
cs378h

Programming at Scale:
Consistency

Today

Questions?

Administrivia

Agenda:

• Concurrency & Consistency at Scale

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Parallel
Databases

SQL

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Parallel
Databases

SQL

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Sawzall

Parallel
Databases

SQL Sawzall

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Sawzall

Parallel
Databases

SQL Sawzall

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Sawzall

Parallel
Databases

SQL Sawzall

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Sawzall

Hadoop

HDFS
S3

Parallel
Databases

SQL Sawzall

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Sawzall

Hadoop

HDFS
S3

Pig, Hive

Parallel
Databases

SQL ≈SQLSawzall

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Sawzall

Hadoop

HDFS
S3

Pig, Hive

Parallel
Databases

SQL ≈SQLSawzall

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Sawzall

Hadoop

HDFS
S3

Pig, Hive

Parallel
Databases

SQL ≈SQLSawzall

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Cosmos
Azure

SQL Server

Dryad

DryadLINQ
Scope

Sawzall

Hadoop

HDFS
S3

Pig, Hive

Parallel
Databases

SQL ≈SQLSawzall

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Cosmos
Azure

SQL Server

Dryad

DryadLINQ
Scope

Sawzall

Hadoop

HDFS
S3

Pig, Hive

Parallel
Databases

SQL ≈SQL LINQ, SQLSawzall

Cosmos,
HPC, Azure

Data-Parallel Computation Systems

Execution

Application

Storage

Language

Map-
Reduce

GFS
BigTable

Cosmos
Azure

SQL Server

Dryad

DryadLINQ
Scope

Sawzall

Hadoop

HDFS
S3

Pig, Hive

Parallel
Databases

SQL ≈SQL LINQ, SQLSawzall

Cosmos,
HPC, Azure

Spark

(Yet) Another Framework

4

(Yet) Another Framework

4

Consistency

(Yet) Another Framework

4

D
a

ta
 M

o
d

e
l

Consistency

(Yet) Another Framework

4

D
a

ta
 M

o
d

e
l

Consistency

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

• Atomicity
• Consistency
• Isolation
• Durability

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

• Basically Available
• Soft State
• Eventually Consistent

• Atomicity
• Consistency
• Isolation
• Durability

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Key Value Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Key Value Stores

Document Stores

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Key Value Stores

Document Stores

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Shared-Disk
• Range-Sharding
• Hash-Sharding
• Consistent Hashing

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Primary-Backup
• Commit-Consensus

Protocol
• Sync/Async

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Logging
• Update In Place
• Caching
• In-Memory Storage

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support
• Secondary Indexing
• Query Planning
• Materialized Views
• Analytics

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

(Yet) Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
 M

o
d

e
l

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Still not a perfect framework

Cons:

● Many dimensions contain sub-dimensions

● Many concerns fundamentally coupled

● Dimensions are often un- or partially-ordered

Pros:

• Makes important concerns explicit

• Cleanly taxonomizes most modern systems

Consistency

Consistency

How to keep data in sync?

Consistency

How to keep data in sync?

• Partitioning → single row spread over multiple machines

Consistency

How to keep data in sync?

• Partitioning → single row spread over multiple machines

Consistency

Partitions

How to keep data in sync?

• Partitioning → single row spread over multiple machines

Consistency

Partitions

How to keep data in sync?

• Partitioning → single row spread over multiple machines

• Redundancy → single datum spread over multiple machines

Consistency

Partitions

How to keep data in sync?

• Partitioning → single row spread over multiple machines

• Redundancy → single datum spread over multiple machines

Consistency

Partitions

How to keep data in sync?

• Partitioning → single row spread over multiple machines

• Redundancy → single datum spread over multiple machines

Consistency: the core problem

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes
• Data is replicated among a set of servers

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes
• Data is replicated among a set of servers

• Writes must be performed at all servers

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes
• Data is replicated among a set of servers

• Writes must be performed at all servers
• Reads return the result of one or more past writes

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes
• Data is replicated among a set of servers

• Writes must be performed at all servers
• Reads return the result of one or more past writes

R1 R2
writer reader

Write(k,v) Read(k,v)

• How should we implement write?

Consistency: the core problem

• Clients perform reads and writes
• Data is replicated among a set of servers

• Writes must be performed at all servers
• Reads return the result of one or more past writes

R1 R2
writer reader

Write(k,v) Read(k,v)

• How should we implement write?
• How to implement read?

