I Parallelism at Scale: MPI

cs378h

METS =g

Exam Redux
Project
2PC review

Scale
MPI

Acknowledgements:

Portions of the lectures slides were adopted from:
Argonne National Laboratory, MPI tutorials.
Lawrence Livermore National Laboratory, MPI tutorials
See online tutorial links in course webpage

W. Gropp, E. Lusk, and A. Skjellum, Using
Interface, MIT Press, ISBN 0-262-57133-

W. Gropp, E. Lusk, and R. Thakur, Using M
MIT Press, ISBN 0-262-57132-3, 1999.

http://www-unix.mcs.anl.gov/mpi/usingmpi/
http://www-unix.mcs.anl.gov/mpi/usingmpi/
http://www-unix.mcs.anl.gov/mpi/usingmpi2/

Project Proposal

CS378: Concurrency

Project Proposal

The goal of this assignment is to come up with a plan for your course project.

The project is a more open-ended assignment, where you have the flexibility to pursue an to f this assignment then, is to identify roughly 1

I encourage you to come up with your own project idea, but there are suggestions at the end re guidance.

You must submit a proposal (1-2 pages long), meeting the guidelines and answering the bas

e Provide a detailed timeline of how you plan to build the system. It is really important t ctionality is completely working by date X r:
on the deadline. Give a list of 4 key milestones.

‘What infrastructure will you have to build to run the experiments you want to run?
What hardware will you need and where will you get it? (Talk to me early if you have an experiment that needs hardware support but you don't know where to get the hardware from.)
What kind of experiments do you plan to run?

How will you know if you have succeeded?

What kind of performance or functionality problems do you anticipate?

Planning is important. So I will review your proposal and give you feedback. If signficant refinement is needed, I will ask you to hand in a revised proposal in the few weeks after the proposal d

You can work in groups for your project.

* A very good example

Questions?

https://docs.google.com/document/d/1nguoQg0SrVSCLRdlurwsqpO9whFtv4L4e5P48zP5h-I/edit

Exam 1 Stats

(W) Average Score (® High Score

67% 90%

0% 10% 20% 30%

40%

(») Low Score

36%

50%

60%

70%

(o) Standard Deviation

11.6

80%

920%

100%

Like

Likes/Dislikes

GPU Cache Coherenc Go Consistency
27 3 7

Dislike

|.Consistency ™ Promises/Future pthreads

5 12 1

2

™

GPUs/+Coheren Rust
2

CSP

Coherence

2

locks

Go

Exam Q*: Uniprocessors/Concurrency

1. In a uniprocessor system concurrency control is best implemented with

@emapho@

(b) Spinlocks

<{c) Interrupts >

(d) Atomic instructions

(e) Bus locking

(f) Processes and threads

Exam Q*: Threads and Address Spaces

2. Which of the following are true of threads?

(a) They have their own page tables.

—{bJ Dafa in their address space can be either shared with or made inaccessible to other threads=

<{c) They have their own stack—>

(d) They must be implemented by the OS.
<] Context switching between them is faster than between processes——

Exam Q*: Scaling

4. If a program exhibits strong scaling,

(a) It gets faster really dramatically with more threads.

(b) Increasing the amount of work does not increase its run time.
<{c] Its serial phases are short relative to its parallel phases>
<d)_Adding more threads decreases the end-to-end runtime for an input=

(e) Adding more threads and more work makes it go about the same speed.

Exam Q*: Barrier generality

5. Barriers can be used to implement

< (a) Cross-thread coordination. —

<(b) Mutual exclusion. >

<(c¢) Slow parallel programs. >
{d] Task-level parallelism.

Exam Q*: Formal properties and TM

Paraphrased: Do <safety, liveness, bounded wait, failure atomicity>
suffice to define correctness for TM?

