4; i++ {
go (id int) {
aval, amore := <- ch
if(amore) {

fmt.Printf("reader #%d got %d value\n", id, aval)
} else {
fmt.Printf("channel reader #%d terminated with nothing.\n", id)

}
wg.Done()

H(1)
}

time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()

WaitGroups

testQ() {

var wg sync.WaitGroup
wg.Add(4)
ch := make(int)
for 1:=0; i<4; i++ {
go (id int) {
aval, amore := <- ch
if(amore) {

fmt.Printf("reader #%d got %d value\n", id, aval)

} else {
fmt.Printf("channel reader #%d terminated with nothing.\n", id)

~

iy
wg.Done()
H(1)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()

Go: magic or threadpools and concurrent Qs?

 We’'ve seen several abstractions for
e Control flow/exection
e Communication

* Lots of discussion of pros and cons
* Ultimately still CPUs + instructions

* Go: just sweeping issues under the language interface?

* Why is it OK to have 100,000s of goroutines? VON NEUMANN ARCHITECTURE
* Why isn’t composition an issue? MEMORY

CcPU
INPUT > * OUTPUT

CONTROL ||ARITHMETIC/
UNIT LOGIC UNIT

Go implementation details

Go implementation details

* M = “machine” = OS thread

Go implementation details

e M = “machine” = OS thread
| * P = (processing) context

Go implementation details

e M = “machine” = OS thread
| * P = (processing) context

g g * G = goroutines

Go implementation details

* M = “machine” = OS thread

: | * P = (processing) context
P e P G * G = goroutines
| | | * Each ‘M’ has a queue of goroutines
G G G G
|

Go implementation details

* M = “machine” = OS thread

: | * P = (processing) context
P e P G * G = goroutines
| | | * Each ‘M’ has a queue of goroutines
G G G G
|

* Goroutine scheduling is cooperative

Go implementation details

* M = “machine” > OS thread
| * P = (processing) context
g 2 * G = goroutines
| * Each ‘M’ has a queue of goroutines

‘ - . eduling .

* Go routine scheduling was cooperative
e Switch out on complete or block
* Very light weight (fibers!)
* Scheduler does work-stealing

Go implementation details

* M = “machine” - 0OS thread
* P = (processing) context
* G = goroutines

P —8 G P G

| | | * Each ‘M’ has a queue of goroutines

c c G G e Goroutine scheduling was cooperative
| | e Switch out on complete or block
e c * Very light weight (fibers!)

* Scheduler does work-stealing

Go implementation details

* M = “machine” = OS thread
EY AN * P =(processing) context

N ; . * G = goroutines
— A Faali IRA? liam ~ mvimnem AL mmeme kiem am
| | | | | struct G
D @ - @&
' 4 bytex stackguard; // stack guard information
, ‘) ‘ bytex stackbase; // base of stack
s T bytex stackO; // current stack pointer
o bytex entry; // initial function
void* param; // passed parameter on wakeup
intl6 status; // status
int32 goid; // unique id

M x lockedm; // used for locking M’s and G’s

Go implementation details

* M = “machine” - 0OS thread
* P = (processing) context
* G = goroutines

P —8 G P G

| | | * Each ‘M’ has a queue of goroutines

c c G G e Goroutine scheduling was cooperative
| | e Switch out on complete or block
e c * Very light weight (fibers!)

* Scheduler does work-stealing

Go implementation details

* M = “machine” = OS thread

“? f “f | * P = (processing) context
: F : . . * G = goroutines
N ’ |] e Farh ‘M’ hac a niiaiia nf oarniitinec
e struct M
G [G . G G | {
Gx* curg; // current running goroutine
[int32 id ; // unique id
- " int32 locks; // locks held by this M
MCache xmcache; // cache for this thread
G lockedg; // used for locking M’s and G’s
uintptr createstack [32]; // Stack that created this thread
M nextwaitm; // next M waiting for lock