Consistency: CAP Theorem

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?

Availability
• Reads/writes complete reliably and quickly.
• E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?

Availability
• Reads/writes complete reliably and quickly.
• E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?

Availability
• Reads/writes complete reliably and quickly.
• E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?

Availability
• Reads/writes complete reliably and quickly.
• E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?

Availability
• Reads/writes complete reliably and quickly.
• E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?

Availability
• Reads/writes complete reliably and quickly.
• E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

if(partition) { keep going } → !consistent && available

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?

Availability
• Reads/writes complete reliably and quickly.
• E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

if(partition) { keep going } → !consistent && available

if(partition) { stop } → consistent && !available

CAP Implications

• A distributed storage
system can achieve at
most two of C, A, and P.

• When partition-
tolerance is important,
you have to choose
between consistency and
availability

Consistency

Partition-tolerance Availability

RDBMSs
(non-replicated)

Cassandra, RIAK,
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner

CAP Implications

• A distributed storage
system can achieve at
most two of C, A, and P.

• When partition-
tolerance is important,
you have to choose
between consistency and
availability

Consistency

Partition-tolerance Availability

RDBMSs
(non-replicated)

Cassandra, RIAK,
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner

CAP is
flawed

CAP Implications

• A distributed storage
system can achieve at
most two of C, A, and P.

• When partition-
tolerance is important,
you have to choose
between consistency and
availability

Consistency

Partition-tolerance Availability

RDBMSs
(non-replicated)

Cassandra, RIAK,
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner

PACELC:

if(partition) {
 choose A or C
} else {
 choose latency or consistency
}

CAP is
flawed

Consistency Spectrum

Strong

(e.g., Sequential)Eventual
More consistency

Faster reads and writes

Spectrum Ends: Eventual Consistency

• Eventual Consistency
• If writes to a key stop, all replicas of key will converge

• Originally from Amazon’s Dynamo and LinkedIn’s Voldemort systems

Strong

(e.g., Sequential)Eventual
More consistency

Faster reads and writes

Spectrum Ends: Strong Consistency

• Strict/Strong:
• Absolute time ordering of all shared accesses, reads always return last write

• Linearizability:
• Each operation is visible (or available) to all other clients in real-time order

• Sequential Consistency [Lamport]:
• "... the result of any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program.

• After the fact, find a “reasonable” ordering of the operations (can re-order operations)
that obeys sanity (consistency) at all clients, and across clients.

• ACID properties

Many Many Consistency Models

Eventual
Strong

(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Many Many Consistency Models

Eventual
Strong

(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

• Amazon S3 – eventual consistency

• Amazon Simple DB – eventual or strong

• Google App Engine – strong or eventual

• Yahoo! PNUTS – eventual or strong

• Windows Azure Storage – strong (or eventual)

• Cassandra – eventual or strong (if R+W > N)

• ...

Many Many Consistency Models

Eventual
Strong

(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Question: How to choose what
to use or support?

• Amazon S3 – eventual consistency

• Amazon Simple DB – eventual or strong

• Google App Engine – strong or eventual

• Yahoo! PNUTS – eventual or strong

• Windows Azure Storage – strong (or eventual)

• Cassandra – eventual or strong (if R+W > N)

• ...

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Tthreshold

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader. [Writer]

[others]

Review: Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Tthreshold

[Writer]

[others]

Hold the phone!
How can all these different guarantees come up?

wR1

rR1
client1 ClientX

Write(k,v) Read(k,v)

wR2

wR3

rR1

rR1

rR1

client2
Write(k,v)

client3
Write(k,v)

Hold the phone!
How can all these different guarantees come up?

wR1

rR1
client1 ClientX

Write(k,v) Read(k,v)

wR2

wR3

rR1

rR1

rR1

client2
Write(k,v)

client3
Write(k,v)

Hold the phone!
How can all these different guarantees come up?

wR1

rR1
client1 ClientX

Write(k,v) Read(k,v)

wR2

wR3

rR1

rR1

rR1

client2
Write(k,v)

client3
Write(k,v)

Example: elastic read and writes

Hold the phone!
How can all these different guarantees come up?