 The point: TM can violate single-writer invariant
* Not the point: ACID

Exam Q*: CSP models and Go

4. In message-passing systems, channel implementations may or may not use buffering/capacity, and may
support blocking and/or non-blocking semantics. (A) Can a 0-capacity channel support non-blocking
send and receive semantics? Why or why not? (B) How is direct addressing (naming) different from
indirect addressing for message passing systems? List a potential advantage and disadvantage for each.
(C) What constructs enable Go’s channels to support both blocking and non-blocking semantics? (D)
When shouldn’t you close a Go channel from the receiving go routine?

select {
case vl := <-c1:

® A) In general no’ but reCEiver Can pO” fmt.Printf("received %v from c1\n", v1)

case v2 := <-c2:
fmt.Printf("received %v from c2\n", v1)

¢ C) SGlECt! case c3 <- 23:

fmt.Printf("sent %v to c3\n", 23)
default:
fmt.Printf("no one was ready to communicate\n")

}

11

Exam Q: GPUs + Locks + Divergence

double atomicAdd(double *data, double val) {

while(atomicExch(&locked, 1) '= 0)
; // spin

double old = *data;
*data = old + val;
locked = 0;

return old; A) divergence

B) at least 1 block, N threads
C) N blocks, 1 thread/block

D) CAS loop is OK,
» All threads just can’t get the lock!

Exam Q: Barriers

* A) spin on local go flag
e B) some kind of blocking

1. Consider the barrier implementation and usage scenario below:

class Barrier {
protected:
int m_nArrived;
int m_nThreads;
int m_bGo;

public:

Barrier(int nThreads) {
m_nThreads = nThreads;
m_nArrived = 0;
m_bGo = 0;

}

void Wait() {

int n0ldArr = atomic_inc(&m_nArrived, 1);

if (n01ldArr == m_nThreads-1) {
m_nArrived = 0;
m_bGo = 1;
} else {
while(m_bGo == 0) {
// spin
}

};

void worker_thread_proc(void * vtid) {
int tid = (*((int*) vtid));
for(int i=0; i<100; i++) {
g_Barrier->Wait();
compute_my_partition(tid);

}

// compute bound phase

}

Barrier * g_pBarrier = NULL;

int main(int argc, char#*argv) {

int nThreads = 16;

int tids[nThreads];

pthread_t threads[nThreads];

g_pBarrier = new Barrier(nThreads);

for(int i=0; i<nThreads; i++) {
tids[i] = i;
pthread_create(&threads[i], NULL, worker_thread_proc, &tids[il);

}

}

The implementation has both correctness and performance issues. (A) Suppose the implementation
were indeed correct, describe at least one change that could make the implementation more efficient for
very short critical sections (e.g. the compute my partition() function is very fast). (B) Describe at
least one change that could make the implementation more efficient for very long critical sections
(compute my partition() takes a very long time). (C) There is a correctness problem with the
implementation. What is it, and what is the most natural way to fix it?

* C) barrier doesn’t reset (8), some strategy to make it reset (4)

13

2. (A) How are promises and futures related? As we’ve discussed, there is disagreement on the
nomenclature, so dont worry about which is which; just describe what the different objects are and how

E Q* P F they function. (B,C) Consider the following go-like code:
Xdm . Pt
[]

func main() {

datal := readAndParseFile(options.getPathl())
data2 := readAndParseFile(options.getPath2())
result := computeBoundOperation(datal, data2)
writeResult (options.getOutputPath())

}

(B) Re-write the code to use asynchronous processing whereever possible, using go func() for each of
the steps and using WaitGroups to enforce the correct ordering amongst them. Don’t worry about
syntax being correct, just focus on the important concurrency-relevant ideas. (C) Suppose WaitGroup
support were not available. Describe at least one approach that can still ensure the proper ordering
between goroutines correctly without requiring WaitGroups. (D) Asynchronous systems are often
decried as prone to “stack-ripping”. What does this mean? Does go suffer these drawbacks? Why/why
not?

e A) something about futures and promises
* B) pretty much anything with go func()
C) Channels!