Go implementation details

* M = “machine” = OS thread

M AN e P = (nrorescing) raontext
' struct Sched {
a T A Lock; // global sched lock.
P —El P — // must be held to edit G or M queues
l | l . G xgfree; // available g’s (status == Gdead)
(e (s G (o . G xghead; // g’s waiting to run queue
| o G xgtail; // tail of g’s waiting to run queue
‘ ! int32 gwait; // number of g’s waiting to run
int32 gcount; // number of g’s that are alive
s 2 int32 grunning; // number of g’s running on cpu
\ = // or in syscall o
M xmhead; // m’s waiting for work ad
int32 mwait; // number of m’s waiting for work

int32 mcount; // number of m’s that have been created

Go implementation details

* M = “machine” = OS thread

M AN e P = (nrorescing) raontext
' struct Sched {
a T A Lock; // global sched lock.
P —El P — // must be held to edit G or M queues
l | l G xgfree; // available g’s (status == Gdead)
() { s G (o G xghead; // g’s waiting to run queue
| o G xgtail; // tail of g’s waiting to run queue
‘ ! int32 gwait; // number of g’s waiting to run
int32 gcount; // number of g’s that are alive
s 2 int32 grunning; // number of g’s running on cpu
\ = // or in syscall
M xmhead; // m’s waiting for work
int32 mwait; // number of m’s waiting for work

int32 mcount; // number of m’s that have been created

(v

Go implementation details

* M = “machine” = OS thread

M AN e P = (nrorescing) raontext
' struct Sched {
a T A Lock; // global sched lock.
P —El P — // must be held to edit G or M queues
l | l G xgfree; // available g’s (status == Gdead)
() { s G (o G xghead; // g’s waiting to run queue
| o G xgtail; // tail of g’s waiting to run queue
‘ ! int32 gwait; // number of g’s waiting to run
int32 gcount; // number of g’s that are alive
s 2 int32 grunning; // number of g’s running on cpu
\ = // or in syscall
M xmhead; // m’s waiting for work
int32 mwait; // number of m’s waiting for work

int32 mcount; // number of m’s that have been created

(v

1000s of go routines?

testQ(consumers int) {
startTimes["testQ"] = time.Now()
wg sync.WaitGroup
wg .Add(consumers)
ch := make(int)
for i:=0; i<consumers; i++ {
g0 (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {
info("channel reader #%d terminated with nothing.\n", id)

}
wg .Done()

3(1)
¥

time.Sleep(1000 * time.Millisecond)
close(ch)

wg.Wait()

stopTimes["testQ"] = time.Now()

1000S Of gO rOUtlneS? * Creates a channel

testQ(int) { * Creates “consumers” goroutines
es consumers 1n .
startTimes["testQ"] = time.Now() * Each of them tries to read from the channel

wg sync.WaitGroup * Main either:
wg.Add(consumers) » Sleeps for 1 second, closes the channel

ch = makeg int) . * sends “consumers” values
for i:=0; i<consumers; i++ {

g0 (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {
info("channel reader #%d terminated with nothing.\n", id)

}

wg .Done()
H(1)

}
time.Sleep(1000 * time.Millisecond)

close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

1000S Of gO rOUtlneS? * Creates a channel

testQ(int) { * Creates “consumers” goroutines
es consumers 1n .
startTimes["testQ"] = time.Now() * Each of them tries to read from the channel

wg sync.WaitGroup * Main either:
wg.Add(consumers) » Sleeps for 1 second, closes the channel

ch = makeg int) . * sends “consumers” values
for i:=0; i<consumers; i++ {

g0 (id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else { PS C:\Users\chris\go\src\cs378\lab3> .\lab3.exe 16
info("channel readeestQ: 1.0016706s
} PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 100
wg .Done() testQ: 1.0011655s
(1) PS C:\Users\chris\go\src\cs378\1lab3> .\lab3.exe 1000
} testQ: 1.0884796s
time.Sleep(1000 * time.Millise®sS C:\Users\chris\go\src\cs378\lab3> .\lab3.exe 10000
close(ch) testQ: 1.0547925s
wg.Wait() PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 100000
stopTimes["testQ"] = time.Now(testQ: 1.3907835s
PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 1000000
testQ: 4.2485814s

77 ENTry pOINT for ¢ <- X Trom CompIIET COaE

//go:nosplit

func chansendl{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

I
* generic single channel send/recy
* If block is net nil,

* then the protocol will not
* sleep but return if it could
* not complete.

1

Channel implementation

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
% the operation; we'll see that it's now closed.

