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Outline for Today
• Questions?

• Administrivia
• Exam soon

• Agenda
• Parallel Architectures (GPU background)



Faux Quiz questions

• What is hardware multi-threading; what problem does it solve?

• What is the difference between a vector processor and a scalar?

• Implement a parallel scan or reduction

• How are GPU workloads different from GPGPU workloads?

• How does SIMD differ from SIMT?

• List and describe some pros and cons of vector/SIMD architectures.

• GPUs historically have elided cache coherence.Why?  What impact does it 
have on the the programmer?

• List some ways that GPUs use concurrency but not necessarily parallelism.
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A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

• HBM2 memory
• 4096-bit bus
• No cache coherence!

• 16 GB memory
• PCIe-attached

How do you program a machine 
like this? pthread_create()?



GPUs: Outline

• Background from many areas
• Architecture

• Vector processors
• Hardware multi-threading

• Graphics
• Graphics pipeline
• Graphics programming models

• Algorithms
• parallel architectures → parallel algorithms

• Programming GPUs
• CUDA
• Basics: getting something working
• Advanced: making it perform



Architecture Review: Pipelines
Processor algorithm: 

main() { 

   while(true) 

      do_next_instruction();

}



Architecture Review: Pipelines
Processor algorithm: 

main() { 

   while(true) 

      do_next_instruction();

}

do_next_instruction() {
   instruction = fetch();
   ops, regs = decode(instruction);
   execute_calc_addrs(ops, regs);
   access_memory(ops, regs);
   write_back(regs);
}



Architecture Review: Pipelines
Processor algorithm: 

main() { 

   while(true) 

      do_next_instruction();

}

do_next_instruction() {
   instruction = fetch();
   ops, regs = decode(instruction);
   execute_calc_addrs(ops, regs);
   access_memory(ops, regs);
   write_back(regs);
}

main() { 
   pthread_create(do_instructions);
   pthread_create(do_decode);
   pthread_create(do_execute);
   …
   pthread_join(…);
   …
}



Architecture Review: Pipelines
Processor algorithm: 

main() { 

   while(true) 

      do_next_instruction();

}

do_instructions() {
   while(true) {
       instruction = fetch();
       enqueue(DECODE, instruction);
}}

do_decode() {
   while(true) {
       instruction = dequeue();
       ops, regs = decode(instruction);       
       enqueue(EX, instruction);
}} 

do_execute() {
   while(true) {
      instruction = dequeue();
      execute_calc_addrs(ops, regs);
      enqueue(MEM, instruction);
}}

….
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Multi-core/SMPs
main() {

  for(i=0; i<CORES; i++) {

    pthread_create(

        do_instructions());

   }

}

do_instructions() {

   while(true) {

     instruction = fetch();

     ops, regs = decode(instruction);

     execute_calc_addrs(ops, regs);

     access_memory(ops, regs);

     write_back(regs);

}}
Other techniques extract 

parallelism here, try to let the 
machine find parallelism

• Pros: Simple
• Cons: programmer has to find the parallelism!
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    pthread_create(decode_exec);
    while(true) {
       instruction = fetch();
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    }
}

decode_exec() {
   instruction = dequeue();

   ops, regs = decode(instruction);
   execute_calc_addrs(ops, regs);
   access_memory(ops, regs);
   write_back(regs);
}

Doesn’t look that different does it? Why do it?

independent

Enables independent instruction parallelism.
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Vector/SIMD processors
Why decode same instruction 

sequence over and over?
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main() {

  for(i=0; i<CORES; i++) 

    pthread_create(exec);

    while(true) {

       ops, regs = fetch_decode();

       enqueue(ops, regs);

    }

}

exec() {

   ops, regs = dequeue();

   execute_calc_addrs(ops, regs);

   access_memory(ops, regs);

   write_back(regs);

}

Single instruction stream, multiple computations

But now all my instructions need multiple operands!
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Vector Processors

• Process multiple data elements simultaneously.

• Common in supercomputers of the 1970’s 80’s and 90’s.

• Modern CPUs support some vector processing instructions
• Usually called SIMD

• Can operate on a few vectors elements per clock cycle in a pipeline or, 
• SIMD operate on all per clock cycle

• 1962 University of Illinois Illiac IV - completed 1972 → 64 ALUs 100-150 MFlops

• (1973) TI’s Advance Scientific Computer (ASC) 20-80 MFlops

• (1975) Cray-1 first to have vector registers instead of keeping data in memory

Single instruction stream, multiple data → 
Programming model has to change
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Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel

GPUs: same basic idea
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When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput? 

Only helps if memory can keep the pipeline busy!