D) Stack-ripping = some creative responses
e (next slide)

14

Stack-Ripping

I EPROGRAM MyProgram ({

7 E TASK ReadFileAsync(name, callback) {

3 ReadFileSync (name) ;

4 Call (callback) ;

R }

= CALLBACK Finj aningFile () {

7 LoadFil

8 RedrawScTrees ;

13 - } . Stack-based state out-of-scope!
= OnOpenkile) {

11 FILE file: RGC{UEStS must ca rry state

12 char szName[BUFSIZ

13 InitFTTetNams (s zName) ;

14 EnqueueTask (ReadFileAsync (szName, FinishOpeningFile)) ;

15 + }

16 OnPaint () ;

17 L}

Exam Q*: Transactions

* A) Isolation, Atomicity, Durability
* A)I: other tx see “in-flight” state

* A) A: some of outer is available without
all being available

* A) D: other tx see state that rolls back

* B) Isolation — all txs see writes of
deferred actions (text is subtle)
* B) Not C— all txs see writes in order

* C) No relaxation required
 data only flows outer = inner
* no uncommitted inner writes observed

Transactions

Suppose a system allows nested transactions. Recall that when transactions nest, it means that currently executing "outer” transactions can begin and end new
"inner” transactions before the current one completes, allowing transactional code to be composed. Consider the following example, in which transactions are
started and ended using

and | txcommit() | operations respectively, and transactions read and write values using |write(key, value)

methods on the transaction object returned by | txbegin .

txidl = txbegin(NUuLL); { f/ NULL parent transaction
txidl.write(keyl, valuel); // Write the value valuel to the entry
Ll whose key is keyl
txid2 = txbegin(txidl); /f txidl is the parent transaction

txid2.write(key2, valuel);
txcommit(tid2);
txidl.read(key2);

txcommit(txidl);

n this case the "inner"” transaction is txid2, the "outer" is txid1. Consider the relationship between "Inner” transactions (e.g., tid2 and the "outer" transaction (e.g.,

tid1). A read() in an outer transaction should return a value that includes the result of all preceding writes in the outer transaction as well as all writes in preceding

committed inner transactions. A read() in an inner transaction should return a value that includes the result of all preceding writes in the outer transaction, all
preceding writes in that inner transaction, and all writes in preceding, committed inner transactions. Implementing these semantics can be tricky.

A) One strategy is for the inner transaction to commit normally, but also produce an "undo” list of updated values that can be used to restore the original values if
e outer transaction aborts. Which ACID condition(s) does this approach relax? Why?

) Another strategy is for each inner transaction to produce a list

deferred updates/actions that the the outer transaction commits for it when the outer transaction commits. For any data item written in any transaction, all
ansactions read the last update value from this list. Which ACID condition(s) does this approach relax?

) If the only data flow is that the inner transaction reads from the outer transaction (meaning txid2 reads txid1's writes but txid1 never reads txid2's writes), do we
Il need to relax ACID? Why?

Sequential Consistency

ty ty ta ta ty te
F1: W()a W(xc
PZ: R(x)a Wb
P3: R(x)a R{xDa R(x)c
P4 : R(x)a R(xDa R(x)c

A Is this schedule sequentially consistent? Why or why not?
B. Could this schedule occur on a multicore CPU that has only caches using MSI coherence?

C. Describe one micro-architectural feature/structure that would make such a schedule possible on a multi-core CPU with MESI-based coherence.

* A. Yes it is SC, program order, same total order
* B. No, cache-only = SC, t4 reads should return c
 C. Store buffers

Two-phase commit

* N participants agree or don’t (atomicity)

* Phase 1: everyone “prepares”

* Phase 2: Master decides and tells everyone to actually commit
 What if the master crashes in the middle?