wR1

rR1
client1 ClientX

Write(k,v) Read(k,v)

wR2

wR3

rR1

rR1

rR1

client2
Write(k,v)

client3
Write(k,v)

Example: elastic read and writes
• Writers hit replicas wR1..wR3

Hold the phone!
How can all these different guarantees come up?

wR1

rR1
client1 ClientX

Write(k,v) Read(k,v)

wR2

wR3

rR1

rR1

rR1

client2
Write(k,v)

client3
Write(k,v)

Example: elastic read and writes
• Writers hit replicas wR1..wR3
• Readers hit replicas rR1..rR4

Hold the phone!
How can all these different guarantees come up?

wR1

rR1
client1 ClientX

Write(k,v) Read(k,v)

wR2

wR3

rR1

rR1

rR1

client2
Write(k,v)

client3
Write(k,v)

Example: elastic read and writes
• Writers hit replicas wR1..wR3
• Readers hit replicas rR1..rR4
• Writes propagated

Hold the phone!
How can all these different guarantees come up?

wR1

rR1
client1 ClientX

Write(k,v) Read(k,v)

wR2

wR3

rR1

rR1

rR1

client2
Write(k,v)

client3
Write(k,v)

Example: elastic read and writes
• Writers hit replicas wR1..wR3
• Readers hit replicas rR1..rR4
• Writes propagated
• What happens: c1 reads own writes?

Hold the phone!
How can all these different guarantees come up?

wR1

rR1
client1 ClientX

Write(k,v) Read(k,v)

wR2

wR3

rR1

rR1

rR1

client2
Write(k,v)

client3
Write(k,v)

Example: elastic read and writes
• Writers hit replicas wR1..wR3
• Readers hit replicas rR1..rR4
• Writes propagated
• What happens: c1 reads own writes?
• Different guarantees →

Hold the phone!
How can all these different guarantees come up?

wR1

rR1
client1 ClientX

Write(k,v) Read(k,v)

wR2

wR3

rR1

rR1

rR1

client2
Write(k,v)

client3
Write(k,v)

Example: elastic read and writes
• Writers hit replicas wR1..wR3
• Readers hit replicas rR1..rR4
• Writes propagated
• What happens: c1 reads own writes?
• Different guarantees →
 different sync policies

Hold the phone!
How can all these different guarantees come up?

wR1

rR1
client1 ClientX

Write(k,v) Read(k,v)

wR2

wR3

rR1

rR1

rR1

client2
Write(k,v)

client3
Write(k,v)

Example: elastic read and writes
• Writers hit replicas wR1..wR3
• Readers hit replicas rR1..rR4
• Writes propagated
• What happens: c1 reads own writes?
• Different guarantees →
 different sync policies
 different w/r routing policies

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

Strong

RMWMonotonicBoundedPrefix

Eventual

metric =
set of
allowable
read
results

strength

The Game of Soccer

The Game of Soccer

The Game of Soccer

The Game of Soccer

The Game of Soccer
for half = 1 .. 2 {

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

 if visiting-team-scored {

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

 if visiting-team-scored {

 score = Read (“visitors”);

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

 if visiting-team-scored {

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

 if visiting-team-scored {

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

 } else {

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

 if visiting-team-scored {

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

 } else {

 score = Read (“home”);

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

 if visiting-team-scored {

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

 } else {

 score = Read (“home”);

 Write (“home”, score + 1);

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

 if visiting-team-scored {

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

 } else {

 score = Read (“home”);

 Write (“home”, score + 1);

 } } }

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

 if visiting-team-scored {

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

 } else {

 score = Read (“home”);

 Write (“home”, score + 1);

 } } }

 hScore = Read(“home”);

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

 if visiting-team-scored {

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

 } else {

 score = Read (“home”);

 Write (“home”, score + 1);

 } } }

 hScore = Read(“home”);

 vScore = Read(“visit”);

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

 if visiting-team-scored {

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

 } else {

 score = Read (“home”);

 Write (“home”, score + 1);

 } } }

 hScore = Read(“home”);

 vScore = Read(“visit”);

 if (hScore == vScore)

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

 if visiting-team-scored {

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

 } else {

 score = Read (“home”);

 Write (“home”, score + 1);

 } } }

 hScore = Read(“home”);

 vScore = Read(“visit”);

 if (hScore == vScore)

 play-overtime

The Game of Soccer
for half = 1 .. 2 {

 while half not over {

 kick-the-ball-at-the-goal

 for each goal {

 if visiting-team-scored {

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

 } else {

 score = Read (“home”);

 Write (“home”, score + 1);

 } } }

 hScore = Read(“home”);

 vScore = Read(“visit”);

 if (hScore == vScore)

 play-overtime

Official Scorekeeper

17

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

Official Scorekeeper

Desired consistency?

