
Parallel Architectures
Chris Rossbach

Outline for Today
• Questions?

• Administrivia
• Exam soon

• Agenda
• Parallel Architectures (GPU background)

Faux Quiz questions

• What is hardware multi-threading; what problem does it solve?

• What is the difference between a vector processor and a scalar?

• Implement a parallel scan or reduction

• How are GPU workloads different from GPGPU workloads?

• How does SIMD differ from SIMT?

• List and describe some pros and cons of vector/SIMD architectures.

• GPUs historically have elided cache coherence.Why? What impact does it
have on the the programmer?

• List some ways that GPUs use concurrency but not necessarily parallelism.

A modern GPU: Volta V100

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor

Also:
CU or ACE

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

Roughly: all
of pfxsum

1,000s X/sec

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

• HBM2 memory
• 4096-bit bus
• No cache coherence!

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

• HBM2 memory
• 4096-bit bus
• No cache coherence!

• 16 GB memory
• PCIe-attached

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

• HBM2 memory
• 4096-bit bus
• No cache coherence!

• 16 GB memory
• PCIe-attached

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

• HBM2 memory
• 4096-bit bus
• No cache coherence!

• 16 GB memory
• PCIe-attached

A modern GPU: Volta V100
• 80 SMs

• Streaming Multiprocessor
• 64 cores/SM
• 5210 threads!
• 15.7 TFLOPS

• 640 Tensor cores

• HBM2 memory
• 4096-bit bus
• No cache coherence!

• 16 GB memory
• PCIe-attached

How do you program a machine
like this? pthread_create()?

GPUs: Outline

• Background from many areas
• Architecture

• Vector processors
• Hardware multi-threading

• Graphics
• Graphics pipeline
• Graphics programming models

• Algorithms
• parallel architectures → parallel algorithms

• Programming GPUs
• CUDA
• Basics: getting something working
• Advanced: making it perform

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true)

 do_next_instruction();

}

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true)

 do_next_instruction();

}

do_next_instruction() {
 instruction = fetch();
 ops, regs = decode(instruction);
 execute_calc_addrs(ops, regs);
 access_memory(ops, regs);
 write_back(regs);
}

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true)

 do_next_instruction();

}

do_next_instruction() {
 instruction = fetch();
 ops, regs = decode(instruction);
 execute_calc_addrs(ops, regs);
 access_memory(ops, regs);
 write_back(regs);
}

main() {
 pthread_create(do_instructions);
 pthread_create(do_decode);
 pthread_create(do_execute);
 …
 pthread_join(…);
 …
}

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true)

 do_next_instruction();

}

do_instructions() {
 while(true) {
 instruction = fetch();
 enqueue(DECODE, instruction);
}}

do_decode() {
 while(true) {
 instruction = dequeue();
 ops, regs = decode(instruction);
 enqueue(EX, instruction);
}}

do_execute() {
 while(true) {
 instruction = dequeue();
 execute_calc_addrs(ops, regs);
 enqueue(MEM, instruction);
}}

….

do_next_instruction() {
 instruction = fetch();
 ops, regs = decode(instruction);
 execute_calc_addrs(ops, regs);
 access_memory(ops, regs);
 write_back(regs);
}

main() {
 pthread_create(do_instructions);
 pthread_create(do_decode);
 pthread_create(do_execute);
 …
 pthread_join(…);
 …
}

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true) {

 do_next_instruction();

}

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true) {

 do_next_instruction();

}

do_next_instruction() {

 instruction = fetch();

 ops, regs = decode(instruction);

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true) {

 do_next_instruction();

}

do_next_instruction() {

 instruction = fetch();

 ops, regs = decode(instruction);

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true) {

 do_next_instruction();

}

do_next_instruction() {

 instruction = fetch();

 ops, regs = decode(instruction);

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true) {

 do_next_instruction();

}

do_next_instruction() {

 instruction = fetch();

 ops, regs = decode(instruction);

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}

What is the name of this kind of parallelism?

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true) {

 do_next_instruction();

}

do_next_instruction() {

 instruction = fetch();

 ops, regs = decode(instruction);

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}

What is the name of this kind of parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true) {

 do_next_instruction();

}

do_next_instruction() {

 instruction = fetch();

 ops, regs = decode(instruction);

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}

What is the name of this kind of parallelism?