2PC: Phase 1

Coordinator sends REQUEST to all participants
Participants receive request and

Execute locally
Write VOTE_ COMMIT or VOTE_ABORT to local log

Send VOTE_COMMIT or VOTE_ABORT to coordinator

Example—move: C>S1: delete foo from /, C=>S2: add foo to /

A A

Failure case: Success case:

S1 writes rm /foo, VOTE_COMMIT to log S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT S1 sends VOTE_COMMIT

S2 decides permission problem S2 writes add foo to /

S2 writes/sends VOTE_ABORT S2 writes/sends VOTE_ COMMIT

2PC: Phase 2

* Case 1: receive VOTE_ABORT or timeout

* Write GLOBAL_ABORT to log
* send GLOBAL_ABORT to participants

e Case 2: receive VOTE_COMMIT from all
* Write GLOBAL_COMMIT to log
* send GLOBAL_COMMIT to participants

* Participants receive decision, write GLOBAL_* to log

2PC corner cases

Phase 1 Phase 2

1 Coordinator sends REQUEST to all participants Y° Case 1: receive VOTE_ABORT or timeout
 Write GLOBAL_ABORT to log
* send GLOBAL_ABORT to participants

3. Execute locally
. * Case 2: receive VOTE_COMMIT from all
4. Write VOTE_COMMIT or VOTE_ABORT to local log + Write GLOBAL_COMMIT to log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator * send GLOBAL_COMMIT to participants

X 2. Participants receive request and

Z- Participants recv decision, write GLOBAL_* to log

What if participant crashes at X?
e Coordinator crashes at Y?

e Participant crashes at Z?

* Coordinator crashes at W?

2PC limitation(s)

* Coordinator crashes at W, never wakes up

* All nodes block forever!

e Can participants ask each other what happened?
e 2PC: always has risk of indefinite blocking

 Solution: (yes) 3 phase commit!
* Reliable replacement of crashed “leader”
e 2PC often good enough in practice

Questions?

IScaIe Out vs Scale Up

A B
AI BI A|B|C|_“§N§
Vertical Scaling Horizontal Scaling =
Make boxes bigger Make more boxes
‘ Vertical Scaling Horizontal Scaling \
Higher Capital Investment On Demand Investment
Utilization concerns Utilization can be optimized

Relatively Quicker and works with the Relatively more time consuming and
current design needs redesigning

Limiting Scale Internet Scale

I Parallel Systems Architects Wanted

® 0O 0

New Tab

C q

|

Purchase
Pooch

)lete request

handle lots and lots of dogs?

I 3 Tier architecture

Web Servers &, ;3

S S
-'(.‘ % ‘,_‘ ?\ Y
= » .

User
request

>

'~

Database Server = scales vertically Vertical scale gets you a long
Horizontal Scale = “Shared Nothing” way, but there is always a
Why is this a good arrangement? bigger problem size

Web Servers (Presentation Tier) and App se

IHorizontaI Scale: Goal

IDesign Space

Grid
A
Internet
Shared MapReduce '
nothingflii el _ _ _ __ Spark
Search Dryad p,
7/
Shared /
Private lsomething ,/
data /7
center / Transaction i /
\ 4 MPI //
< >

Latency Throughput

I Parallel Architectures and MPI

Distributed Memory Cluster of SMPs Multicore SMP+GPU Cluster
Multiprocessor * Shared memory in SMP * Shared mem in SMP node
Messaging between nodes node * Messaging between nodes

* Messaging €—2> SMP nodes

memory memory
eee M M M . M
> 4] E
interconnection network network
interface

= [E ﬁ = I I E

Massively Parallel Processor (MPP)

Many, many processors * alsoregarded as MPP if * GPU accelerators attached
processor # is large

Simulations—why?

Simulations are sometimes more
cost effective than experiments

Why extreme scale?

More compute cycles, more
memory, etc, lead for faster
and/or more accurate simulations

Climate Change

Astrophysics

IHow big is “extreme” scale?

b, e XA

Measured in FLOPs

Cl Aatina nnint Nnaratinne Dar earAnnd e
Rmax Rpeak Power
Rank System Cores [TFlop/s] ITFlop/s] (kWi

1 Sunway TalhuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz 10.64%.600 930746 125,435.9 15371
Sunway , MRCPC

Mational Supercomputing Center in Wuxi

China
Performance of over 10 Peta

2 Tianhe-2 [MilkyWay-2] - TH-IVB-FEP Cluster, Intel Xean E5-2492 120 3,120,000 33,8627 549024 17808 3 floating point number operations per second
2.200GHz, TH Express-2, Intel Xeon Phi 3151F , NUDT ' (10 Peta=10,000,000,000,000,000)