*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
1 H 1 ¢ == nil {
* You can just read it:
L]

return false

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

e https://golang.org/src/runtime/chan.go
* Some highlights

}

if debugchan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc (unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
"
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending en kind of channel).
// Because a closed channel cannot transition from 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two chservations,
{{ they imply a moment between the two when the channel was both net yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
"
/f Tt is okay if the reads are reordered here: if we observe that the channel is not
/{ ready for sending and then observe that it is not closed, that implies that the
/{ channel wasn't closed during the first observation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.dstagsiz > @ && c.goount == c.datagsiz)) {
return false

}

var t@ inte4

if blockprofilerate > @ {
1@ = cputicks()

1

lock(&c. lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel®})

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want fo send
/I directly to the receiver, bypassing the channel buffer (if any).
candir ca an Eunedy ©ooanlecbi8e Tnarkd 10 3%

https://golang.org/src/runtime/chan.go

Channel implementation

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
.Y if ¢ == nil {
if !block {
return false

¥

gopark(nil, nil, "chan send (nil chan)”, traceEvGoStop, 2)
[S throw("unreachable™)

if debugChan {
print(“chansend: chan=", c, "\n")

if raceenabled {

racereadpc{unsafe.Pointer(c), callerpc, funcPC{chansend))

3

77 ENTry pOINT for ¢ <- X Trom CompIIET COaE
//go:nosplit

func chansendl{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

I
* generic single channel send/recy

* If block is net nil,

* then the protocol will not

* sleep but return if it could

* not complete.

¥

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
% the operation; we'll see that it's now closed.

*
9 func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uinkptr) bool {
if ¢ ==nil {
if Iblock {

return false

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

}

if debugchan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc (unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
"
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending en kind of channel).
// Because a closed channel cannot transition from 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two chservations,
{{ they imply a moment between the two when the channel was both net yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
"
/f Tt is okay if the reads are reordered here: if we observe that the channel is not
/{ ready for sending and then observe that it is not closed, that implies that the
/{ channel wasn't closed during the first observation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.dstagsiz > @ && c.goount == c.datagsiz)) {
return false

}

var t@ inte4

if blockprofilerate > @ {
1@ = cputicks()

1

lock(&c. lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel®})

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want fo send
/I directly to the receiver, bypassing the channel buffer (if any).
candir ca an Eunedy ©ooanlecbi8e Tnarkd 10 3%

https://golang.org/src/runtime/chan.go

Channel implementation

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
.Y if ¢ == nil {
if !block {
return false

¥

gopark(nil, nil, "chan send (nil chan)”, traceEvGoStop, 2)
[S throw("unreachable™)

if debugChan {
print(“chansend: chan=", c, "\n")

} Race detection! Cool!

I
L

racereadpc{unsafe.Pointer(c), c

if raceenabled

lerpc, funcPC{chansend))

77 ENTry pOINT for ¢ <- X Trom CompIIET COaE

//go:nosplit

func chansendl{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

2

/¥

123 * generic single channel send/recy

* If block is net nil,

* then the protocol will not

* sleep but return if it could

* not complete.

¥

* sleep can wake up with g.paran == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
% the operation; we'll see that it's now closed.

*
9 func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uinkptr) bool {
if ¢ ==nil {
if Iblock {

return false

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

}

if debugchan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc (unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
"
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending en kind of channel).
// Because a closed channel cannot transition from 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two chservations,
{{ they imply a moment between the two when the channel was both net yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
"
/f Tt is okay if the reads are reordered here: if we observe that the channel is not
/{ ready for sending and then observe that it is not closed, that implies that the
/{ channel wasn't closed during the first observation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.dstagsiz > @ && c.goount == c.datagsiz)) {
return false

}

var t@ inte4

if blockprofilerate > @ {
1@ = cputicks()

1

lock(&c. lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel®})

}

if sg i= c.recvg.dequeue(); sg != nil {
!/ Found a waiting receiver. We pass the value we want fo send

/I directly to the receiver, bypassing the channel buffer (if any).
candir ca an Eunedy ©ooanlecbi8e Tnarkd 10 3%

https://golang.org/src/runtime/chan.go

77 ENTry pOINT for ¢ <- X Trom CompIIET COaE

//go:nosplit

func chansendl{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

I
* generic single channel send/recy
* If block is net nil,

* then the protocol will not
* sleep but return if it could
* not complete.

1

Channel implementation

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
% the operation; we'll see that it's now closed.