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true) {

 do_next_instruction();

}

do_next_instruction() {

 instruction = fetch();

 ops, regs = decode(instruction);

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}

What is the name of this kind of parallelism?

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

Architecture Review: Pipelines
Processor algorithm:

main() {

 while(true) {

 do_next_instruction();

}

do_next_instruction() {

 instruction = fetch();

 ops, regs = decode(instruction);

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}

What is the name of this kind of parallelism?

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?

Multi-core/SMPs

Multi-core/SMPs

Multi-core/SMPs

Multi-core/SMPs

Multi-core/SMPs

Multi-core/SMPs
main() {

 for(i=0; i<CORES; i++) {

 pthread_create(

 do_instructions());

 }

}

do_instructions() {

 while(true) {

 instruction = fetch();

 ops, regs = decode(instruction);

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}}

Multi-core/SMPs
main() {

 for(i=0; i<CORES; i++) {

 pthread_create(

 do_instructions());

 }

}

do_instructions() {

 while(true) {

 instruction = fetch();

 ops, regs = decode(instruction);

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}}

• Pros: Simple
• Cons: programmer has to find the parallelism!

Multi-core/SMPs
main() {

 for(i=0; i<CORES; i++) {

 pthread_create(

 do_instructions());

 }

}

do_instructions() {

 while(true) {

 instruction = fetch();

 ops, regs = decode(instruction);

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}}
Other techniques extract

parallelism here, try to let the
machine find parallelism

• Pros: Simple
• Cons: programmer has to find the parallelism!

Superscalar processors

Superscalar processors
Remove extra

instruction streams

Superscalar processors

Superscalar processors

Superscalar processors main() {
 for(i=0; i<CORES; i++)
 pthread_create(decode_exec);
 while(true) {
 instruction = fetch();
 enqueue(instruction);
 }
}

decode_exec() {
 instruction = dequeue();

 ops, regs = decode(instruction);
 execute_calc_addrs(ops, regs);
 access_memory(ops, regs);
 write_back(regs);
}

Superscalar processors main() {
 for(i=0; i<CORES; i++)
 pthread_create(decode_exec);
 while(true) {
 instruction = fetch();
 enqueue(instruction);
 }
}

decode_exec() {
 instruction = dequeue();

 ops, regs = decode(instruction);
 execute_calc_addrs(ops, regs);
 access_memory(ops, regs);
 write_back(regs);
}

Doesn’t look that different does it? Why do it?

Superscalar processors main() {
 for(i=0; i<CORES; i++)
 pthread_create(decode_exec);
 while(true) {
 instruction = fetch();
 enqueue(instruction);
 }
}

decode_exec() {
 instruction = dequeue();

 ops, regs = decode(instruction);
 execute_calc_addrs(ops, regs);
 access_memory(ops, regs);
 write_back(regs);
}

Doesn’t look that different does it? Why do it?

Enables independent instruction parallelism.

Superscalar processors main() {
 for(i=0; i<CORES; i++)
 pthread_create(decode_exec);
 while(true) {
 instruction = fetch();
 enqueue(instruction);
 }
}

decode_exec() {
 instruction = dequeue();

 ops, regs = decode(instruction);
 execute_calc_addrs(ops, regs);
 access_memory(ops, regs);
 write_back(regs);
}

Doesn’t look that different does it? Why do it?

Enables independent instruction parallelism.

Superscalar processors main() {
 for(i=0; i<CORES; i++)
 pthread_create(decode_exec);
 while(true) {
 instruction = fetch();
 enqueue(instruction);
 }
}

decode_exec() {
 instruction = dequeue();

 ops, regs = decode(instruction);
 execute_calc_addrs(ops, regs);
 access_memory(ops, regs);
 write_back(regs);
}

Doesn’t look that different does it? Why do it?

independent

Enables independent instruction parallelism.

Vector/SIMD processors

Vector/SIMD processors

Vector/SIMD processors
Why decode same instruction

sequence over and over?