MNational Super Computer Center in Guangzhou

e T

China

3 Piz Daint - Cray XC50, Xeon ES-2690v3 12C 2.6GHz, Aries interconnect 361,760 19,5900 253263 2272

MVIDIA Tesla P100, Cray Inc :IKEN K / Kel Computer
Swiss National Supercomputing Centre [CSCS) 4 on Top500.0org, 10PFLOPs

Switzerland

& Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 14C 1.3GHz, 19.8460,000 19,1358 28,192.0 1.330

SC2 TOOMBRz , ExaScaler

Japan Agency for Marine-Earth Science and Technology

FNR PE7

Infiniband EDR, PEZY

Japan

] Titan - Cray XK7, Opteron 6274 16C 2. 200GHz, Cray Gemini interconnect, 580,640 17,5900 27,1125 B.20%
MVIDIA K20x , Cray Inc
DOE/SC/0ak Ridge Mational Laboratory
United States

INL Titan
& Sequoia - BlueGene/Q, Power BAC 146C 1,40 GHz, Custom , IEM 1,572,866 171732 20,1327 7.890 on Topsooorg: 27 PFLOPS
DOE/MMSAS — —

I Distributed Memory Multiprocessors

Each processor has a local memory
Physically separated address space

Processors communicate to access
non-local data

Message communication
Message passing architecture

Processor interconnection network

Parallel applications partitioned across

Processors: execution units
Memory: data partitioning

Scalable architecture

Incremental cost to add hardware
(cost of node)

Network
Mg Mg M| g
P P P

mmmm Network interface

* Nodes: complete computer

* Including I/O

* Nodes communicate via network

» Standard networks (IP)
» Specialized networks (RDMA, fiber)

I Performance: Latency and Bandwidth

Bandwidth Wait...bisection bandwidth?

Need high bandwidth in communication
Match limits in network, memory, and proce

Network interface speed vs. network bisecti
bandwidth

Latency
Performance affected: processor may have to wait

Hard to overlap communication and computation

Overhead to communicate: a problem in many
machines

if network is bisected, bisection
bandwidth == bandwidth
between the two partitions

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Is this different from metrics we’ve

cared about so far?

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable
Communication explicit, simpler to understand

Explicit communication =2
focus attention on costly aspect of parallel computation

Synchronization 2

naturally associated with sending messages

reduces possibility for errors from incorrect synchronization
Easier to use sender-initiated communication =2

some advantages in performance

Can you think of any disadvantages?

I Running on Supercomputers

* Programmer plans a job; job ==
* parallel binary program
* “input deck” (specifies input data)

e Submit job to a queue

* Scheduler allocates resources when
* resources are available,
e (or) the job is deemed “high priority”

* Scheduler runs scripts that initialize the environment
* Typically done with environment variables

» At the end of initialization, it is possible to infer:
* What the desired job configuration is (i.e., how many tasks per node)
* What other nodes are involved
* How your node’s tasks relates to the overall program

* MPI library interprets this information, hides the details

IThe Message-Passing Model

 MPI == Message-Passing Interface specification
* Extended message-passing model
* Not a language or compiler specification
* Not a specific implementation or product

 Specified in C, C++, Fortran 77, F90

* Message Passing Interface (MPI) Forum
* http://www.mpi-forum.org/
e http://www.mpi-forum.org/docs/docs.html

 Two flavors for communication

* Cooperative operations
* One-sided operations

http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/docs.html

I sPmD

Multiple
data

Shared
program

Data distributed across processes
Not shared = shared nothing

“Owner compute” rule:
Process that “owns”
the data (local data)
performs computations
on that data

I Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another

Advantage of local control of memory

Change in the receiving process’'s memory made with receiver’s explicit
participation

Communication and synchronization are combined

Process 0 Process 1

Send(data)\\\\\\\\‘

Receive (data)

time

Familiar argument?

Are 1-sided

. . operations better
IOne—S|ded Operations for performance?