*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
1 H 1 ¢ == nil {
* You can just read it:
L]

return false

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

e https://golang.org/src/runtime/chan.go
* Some highlights

}

if debugchan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc (unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
"
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending en kind of channel).
// Because a closed channel cannot transition from 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two chservations,
{{ they imply a moment between the two when the channel was both net yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
"
/f Tt is okay if the reads are reordered here: if we observe that the channel is not
/{ ready for sending and then observe that it is not closed, that implies that the
/{ channel wasn't closed during the first observation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.dstagsiz > @ && c.goount == c.datagsiz)) {
return false

}

var t@ inte4

if blockprofilerate > @ {
1@ = cputicks()

1

lock(&c. lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel®})

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want fo send
/I directly to the receiver, bypassing the channel buffer (if any).
candir ca an Eunedy ©ooanlecbi8e Tnarkd 10 3%

https://golang.org/src/runtime/chan.go

TZZ 77 eNtry poInT for ¢ <- X Trom CompIIET CO%E
123 //go:nosplit

124 func chansendl{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

6}
/*
* generic single channel send/recy
* If block is net nil,

* then the protocol will not

* sleep but return if it could
* not complete.

1

Channel implementation

* sleep can wake up with g.param == nil
* when a channel involved in the sleep has
* been closed. it is easiest to loop and re-run
% the operation; we'll see that it's now closed.
*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if ¢ ==nil {

. . if Ibleck {
(] [] 142 if Iblec
° 143 return false
145 gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)

e https://golang.org/src/runtime/chan.go w |)

143 if debugchan {
o . print("chansend: chan=", ¢, "\n")
° Some hlgh I Ig if sg := c.recvg.dequeus(); sg != nil { !
// Found a waiting receiver. We pass the value we want to send if raceenabled {
racereadpc (unsafe.Pointer(c), callerpc, funcPC{chansend))
f/ directly to the receiver, bypassing the channel buffer (if any). !
/i Fast path: check for failed non-blocking operation without acquiring the lock.
send({c, sg, ep, func() { unlock(&c.lock) }, 3) /
return true {{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
} {{ (first c.closed and second c.recvq.first or c.qcount depending en kind of channel).

// Because a closed channel cannot transition from 'ready for sending' to

/{ 'not ready for sending', even if the channel is closed between the two chservations,
164 {{ they imply a moment between the two when the channel was both net yet closed
165 /i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
167 I
168 /f Tt is okay if the reads are reordered here: if we observe that the channel is not
/{ ready for sending and then observe that it is not closed, that implies that the

178 /{ channel wasn't closed during the first observation.
171 if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
172 (c.dstagsiz > @ && c.goount == c.datagsiz)) {

173 return false

w ;

176 var t@ inte4

177 if blockprofilerate > @ {
178 1@ = cputicks()
179 1

lock(&c. lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel®})

if sg i= c.recvg.dequeue(); sg != nil {

// Found a waiting receiver. We pass the value we want fo send
198 /I directly to the receiver, bypassing the channel buffer (if any).
181 candir ca an Eunedy ©ooanlecbi8e Tnarkd 10 3%

https://golang.org/src/runtime/chan.go

77 ENTry pOINT for ¢ <- X Trom CompIIET COaE

//go:nosplit

func chansendl{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

}

I
* generic single channel send/recy
* If block is net nil,

* then the protocol will not
* sleep but return if it could
* not complete.

1

Channel implementation

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
% the operation; we'll see that it's now closed.

*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
1 H 1 ¢ == nil {
* You can just read it:
L]

return false

gopark(nil, nil, "chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable")

e https://golang.org/src/runtime/chan.go
* Some highlights

}

if debugchan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc (unsafe.Pointer(c), callerpc, funcPC{chansend))

}

/i Fast path: check for failed non-blocking operation without acquiring the lock.
"
{{ After observing that the channel is not closed, we observe that the channel is
/f not ready for sending. Each of these observations is a single word-sized read
{{ (first c.closed and second c.recvq.first or c.qcount depending en kind of channel).
// Because a closed channel cannot transition from 'ready for sending' to
/{ 'not ready for sending', even if the channel is closed between the two chservations,
{{ they imply a moment between the two when the channel was both net yet closed
/i and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
"
/f Tt is okay if the reads are reordered here: if we observe that the channel is not
/{ ready for sending and then observe that it is not closed, that implies that the
/{ channel wasn't closed during the first observation.
if Iblock & c.closed == B & ((c.datagsiz == B & c.recvq.first == nil) ||
(c.dstagsiz > @ && c.goount == c.datagsiz)) {
return false

}

var t@ inte4

if blockprofilerate > @ {
1@ = cputicks()

1

lock(&c. lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel®})