Hardware multi-threading



Hardware multi-threading

• Address memory bottleneck



Hardware multi-threading

• Address memory bottleneck

• Share exec unit across 
• Instruction streams

• Switch on stalls



Hardware multi-threading

• Address memory bottleneck

• Share exec unit across 
• Instruction streams

• Switch on stalls



Hardware multi-threading

• Address memory bottleneck

• Share exec unit across 
• Instruction streams

• Switch on stalls



Hardware multi-threading

• Address memory bottleneck

• Share exec unit across 
• Instruction streams

• Switch on stalls

• Looks like multiple cores to the OS



Hardware multi-threading

• Address memory bottleneck

• Share exec unit across 
• Instruction streams

• Switch on stalls

• Looks like multiple cores to the OS

• Three variants:
• Coarse

• Fine-grain

• Simultaneous



Running example

Thread A Thread B Thread C Thread D

• Colors → pipeline full
• White → stall
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Why Vector and Multithreading Background?

GPU: 

• A very wide vector machine

• Massively multi-threaded to hide memory latency

• Originally designed for graphics pipelines…
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foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2) 

 frags.add(rasterize(t));

foreach fragment f in frags

 choose_color(f);

Dandelion 263/1/25



Grossly over-simplified rendering algorithm

foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2) 

 frags.add(rasterize(t));

foreach fragment f in frags

 choose_color(f);

display(visible_fragments(frags));

Dandelion 263/1/25



Grossly over-simplified rendering algorithm

foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2) 

 frags.add(rasterize(t));

foreach fragment f in frags

 choose_color(f);

display(visible_fragments(frags));

Dandelion 26

http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg
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Algorithm → Graphics Pipeline
foreach(vertex v in model)

 map vmodel → vview
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Graphics pipeline → GPU architecture

Dandelion 28

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series
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Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series
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Late Modernity: unified shaders

Dandelion 29

Mapping to Graphics pipeline no longer apparent
Processing elements no longer specialized to a particular role
Model supports real control flow, larger instr count3/1/25



Mostly Modern: Pascal



Definitely Modern: Turing



Modern Enough: Pascal SM



Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

• Data
• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory latency
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Dandelion 33

Even as GPU architectures become more 
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box 

with colored dots
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Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

• Data
• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory latency

Dandelion 33

Even as GPU architectures become more 
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box 

with colored dots

But what if my problem isn’t 
painting a box?!!?!

3/1/25



Programming Model

• GPUs are I/O devices, managed by user-code

• “kernels” == “shader programs”

• 1000s of HW-scheduled threads per kernel

• Threads grouped into independent blocks.
• Threads in a block can synchronize (barrier)

• This is the *only* synchronization

• “Grid” == “launch” == “invocation” of a kernel 
• a group of blocks (or warps)

Dandelion 413/1/25



Parallel Algorithms

• Sequential algorithms often do not permit easy parallelization
• Does not mean there work has no parallelism
• A different approach can yield parallelism
• but often changes the algorithm 
• Parallelizing != just adding locks to a sequential algorithm

• Parallel Patterns
• Map
• Scatter, Gather
• Reduction
• Scan
• Search, Sort



Parallel Algorithms

• Sequential algorithms often do not permit easy parallelization
• Does not mean there work has no parallelism
• A different approach can yield parallelism
• but often changes the algorithm 
• Parallelizing != just adding locks to a sequential algorithm

• Parallel Patterns
• Map
• Scatter, Gather
• Reduction
• Scan
• Search, Sort

If you can express your 
algorithm using these  patterns, 

an apparently fundamentally 
sequential algorithm can be 

made parallel



Map

• Inputs
• Array A

• Function f(x)

• map(A, f) → apply f(x) on all elements in A

• Parallelism trivially exposed
• f(x) can be applied in parallel to all elements, in principle



Map

• Inputs
• Array A

• Function f(x)

• map(A, f) → apply f(x) on all elements in A

• Parallelism trivially exposed
• f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
   labels[i] = findNearestCenter(points[i]);
}

map(points, findNearestCenter)



Scatter and Gather

• Gather:
• Read multiple items to single location

• Scatter:
• Write single data item to multiple locations



Scatter and Gather

• Gather:
• Read multiple items to single location

• Scatter:
• Write single data item to multiple locations

for (i=0; i<N; ++i)
  x[i] = y[idx[i]];

for (i=0; i<N; ++i)
  y[idx[i]] = x[i];

gather(x, y, idx)

scatter(x, y, idx)



Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z
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    accum += (map(sqr, point[i]))
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Scan (prefix sum)

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Identity I

• scan(op, s) = [I, a, (a op b), (a op b op c) …]

• Scan is the workhorse of parallel algorithms:
• Sort, histograms, sparse matrix, string compare, … 



Summary

• Re-expressing apparently sequential algorithms as combinations of 
parallel patterns is a common technique when targeting GPUs
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