Vector/SIMD processors

Vector/SIMD processors
main() {

 for(i=0; i<CORES; i++)

 pthread_create(exec);

 while(true) {

 ops, regs = fetch_decode();

 enqueue(ops, regs);

 }

}

exec() {

 ops, regs = dequeue();

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}

Vector/SIMD processors
main() {

 for(i=0; i<CORES; i++)

 pthread_create(exec);

 while(true) {

 ops, regs = fetch_decode();

 enqueue(ops, regs);

 }

}

exec() {

 ops, regs = dequeue();

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}

Single instruction stream, multiple computations

Vector/SIMD processors
main() {

 for(i=0; i<CORES; i++)

 pthread_create(exec);

 while(true) {

 ops, regs = fetch_decode();

 enqueue(ops, regs);

 }

}

exec() {

 ops, regs = dequeue();

 execute_calc_addrs(ops, regs);

 access_memory(ops, regs);

 write_back(regs);

}

Single instruction stream, multiple computations

But now all my instructions need multiple operands!

12

Vector Processors

• Process multiple data elements simultaneously.

• Common in supercomputers of the 1970’s 80’s and 90’s.

• Modern CPUs support some vector processing instructions
• Usually called SIMD

• Can operate on a few vectors elements per clock cycle in a pipeline or,
• SIMD operate on all per clock cycle

12

Vector Processors

• Process multiple data elements simultaneously.

• Common in supercomputers of the 1970’s 80’s and 90’s.

• Modern CPUs support some vector processing instructions
• Usually called SIMD

• Can operate on a few vectors elements per clock cycle in a pipeline or,
• SIMD operate on all per clock cycle

• 1962 University of Illinois Illiac IV - completed 1972 → 64 ALUs 100-150 MFlops

• (1973) TI’s Advance Scientific Computer (ASC) 20-80 MFlops

• (1975) Cray-1 first to have vector registers instead of keeping data in memory

12

Vector Processors

• Process multiple data elements simultaneously.

• Common in supercomputers of the 1970’s 80’s and 90’s.

• Modern CPUs support some vector processing instructions
• Usually called SIMD

• Can operate on a few vectors elements per clock cycle in a pipeline or,
• SIMD operate on all per clock cycle

• 1962 University of Illinois Illiac IV - completed 1972 → 64 ALUs 100-150 MFlops

• (1973) TI’s Advance Scientific Computer (ASC) 20-80 MFlops

• (1975) Cray-1 first to have vector registers instead of keeping data in memory

Single instruction stream, multiple data →
Programming model has to change

Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel

Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel

Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel

Vector Processors
Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel

GPUs: same basic idea

When does vector processing help?

When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput?

When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput?

Only helps if memory can keep the pipeline busy!

Hardware multi-threading

Hardware multi-threading

• Address memory bottleneck

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

• Looks like multiple cores to the OS

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

• Looks like multiple cores to the OS

• Three variants:
• Coarse

• Fine-grain

• Simultaneous

Running example

Thread A Thread B Thread C Thread D

• Colors → pipeline full
• White → stall

Coarse- grained multithreading

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

• Does not cover short stalls

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

• Does not cover short stalls

• Hardware support required
• PC and register file for each thread

• little other hardware

• Looks like another physical CPU to
OS/software

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

• Does not cover short stalls

• Hardware support required
• PC and register file for each thread

• little other hardware

• Looks like another physical CPU to
OS/software

Fine-grained multithreading

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread

• Hardware to control alternating pattern

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread

• Hardware to control alternating pattern

• Naturally hides delays
• Data hazards, Cache misses

• Pipeline runs with rare stalls

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread

• Hardware to control alternating pattern

• Naturally hides delays
• Data hazards, Cache misses

• Pipeline runs with rare stalls

• Doesn’t make full use of multi-issue

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread

• Hardware to control alternating pattern

• Naturally hides delays
• Data hazards, Cache misses

• Pipeline runs with rare stalls

• Doesn’t make full use of multi-issue

Simultaneous Multithreading (SMT)

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

Skip A

Skip C

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

• Hardware support:
• Register files, PCs per thread

• Temporary result registers pre commit

• Support to sort out which threads get
results from which instructions

Skip A

Skip C

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

• Hardware support:
• Register files, PCs per thread

• Temporary result registers pre commit

• Support to sort out which threads get
results from which instructions

• Maximal util. of execution units

Skip A

Skip C

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

• Hardware support:
• Register files, PCs per thread

• Temporary result registers pre commit

• Support to sort out which threads get
results from which instructions

• Maximal util. of execution units

Skip A

Skip C

Why Vector and Multithreading Background?