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want fo send
/I directly to the receiver, bypassing the channel buffer (if any).
candir ca an Eunedy ©ooanlecbi8e Tnarkd 10 3%

https://golang.org/src/runtime/chan.go

Channel implementation

* You can just read it:
* https://golang.org/s

[

(W]

(%]

[

¥s]

[y}

[l
[Nis]

* Some highlights

J

[

(¥s]

[

sl

o

LaJd
&

=

Ll
r:\._l

o g
o P

LaJd

LA

BE

{1 ENTry POINT ¥0r © <- X Trom Complled Cooe

173 //go:nosplit
124 func chansendl{c *hchan, elem unsafe.Pointer) {

chansend(c, elem, true, getcallerpe())

128 [*

123 * generic single channel send/recy

* If block is net nil,

* then the protocol will not

* sleep but return if it could

* not complete.

¥

* sleep can wake up with g.paran == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
% the operation; we'll see that it's now closed.
*

148 func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

i ¢ == nil {
if Ilock {

J/ Sends and receives on unbuffered or empty-buffered channels are the

/f only operations where one running goroutine writes to the stack of Y

// another running goroutine. The GC assumes that stack writes only

// happen when the goroutine is running and are only done by that

// goroutine. Using a write barrier is sufficient to make up for

// violating that assumption, but the write barrier has to work. 0

J/ typedmemmove will call bulkBarrierPreWrite, but the target bytes

// are not in the heap, so that will not help. We arrange to call R e

S/ memmove and typeBitsBulkBarrier instead. :ﬁ$£$ﬁ$
et

func sendDirect(t * _type, sg *sudog, src unsafe.Pointer) { e et

1annel at that moment,

// src is on our stack, dst is a slot on another stack.

it the channel is not
it implies that the

// Once we read sg.elem out of sg, it will no longer

== nil) ||

// be updated if the destination’'s stack gets copied (shrunk).

/{ 50 make sure that no preemption points can happen between read & use.

dst := sg.elem

typeBitsBulkBarrier(t, uintptr(dst), uintptr{src), t.size)

memmove{dst, src, t.size)

unlock(&e. lock)
panic(plainError("send on closed channel®})

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want fo send
/I directly to the receiver, bypassing the channel buffer (if any).
candir ca an Eunedy ©ooanlecbi8e Tnarkd 10 3%

https://golang.org/src/runtime/chan.go

Channel implementation

* You can just read it:
* https://golang.org/s

[

(W]

(%]

[

¥s]

[y}

[l
[Nis]

* Some highlights

J

[

(¥s]

[

sl

o

LaJd
&

=

Ll
r:\._l

o g
o P

LaJd

LA

BE

{1 ENTry POINT ¥0r © <- X Trom Complled Cooe

173 //go:nosplit
124 func chansendl{c *hchan, elem unsafe.Pointer) {

chansend(c, elem, true, getcallerpe())

128 [*

123 * generic single channel send/recy

* If block is net nil,

* then the protocol will not

* sleep but return if it could

* not complete.

¥

* sleep can wake up with g.paran == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
% the operation; we'll see that it's now closed.
*

148 func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

i ¢ == nil {
if Ilock {

J/ Sends and receives on unbuffered or empty-buffered channels are the

/f only operations where one running goroutine writes to the stack of Y

// another running goroutine. The GC assumes that stack writes only

// happen when the goroutine is running and are only done by that

// goroutine. Using a write barrier is sufficient to make up for

// violating that assumption, but the write barrier has to work. 0

J/ typedmemmove will call bulkBarrierPreWrite, but the target bytes

// are not in the heap, so that will not help. We arrange to call R e

S/ memmove and typeBitsBulkBarrier instead. :ﬁ$£$ﬁ$
et

func sendDirect(t * _type, sg *sudog, src unsafe.Pointer) { e et

1annel at that moment,

// src is on our stack, dst is a slot on another stack.

it the channel is not
it implies that the

// Once we read sg.elem out of sg, it will no longer

== nil) ||

// be updated if the destination’'s stack gets copied (shrunk).

/{ 50 make sure that no preemption points can happen between read & use.

dst := sg.elem

typeBitsBulkBarrier(t, uintptr(dst), uintptr{src), t.size)

memmove{dst, src, t.size)

unlock(&e. lock)
panic(plainError("send on closed channel®})

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want fo send
/I directly to the receiver, bypassing the channel buffer (if any).
candir ca an Eunedy ©ooanlecbi8e Tnarkd 10 3%

https://golang.org/src/runtime/chan.go

Channel implementation

* You can just read it:

* https://golang.org/s

* Some highlights

per-goroutine stacks

heap

G1 writes to G2's stack!