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
Communication and synchronization are decoupled

Process 0 Process 1

IA Simple MPI Program

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv|[])
{
MPI Init(&argc, &argv);
printf("Hello, world!\n");
MPI Finalize();
return O;

I MPI_Init

Hardware resources allocated
MPI-managed ones anyway...

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait...what do they need to know?

Configure OS-level resources

Configure tools that are running with MPI

Executive Summary

e Undo all of init

IMP'_Finalize e Beabletodoiton

success or failure
exit

Why do we need to finalize MPI?

What is necessary for a “graceful” MPI exit?
Can bad things happen otherwise?
Suppose one process exits...

How do resources get de-allocated?
How to shut down communication?

What type of exit protocol might be used?
e By default, an error causes all processes to abort

e The user can cause routines to return (with an error code)
e |n C++, exceptions are thrown (MPI-2)

e A user can also write and install custom error handlers

 Libraries may handle errors differently from applications

IRunning MPI Programs

MPI-1 does not specify how to run an MPI program

Starting an MPI program is dependent on implementation

Scripts, program arguments, and/or environment variables

% mpirun -np <procs> a.out
For MPICH under Linux

mpiexec <args>
Recommended part of MPI-2, as a recommendation
mpiexec for MPICH (distribution from ANL)
mpirun for SGI’ s MPI

I Finding Out About the Environment

Two important questions that arise in message passing

How many processes are being use in computation?
Which one am I?

MPI provides functions to answer these questions

MPI_Comm_size reports the number of processes
MPI_Comm_rank reports the rank

number between 0 and size-1
identifies the calling process

I Hello World Revisited

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])

{
int rank, size;
MPI Init(&argc, &argv);
MPI_Comm;rank(MPI COMM WORLD, &rank) ;
MPI Comm size(MPI _COMM WORLD, &size);

printf("I am %$d of %d\n", rank, size);
MPI Finalize();
return O;

}

Comm?

3 What does this program do? Blaieyasas tlalezlie) 4

IBasic Concepts

Processes can be collected into groups

Each message is sent in a context
Must be received in the same context!

A group and context together form a communicator

A process is identified by its rank
With respect to the group associated with a communicator

There is a default communicator MPI_COMM_WORLD

Contains all initial processes

IMPI Basic (Blocking) Send

MPI SEND (start, count, datatype, dest, tag, comm)

The message buffer is described by:
start, count, datatype

The target process 1s specified by dest

Rank of the target process in the communicator
specified by comm

Process blocks until:
Data has been delivered to the system
Buffer can then be reused

Message may not have been received by target process!

I MPI Datatypes

Message data (sent or received) is described by a triple
address, count, datatype

An MPI datatype is recursively defined as:
Predefined data type from the language
A contiguous array of MPI datatypes

A strided block of datatypes
An indexed array of blocks of datatypes

* Enables heterogeneous communication

e Support communication between processes on machines with different
memory representations and lengths of elementary datatypes

e MPI provides the representation translation if necessary

* Allows application-oriented layout of data in memory
* Reduces memory-to-memory copies in implementation
* Allows use of special hardware (scatter/gather)

| MPI Tags

Messages are sent with an accompanying user-defined integer tag
Assist the receiving process in identifying the message

Messages can be screened at receiving end by specifying specific tag
MPI_ANY_TAG matches any tagin a receive

Tags are sometimes called “message types’
MPI calls them “tags” to avoid confusion with datatypes

| MPI with Only Six Functions

Many parallel programs can be written using:
MPIL_INIT()
MPI_FINALIZE()
MPI_COMM_SIZE()
MPI_COMM_RANK()
MPI_SEND()
MPI_RECV()

Why have any other APIs (e.g. broadcast, reduce, etc.)?

Point-to-point (send/recv) isn’ t always the most efficient...