GPU:

• A very wide vector machine

• Massively multi-threaded to hide memory latency

• Originally designed for graphics pipelines…

Graphics ~= Rendering

253/1/25

Graphics ~= Rendering

Inputs

253/1/25

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures →

geometry

253/1/25

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures →

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

253/1/25

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures →

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

253/1/25

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures →

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

Output

253/1/25

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures →

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

Output
• 2D projection seen from the view-point

253/1/25

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures →

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

Output
• 2D projection seen from the view-point

253/1/25

Grossly over-simplified rendering algorithm

Dandelion 263/1/25

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

Dandelion 263/1/25

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

 map vmodel → vview

Dandelion 263/1/25

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

 map vmodel → vview

Dandelion 263/1/25

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

Dandelion 263/1/25

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

Dandelion 263/1/25

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

 frags.add(rasterize(t));

Dandelion 263/1/25

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

 frags.add(rasterize(t));

foreach fragment f in frags

Dandelion 263/1/25

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

 frags.add(rasterize(t));

foreach fragment f in frags

 choose_color(f);

Dandelion 263/1/25

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

 frags.add(rasterize(t));

foreach fragment f in frags

 choose_color(f);

display(visible_fragments(frags));

Dandelion 263/1/25

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

 frags.add(rasterize(t));

foreach fragment f in frags

 choose_color(f);

display(visible_fragments(frags));

Dandelion 26

http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg

3/1/25

http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg

Algorithm → Graphics Pipeline
foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

 frags.add(rasterize(t));

foreach fragment f in frags

 choose_color(f);

display(visible_fragments(frags));

Dandelion 27

OpenGL pipeline

To first order, DirectX looks the same!

3/1/25

Algorithm → Graphics Pipeline
foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

 frags.add(rasterize(t));

foreach fragment f in frags

 choose_color(f);

display(visible_fragments(frags));

Dandelion 27

OpenGL pipeline

To first order, DirectX looks the same!

3/1/25

Algorithm → Graphics Pipeline
foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

 frags.add(rasterize(t));

foreach fragment f in frags

 choose_color(f);

display(visible_fragments(frags));

Dandelion 27

OpenGL pipeline

To first order, DirectX looks the same!

3/1/25

Algorithm → Graphics Pipeline
foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

 frags.add(rasterize(t));

foreach fragment f in frags

 choose_color(f);

display(visible_fragments(frags));

Dandelion 27

OpenGL pipeline

To first order, DirectX looks the same!

3/1/25

Algorithm → Graphics Pipeline
foreach(vertex v in model)

 map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

 frags.add(rasterize(t));

foreach fragment f in frags

 choose_color(f);

display(visible_fragments(frags));

Dandelion 27

OpenGL pipeline

To first order, DirectX looks the same!

3/1/25

Graphics pipeline → GPU architecture

Dandelion 28

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

3/1/25

Graphics pipeline → GPU architecture

Dandelion 28

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

3/1/25

Graphics pipeline → GPU architecture

Dandelion 28

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

3/1/25

Graphics pipeline → GPU architecture

Dandelion 28

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

3/1/25

Graphics pipeline → GPU architecture

Dandelion 28

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

3/1/25

Late Modernity: unified shaders

Dandelion 29

Mapping to Graphics pipeline no longer apparent
Processing elements no longer specialized to a particular role
Model supports real control flow, larger instr count3/1/25

Mostly Modern: Pascal

Definitely Modern: Turing

Modern Enough: Pascal SM

Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

• Data
• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory latency

Dandelion 333/1/25

Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

• Data
• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory latency

Dandelion 33

Even as GPU architectures become more
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box

with colored dots

3/1/25

Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

• Data
• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory latency

Dandelion 33

Even as GPU architectures become more
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box

with colored dots

But what if my problem isn’t
painting a box?!!?!

3/1/25

Programming Model

• GPUs are I/O devices, managed by user-code

• “kernels” == “shader programs”

• 1000s of HW-scheduled threads per kernel

• Threads grouped into independent blocks.
• Threads in a block can synchronize (barrier)

• This is the *only* synchronization

• “Grid” == “launch” == “invocation” of a kernel
• a group of blocks (or warps)

Dandelion 413/1/25

Parallel Algorithms

• Sequential algorithms often do not permit easy parallelization
• Does not mean there work has no parallelism
• A different approach can yield parallelism
• but often changes the algorithm
• Parallelizing != just adding locks to a sequential algorithm