Pod P Pd Pad Pl
(e R BT = = BT =)
o oa | h N

LaJd
&

[
fard

(Y
P

W g g
=

Lad
J

LA

314

//
/{
/f
/f
!/
!/
!/
!/
//

func sendDirect(t * _type, sg *sudog, src unsafe.Pointer) {

77 ENTry pOINT for ¢ <- X Trom CompIIET COaE

//go:nosplit

func chansendl{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

2

I
* generic single channel send/recy

* If block is net nil,

* then the protocol will not

* sleep but return if it could

* not complete.

¥

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
% the operation; we'll see that it's now closed.

*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if ¢ ==nil {
if Iblock {

Sends and receives on unbuffered or empty-buffered channels are the

only operations where one running goroutine writes to the stack of Y
another running goroutine. The GC assumes that stack writes only

happen when the goroutine is running and are only done by that

goroutine. Using a write barrier is sufficient to make up for

violating that assumption, but the write barrier has to work. 0

typedmemmove will call bulkBarrierPreWrite,

memmove and typeBitsBulkBarrier instead.

but the target bytes
are not in the heap, so that will not help. We arrange to call

-quiring the lock.

1gt the channel is

* word-sized read

1g on kind of channel}.
nding' to

:n the two chservations,
1 not yet closed

1annel at that moment,

// src is on our stack, dst is a slot on another stack.

it the channel is not
it implies that the

// Once we read sg.elem out of sg, it will no longer

== nil) ||

// be updated if the destination’'s stack gets copied (shrunk).

/{ 50 make sure that no preemption points can happen between read & use.

dst := sg.elem

typeBitsBulkBarrier(t, uintptr(dst), uintptr{src), t.size)

memmove{dst, src, t.size)

unlock(&e. lock)
panic(plainError("send on closed channel®})

}

if sg i= c.recvg.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want fo send
/I directly to the receiver, bypassing the channel buffer (if any).
candir ca an Eunedy ©ooanlecbi8e Tnarkd 10 3%

https://golang.org/src/runtime/chan.go

TZZ 77 eNtry poInT for ¢ <- X Trom CompIIET CO%E
123 //go:nosplit

124 func chansendl{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpe())

128 IJ'&
* generic single channel send/recy
* If block is net nil,

° .
* then the protocol will not
* sleep but return if it could
133 * not complete.

¥

* sleep can wake up with g.param == nil

* when a channel involved in the sleep has

* been closed. it is easiest to loop and re-run
% the operation; we'll see that it's now closed.

:— ﬂ:c chansend{c *hchan, ep unsafe.Fointer, block bool, callerpc uintptr) boel {
Y 1 d 14 . l o= ;ifl!élcck{
° Ou Can JUSt rea It' 295 // Sends and receives on unbuffered or empty-buffered channels are the
o httpS'//gOIang Org/s 29% /f only operations where one running goroutine writes to the stack of Y
. . 297 // another running goroutine. The GC assumes that stack writes only
. . 298 // happen when the goroutine is running and are only done by that
® Some hlghllghts 299 // goroutine. Using a write barrier is sufficient to make up for
08 ff violating that assumption, but the write barrier has to work. 0
381 /S typedmemmove will call bulkBarrierPreWrite, but the target bytes
382 Jf/ are not in the heap, so that will not help. We arrange to call R e
""""""""""""" 383 /S memmove and typeBitsBulkBarrier instead. !ﬁ?ﬁiiﬁiﬁ"ﬁéﬁs
304 et
lllllllll S ,t.@.(,:k. i85 func sendDirect(t * type, sg *sudog, src unsafe.Pointer) { e et
306 // src is on our stack, dst is a slot on another stack. L
387 it the channel is not
""""""" T 388 // Once we read sg.elem out of sg, it will no longer e
389 // be updated if the destination’'s stack gets copied (shrunk). s
per-goroutine stacks heap 31e /{ 50 make sure that no preemption points can happen between read & use.
311 dst := sg.elem
312 typeBitsBulkBarrier(t, uintptr(dst), uintptr{src), t.size)
G1 writes to G2's stack! 31) i