Add more support for communication

Excerpt: Count 3s

if (myID == RootProcess) {
FILE * fp = fopen(argv[l], "r"):
res = fscanf(fp, "sd\n", &nnums);
for (int p=0; p<num procs-1; p++) {
for(int i=0; i<shard length; i++) {
res = fscanf(fp, "%d\n", &values[il);
assert(res !'= EOF);

}
// info("ID-%d: sending shard length:%d to ID-%d\n", RootProcess, shard length, p+l);

MPT Send(&shard length, |, MPT TINT, p+!, stag++, MPT COMM WORTD) ;
//_info ("ID-%d: sending shard:%d to ID-%d\n", RootProcess, shard length, p+l);
MPT sSend(values, shard length, MPI INT, p+!, stag++, MPI COMM WORLD) ;

}

VA

} else {
MPI Recv(&shard length, |, MPI INT, RootProcess, tag, MPI COMM WORLD, &status);
values = (int*)calloc(shard length,sizeof (int))

MPI Recv(values, shard length, MPI INT, RootProcess, tag, MPI COMM WORLD, &status);
mylength = shard length;

I Excerpt: Barnes-Hut

int ctr=nLocalOriginal;
int offset=nLocalOriginal-nLocal;
for (i=0;i<worldSize;i++) {
if (i==rank) {
MPI_BcaSﬂ(s_particles,N_POS_ELEMS*nLocalMax+ ,MPI DOUBLE,i,MPI COMM WORLD) ;
} else {
MPI_Bcast(l_particles,N_EOS_ELEMS*nLocalMax+ ,MPI_DOUBLE,i,MPI_COMM_WORLD);
for (k=0;k<1 particles[0];k++, ctr++){
if(l_particles[MASS(k)]<) {
offset++;
_nparticles--;
} else {
s particles[PX(ctr)]=1 particles[PX(k)];
s particles[PY(ctr)]=1 particles[PY(k)];
s particles[PZ(ctr)]=1 particles[PZ(k)];
s particles[MASS(ctr)]=1 particles[MASS(k)];
indexes[ctr-offset]=ctr;

I Excerpt: Barnes-Hut

int ctr=nLocalOriginal;
int offset=nLocalOriginal-nLocal;
for (i=0;i<worldSize;i++) {
if (i==rank) {
MPI_BcaSﬂ(s_particles,N_POS_ELEMS*nLocalMax+ ,MPI DOUBLE,
} else {
MPI_Bcast(l_particles,N_EOS_ELEMS*nLocalMax+ ,MPI DOUBLE,
for (k=0;k<1 particles[0];k++, ctr++){
if(l_particles[MASS(k)]<) {
offset++;
_nparticles--;
} else {
s particles[PX(ctr)]=1 particles[PX(k)];
s particles[PY(ctr)]=1 particles[PY(k)];
s particles[PZ(ctr)]=1 particles[PZ(k)];
s particles[MASS(ctr)]=1 particles[MASS(k)];
indexes[ctr-offset]=ctr;

Reduce/Allreduce

A0 | BO | CO AO0+A1+A2 | BO+B1+B2 | C0+C1+C2

reduce

Al |Bl1|Cl | —*

| | | |
Int MPI::COMM_WORLD.Allreduce(
void* operand /*in */, lired AO0+A1+A2 | BO+B1+B2 | CO+C1+C2
void* result /*out */, iireauce
int count 1Ein T,
MPI::Datatype datatype /*in ¥/,)

MPI::Op operator /*in */)

AO+A1+A2 | BO+B1+B2 | CO+C1+C2

@ @ @ Q
g AO+A1+A2 | BO+B1+B2 | CO+C1+C2
¢ -0 © & o o o
==
@ © © ® ©® © © ©

MPI| Reduce

 MPI Reduce (void *sendbuf, void *recvbuf, int count, MPIl_Datatype
datatype, MPI_Op op, int root, MPI_Comm comm)
* IN sendbuf (address of send buffer)
 OUT recvbuf (address of receive buffer)
*IN count (number of elementsin send buffer)
 IN datatype (data type of elements in send buffer)
*IN op (reduce operation)
* IN root (rank of root process)
*IN comm (communicator)

« MPI_Reduce combines elements specified by send buffer and performs a reduction operation on them.