• Parallel Patterns
• Map
• Scatter, Gather
• Reduction
• Scan
• Search, Sort

Parallel Algorithms

• Sequential algorithms often do not permit easy parallelization
• Does not mean there work has no parallelism
• A different approach can yield parallelism
• but often changes the algorithm
• Parallelizing != just adding locks to a sequential algorithm

• Parallel Patterns
• Map
• Scatter, Gather
• Reduction
• Scan
• Search, Sort

If you can express your
algorithm using these patterns,

an apparently fundamentally
sequential algorithm can be

made parallel

Map

• Inputs
• Array A

• Function f(x)

• map(A, f) → apply f(x) on all elements in A

• Parallelism trivially exposed
• f(x) can be applied in parallel to all elements, in principle

Map

• Inputs
• Array A

• Function f(x)

• map(A, f) → apply f(x) on all elements in A

• Parallelism trivially exposed
• f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
 labels[i] = findNearestCenter(points[i]);
}

map(points, findNearestCenter)

Scatter and Gather

• Gather:
• Read multiple items to single location

• Scatter:
• Write single data item to multiple locations

Scatter and Gather

• Gather:
• Read multiple items to single location

• Scatter:
• Write single data item to multiple locations

for (i=0; i<N; ++i)
 x[i] = y[idx[i]];

for (i=0; i<N; ++i)
 y[idx[i]] = x[i];

gather(x, y, idx)

scatter(x, y, idx)

Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
 accum += (map(sqr, point[i]))
}

accum = reduce(+, map(sqr, point))

Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
 accum += (map(sqr, point[i]))
}

accum = reduce(+, map(sqr, point))

Why must op be associative?

Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
 accum += (map(sqr, point[i]))
}

accum = reduce(+, map(sqr, point))

Why must op be associative?

Scan (prefix sum)

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Identity I

• scan(op, s) = [I, a, (a op b), (a op b op c) …]

• Scan is the workhorse of parallel algorithms:
• Sort, histograms, sparse matrix, string compare, …

Summary

• Re-expressing apparently sequential algorithms as combinations of
parallel patterns is a common technique when targeting GPUs