134 unlock(&e. lock)
5 panic(plainError("send on closed channel®})

}

if sg i= c.recvg.dequeue(); sg != nil {

// Found a waiting receiver. We pass the value we want fo send
198 /I directly to the receiver, bypassing the channel buffer (if any).
181 candir ca an Eunedy ©ooanlecbi8e Tnarkd 10 3%

Transputers did this in hardware in the 90s btw.

https://golang.org/src/runtime/chan.go

71 BNy POINT TOI C <- X Trom COMPLIEDT COOE
//go:nosplit

func chansendl{c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

[%

*

generic single channel send/recy
* If block is net nil,

[} []
* then the protocol will not
* sleep but return if it could
* not complete.

®

* sleep can wake up with g.param == nil

* when a channel invelved in the sleep has

* been closed. it is easiest to loop and re-run
% the operation; we'll see that it's now closed.

-
/

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

* You can just read it:

return false
1

* https://golang.org/src/runtime/chan.go y e

if debugchan {

+ Some highlights:

if raceenabled {

racereadpc (unsafe.pointer(c), callerpc, funcrC{chansend))
L] L] L] 1
*R detect built |
a Ce e e C I O n u I I n /{ Fast path: check for failed non-blocking cperation without acquiring the lock.
i
F h . . . k /[After observing that the channel is not closed, we observe that the channel is
{f no y for sending. gse observations is @ single word-sized rea
ast path just write to recelver stac [e e e
L] L]
|
Often has no capacity = scheduler hint!

Buffered channel implementation fairly standard

/

/{ 'not ready for sending', even if the channel is closed between the two cbservations,
/{ they imply a moment between the two when the channel was both not yet closed

/f and not ready for sending. We behave as if we observed the channel at that moment,

// and report that the send cannot proceed.
Il
/
/

It is okay if the reads are reordered here: if we observe that the channel is not
ready for sending and then observe that it is not closed, that implies that the

// channel wasn't closed during the first observation.

if Iblock & c.closed == B & ((c.datagsiz == @ & c.recvq.first == nil) |
(c.datagsiz » @ & c.qrount == c.datagsiz)) {

return false

var t@ inte4
if blockprofilerate > @ {
te = cputicks()

lock(&c. lock)

if c.closed =8 {
unlock(&e. lock)
panic(plainError("send on closed channel™))

if sg i= c.recvg.dequeue(); sg != nil {

// Found 3 waiting receiver. We pass the value we want fo send
/I directly to the receiver, bypassing the channel buffer (if any).
candir ca an Eunedy ©ooanlecbi8e Tnarkd 10 3%

https://golang.org/src/runtime/chan.go

Go: Sliced Bread 2.0?

35

Go: Sliced Bread 2.0?

* Has compile-time generics

35

Go: Sliced Bread 2.0?

* Has compile-time generics
* Results in no code duplication

35

Go: Sliced Bread 2.0?

* Has compile-time generics
* Results in no code duplication
* Metaprogramming can be statically checked

35

Go: Sliced Bread 2.0?

* Has compile-time generics
* Results in no code duplication
* Metaprogramming can be statically checked
e Standard library can offer generic algorithms

35

Go: Sliced Bread 2.0?

* Has compile-time generics
* Results in no code duplication
* Metaprogramming can be statically checked
e Standard library can offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose

35

Go: Sliced Bread 2.0?

* Has compile-time generics
* Results in no code duplication
* Metaprogramming can be statically checked
e Standard library can offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

35

Go: Sliced Bread 2.0?

* Has compile-time generics
* Results in no code duplication
* Metaprogramming can be statically checked

e Standard library can offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

* Pauses and overhead of garbage collection

35

Go: Sliced Bread 2.0?

* Has compile-time generics
* Results in no code duplication
* Metaprogramming can be statically checked

e Standard library can offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

* Pauses and overhead of garbage collection

e Limit Go’s use in systems programming compared to languages with manual memory
management

35

Go: Sliced Bread 2.0?

* Has compile-time generics
* Results in no code duplication
* Metaprogramming can be statically checked
e Standard library can offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

* Pauses and overhead of garbage collection

e Limit Go’s use in systems programming compared to languages with manual memory
management

* Right tradeoffs? None of these problems have to do with concurrency!

35

Questions?