 There are a number of predefined reduction operations: MPI_MAX, MPI_MIN, MPI_SUM, MPI_LAND,
MPI_BAND, MPI_LOR, MPI_BOR, MPI_LXOR, MPI_BXOR, MPI_MAXLOC, MPI_MINLOC

Reduce scatter/Scan

A0 | BO | CO
Al | BT | CI
A2 | B2 | C2
A0 | BO | CO
Al | Bl | CI
A2 | B2 | C2

reduce-scatter

scan

AO+A1+A2
BO+B1+B2
CO+C1+C2
AO B0 CO
AO0+Al B0+B1 CO+Cl1
AO+Al1+A2 | BO+B1+B2 | CO+C1+C2

MPI Scan

 MPI Scan (void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype,
MPI1_Op op, MPI_Comm comm)
* IN sendbuf (address of send buffer)
 OUT recvbuf (address of receive buffer)
IN count (number of elements in send buffer)
IN datatype (data type of elements in send buffer)
IN op (reduce operation)
IN comm (communicator)

 Note: count refers to total number of elements that will be recveived into receive
buffer after operation is complete

To use or not use MPI?

* USE

* You need a portable parallel program

* You are writing a parallel library

* You have irregular or dynamic data relationships
* You care about performance

* NOT USE

* You don’t need parallelism at all
* You can use libraries (which may be written in MPI) or other tools

* You can use multi-threading in a concurrent environment
* You don’t need extreme scale

	Slide 1: Parallelism at Scale: MPI
	Slide 2: Outline for Today
	Slide 3: Project Proposal
	Slide 4: Exam 1 Stats
	Slide 5: Likes/Dislikes
	Slide 6: Exam Q*: Uniprocessors/Concurrency
	Slide 7: Exam Q*: Threads and Address Spaces
	Slide 8: Exam Q*: Scaling
	Slide 9: Exam Q*: Barrier generality
	Slide 10: Exam Q*: Formal properties and TM
	Slide 11: Exam Q*: CSP models and Go
	Slide 12: Exam Q: GPUs + Locks + Divergence
	Slide 13: Exam Q: Barriers
	Slide 14: Exam Q*: P+F
	Slide 15: Stack-Ripping
	Slide 16: Exam Q*: Transactions
	Slide 17: Sequential Consistency
	Slide 18: Two-phase commit
	Slide 19: 2PC: Phase 1
	Slide 20: 2PC: Phase 2
	Slide 21: 2PC corner cases
	Slide 22: 2PC limitation(s)
	Slide 23: Questions?
	Slide 24: Scale Out vs Scale Up
	Slide 25: Parallel Systems Architects Wanted
	Slide 26: 3 Tier architecture
	Slide 27: Horizontal Scale: Goal
	Slide 28: Design Space
	Slide 29: Parallel Architectures and MPI
	Slide 30: What requires extreme scale?
	Slide 31: How big is “extreme” scale?
	Slide 32: Distributed Memory Multiprocessors
	Slide 33: Performance: Latency and Bandwidth
	Slide 34: Ostensible Advantages of Distributed Memory Architectures
	Slide 35: Running on Supercomputers
	Slide 36: The Message-Passing Model
	Slide 37: SPMD
	Slide 39: Cooperative Operations
	Slide 40: One-Sided Operations
	Slide 41: A Simple MPI Program
	Slide 42: MPI_Init
	Slide 43: MPI_Finalize
	Slide 44: Running MPI Programs
	Slide 45: Finding Out About the Environment
	Slide 46: Hello World Revisited
	Slide 47: Basic Concepts
	Slide 48: MPI Basic (Blocking) Send
	Slide 49: MPI Datatypes
	Slide 50: MPI Tags
	Slide 51: MPI with Only Six Functions
	Slide 52: Excerpt: Count 3s
	Slide 53: Excerpt: Barnes-Hut
	Slide 54: Excerpt: Barnes-Hut
	Slide 55: Reduce/Allreduce
	Slide 56: MPI_Reduce
	Slide 57: Reduce_scatter/Scan
	Slide 58: MPI_Scan
	Slide 59: To use or not use MPI?