	Slide 1: Parallel Architectures
	Slide 2: Outline for Today
	Slide 3: Faux Quiz questions
	Slide 4
	Slide 5: A modern GPU: Volta V100
	Slide 6: A modern GPU: Volta V100
	Slide 7: A modern GPU: Volta V100
	Slide 8: A modern GPU: Volta V100
	Slide 9: A modern GPU: Volta V100
	Slide 10: A modern GPU: Volta V100
	Slide 11: A modern GPU: Volta V100
	Slide 12: A modern GPU: Volta V100
	Slide 13: A modern GPU: Volta V100
	Slide 14: A modern GPU: Volta V100
	Slide 15: A modern GPU: Volta V100
	Slide 16: A modern GPU: Volta V100
	Slide 17: A modern GPU: Volta V100
	Slide 18: GPUs: Outline
	Slide 19: Architecture Review: Pipelines
	Slide 20: Architecture Review: Pipelines
	Slide 21: Architecture Review: Pipelines
	Slide 22: Architecture Review: Pipelines
	Slide 23: Architecture Review: Pipelines
	Slide 24: Architecture Review: Pipelines
	Slide 25: Architecture Review: Pipelines
	Slide 26: Architecture Review: Pipelines
	Slide 27: Architecture Review: Pipelines
	Slide 28: Architecture Review: Pipelines
	Slide 29: Architecture Review: Pipelines
	Slide 30: Architecture Review: Pipelines
	Slide 31: Architecture Review: Pipelines
	Slide 32: Multi-core/SMPs
	Slide 33: Multi-core/SMPs
	Slide 34: Multi-core/SMPs
	Slide 35: Multi-core/SMPs
	Slide 36: Multi-core/SMPs
	Slide 37: Multi-core/SMPs
	Slide 38: Multi-core/SMPs
	Slide 39: Multi-core/SMPs
	Slide 40: Superscalar processors
	Slide 41: Superscalar processors
	Slide 42: Superscalar processors
	Slide 43: Superscalar processors
	Slide 44: Superscalar processors
	Slide 45: Superscalar processors
	Slide 46: Superscalar processors
	Slide 47: Superscalar processors
	Slide 48: Superscalar processors
	Slide 49: Vector/SIMD processors
	Slide 50: Vector/SIMD processors
	Slide 51: Vector/SIMD processors
	Slide 52: Vector/SIMD processors
	Slide 53: Vector/SIMD processors
	Slide 54: Vector/SIMD processors
	Slide 55: Vector/SIMD processors
	Slide 56: Vector Processors
	Slide 57: Vector Processors
	Slide 58: Vector Processors
	Slide 59: Vector Processors
	Slide 60: Vector Processors
	Slide 61: Vector Processors
	Slide 62: Vector Processors
	Slide 64: When does vector processing help?
	Slide 65: When does vector processing help?
	Slide 66: When does vector processing help?
	Slide 67: Hardware multi-threading
	Slide 68: Hardware multi-threading
	Slide 69: Hardware multi-threading
	Slide 70: Hardware multi-threading
	Slide 71: Hardware multi-threading
	Slide 72: Hardware multi-threading
	Slide 73: Hardware multi-threading
	Slide 74: Running example
	Slide 75: Coarse- grained multithreading
	Slide 76: Coarse- grained multithreading
	Slide 77: Coarse- grained multithreading
	Slide 78: Coarse- grained multithreading
	Slide 79: Coarse- grained multithreading
	Slide 80: Coarse- grained multithreading
	Slide 81: Coarse- grained multithreading
	Slide 82: Fine-grained multithreading
	Slide 83: Fine-grained multithreading
	Slide 84: Fine-grained multithreading
	Slide 85: Fine-grained multithreading
	Slide 86: Fine-grained multithreading
	Slide 87: Fine-grained multithreading
	Slide 88: Fine-grained multithreading
	Slide 89: Simultaneous Multithreading (SMT)
	Slide 90: Simultaneous Multithreading (SMT)
	Slide 91: Simultaneous Multithreading (SMT)
	Slide 92: Simultaneous Multithreading (SMT)
	Slide 93: Simultaneous Multithreading (SMT)
	Slide 94: Simultaneous Multithreading (SMT)
	Slide 98: Why Vector and Multithreading Background?
	Slide 99: Graphics ~= Rendering
	Slide 100: Graphics ~= Rendering
	Slide 101: Graphics ~= Rendering
	Slide 102: Graphics ~= Rendering
	Slide 103: Graphics ~= Rendering
	Slide 104: Graphics ~= Rendering
	Slide 105: Graphics ~= Rendering
	Slide 106: Graphics ~= Rendering
	Slide 107: Grossly over-simplified rendering algorithm
	Slide 108: Grossly over-simplified rendering algorithm
	Slide 109: Grossly over-simplified rendering algorithm
	Slide 110: Grossly over-simplified rendering algorithm
	Slide 111: Grossly over-simplified rendering algorithm
	Slide 112: Grossly over-simplified rendering algorithm
	Slide 113: Grossly over-simplified rendering algorithm
	Slide 114: Grossly over-simplified rendering algorithm
	Slide 115: Grossly over-simplified rendering algorithm
	Slide 116: Grossly over-simplified rendering algorithm
	Slide 117: Grossly over-simplified rendering algorithm
	Slide 118: Algorithm  Graphics Pipeline
	Slide 119: Algorithm  Graphics Pipeline
	Slide 120: Algorithm  Graphics Pipeline
	Slide 121: Algorithm  Graphics Pipeline
	Slide 122: Algorithm  Graphics Pipeline
	Slide 123: Graphics pipeline  GPU architecture
	Slide 124: Graphics pipeline  GPU architecture
	Slide 125: Graphics pipeline  GPU architecture
	Slide 126: Graphics pipeline  GPU architecture
	Slide 127: Graphics pipeline  GPU architecture
	Slide 128: Late Modernity: unified shaders
	Slide 129: Mostly Modern: Pascal
	Slide 130: Definitely Modern: Turing
	Slide 131: Modern Enough: Pascal SM
	Slide 132: Cross-generational observations
	Slide 133: Cross-generational observations
	Slide 134: Cross-generational observations
	Slide 146: Programming Model
	Slide 147: Parallel Algorithms
	Slide 148: Parallel Algorithms
	Slide 149: Map
	Slide 150: Map
	Slide 151: Scatter and Gather
	Slide 152: Scatter and Gather
	Slide 153: Reduce
	Slide 154: Reduce
	Slide 155: Reduce
	Slide 156: Reduce
	Slide 157: Scan (prefix sum)
	Slide 158: Summary