36

	Slide 1: Language-level Concurrency Support: Go
	Slide 2: Outline for Today
	Slide 3: Faux Quiz questions
	Slide 4: Event-based Programming: Motivation
	Slide 5
	Slide 6: Message Passing: Motivation
	Slide 7: Message Passing: Motivation
	Slide 8: Message Passing: Motivation
	Slide 9: Message Passing: Motivation
	Slide 10: Message Passing
	Slide 11: Message Passing
	Slide 12: Message Passing
	Slide 13: Naming: Explicit vs Implicit Also: Direct vs Indirect
	Slide 14: Naming: Explicit vs Implicit Also: Direct vs Indirect
	Slide 15: Naming: Explicit vs Implicit Also: Direct vs Indirect
	Slide 16: Synchronization
	Slide 17: Synchronization
	Slide 18: Synchronization
	Slide 19: Synchronization
	Slide 20: Communicating Sequential Processes Hoare 1978
	Slide 21: Communicating Sequential Processes Hoare 1978
	Slide 22: An important problem in the CSP model:
	Slide 23: An important problem in the CSP model:
	Slide 24: An important problem in the CSP model:
	Slide 25: An important problem in the CSP model:
	Slide 26: An important problem in the CSP model:
	Slide 27: An important problem in the CSP model:
	Slide 28: An important problem in the CSP model:
	Slide 29: Blocking with Indirect Naming
	Slide 30: Blocking with Indirect Naming
	Slide 31: Blocking with Indirect Naming
	Slide 32: Non-blocking with Direct Naming
	Slide 33: Non-blocking with Direct Naming
	Slide 34: Non-blocking with Direct Naming
	Slide 35: Non-blocking with Direct Naming
	Slide 36: Blocking and Direct Naming
	Slide 37: Blocking and Direct Naming
	Slide 38: Blocking and Direct Naming
	Slide 39: Alternative / Guarded Commands
	Slide 40: Alternative / Guarded Commands
	Slide 41: Go Concurrency
	Slide 42: A boring function
	Slide 43: A boring function
	Slide 44: Ignoring a boring function
	Slide 45: Ignoring a boring function
	Slide 46: Ignoring a boring function
	Slide 47: Goroutines
	Slide 48: Goroutines
	Slide 49: Goroutines
	Slide 50: Goroutines
	Slide 51: Goroutines
	Slide 52: Goroutines
	Slide 53: Channels
	Slide 54: Channels
	Slide 55: Channels
	Slide 56: Channels
	Slide 57: Channels
	Slide 58: Select: Handling Multiple Channels
	Slide 59: Select: Handling Multiple Channels
	Slide 60: Google Search
	Slide 61: Search 1.0
	Slide 62: Search 2.0
	Slide 63: Search 2.1
	Slide 64: Search 3.0
	Slide 65: Other tools in Go
	Slide 66: WaitGroups
	Slide 67: WaitGroups
	Slide 68: Go: magic or threadpools and concurrent Qs?
	Slide 69: Go implementation details
	Slide 70: Go implementation details
	Slide 71: Go implementation details
	Slide 72: Go implementation details
	Slide 73: Go implementation details
	Slide 74: Go implementation details
	Slide 75: Go implementation details
	Slide 76: Go implementation details
	Slide 77: Go implementation details
	Slide 78: Go implementation details
	Slide 79: Go implementation details
	Slide 80: Go implementation details
	Slide 81: Go implementation details
	Slide 82: Go implementation details
	Slide 83: 1000s of go routines?
	Slide 84: 1000s of go routines?
	Slide 85: 1000s of go routines?
	Slide 86: Channel implementation
	Slide 87: Channel implementation
	Slide 88: Channel implementation
	Slide 89: Channel implementation
	Slide 90: Channel implementation
	Slide 91: Channel implementation
	Slide 92: Channel implementation
	Slide 93: Channel implementation
	Slide 94: Channel implementation
	Slide 95: Channel implementation
	Slide 96: Channel implementation
	Slide 97: Go: Sliced Bread 2.0?
	Slide 98: Go: Sliced Bread 2.0?
	Slide 99: Go: Sliced Bread 2.0?
	Slide 100: Go: Sliced Bread 2.0?
	Slide 101: Go: Sliced Bread 2.0?
	Slide 102: Go: Sliced Bread 2.0?
	Slide 103: Go: Sliced Bread 2.0?
	Slide 104: Go: Sliced Bread 2.0?
	Slide 105: Go: Sliced Bread 2.0?
	Slide 106: Go: Sliced Bread 2.0?
	Slide 107: Questions?