17

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

Official Scorekeeper

Desired consistency?

Strong

17

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

Official Scorekeeper

Desired consistency?

Strong

= Read My Writes!

17

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

Official Scorekeeper

Desired consistency?

Strong

= Read My Writes!

17

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

Referee

18

vScore = Read (“visitors”);

hScore = Read (“home”);

if vScore == hScore

 play-overtime

Referee

Desired consistency?

18

vScore = Read (“visitors”);

hScore = Read (“home”);

if vScore == hScore

 play-overtime

Referee

Desired consistency?

Strong consistency

18

vScore = Read (“visitors”);

hScore = Read (“home”);

if vScore == hScore

 play-overtime

Radio Reporter

19

 do {
 BeginTx();
 vScore = Read (“visitors”);
 hScore = Read (“home”);
 EndTx();
 report vScore and hScore;
 sleep (30 minutes);
 }

Radio Reporter

Desired consistency?

19

 do {
 BeginTx();
 vScore = Read (“visitors”);
 hScore = Read (“home”);
 EndTx();
 report vScore and hScore;
 sleep (30 minutes);
 }

Radio Reporter

Desired consistency?

Consistent Prefix

19

 do {
 BeginTx();
 vScore = Read (“visitors”);
 hScore = Read (“home”);
 EndTx();
 report vScore and hScore;
 sleep (30 minutes);
 }

Radio Reporter

Desired consistency?

Consistent Prefix

Monotonic Reads

19

 do {
 BeginTx();
 vScore = Read (“visitors”);
 hScore = Read (“home”);
 EndTx();
 report vScore and hScore;
 sleep (30 minutes);
 }

Radio Reporter

Desired consistency?

Consistent Prefix

Monotonic Reads
 or Bounded Staleness

19

 do {
 BeginTx();
 vScore = Read (“visitors”);
 hScore = Read (“home”);
 EndTx();
 report vScore and hScore;
 sleep (30 minutes);
 }

Radio Reporter

Desired consistency?

Consistent Prefix

Monotonic Reads
 or Bounded Staleness

19

 do {
 BeginTx();
 vScore = Read (“visitors”);
 hScore = Read (“home”);
 EndTx();
 report vScore and hScore;
 sleep (30 minutes);
 }

Sportswriter

20

 While not end of game {

 drink beer;

 smoke cigar;

 }

 go out to dinner;

 vScore = Read (“visitors”);

 hScore = Read (“home”);

 write article;

Sportswriter

Desired consistency?

20

 While not end of game {

 drink beer;

 smoke cigar;

 }

 go out to dinner;

 vScore = Read (“visitors”);

 hScore = Read (“home”);

 write article;

Sportswriter

Desired consistency?

Eventual

20

 While not end of game {

 drink beer;

 smoke cigar;

 }

 go out to dinner;

 vScore = Read (“visitors”);

 hScore = Read (“home”);

 write article;

Sportswriter

Desired consistency?

Eventual

Bounded Staleness
20

 While not end of game {

 drink beer;

 smoke cigar;

 }

 go out to dinner;

 vScore = Read (“visitors”);

 hScore = Read (“home”);

 write article;

Statistician

21

 Wait for end of game;

 score = Read (“home”);

 stat = Read (“season-goals”);

 Write (“season-goals”, stat + score);

Statistician

Desired consistency?

21

 Wait for end of game;

 score = Read (“home”);

 stat = Read (“season-goals”);

 Write (“season-goals”, stat + score);

Statistician

Desired consistency?

Strong Consistency (1st read)

21

 Wait for end of game;

 score = Read (“home”);

 stat = Read (“season-goals”);

 Write (“season-goals”, stat + score);

Statistician

Desired consistency?

Strong Consistency (1st read)

Read My Writes (2nd read)

21

 Wait for end of game;

 score = Read (“home”);

 stat = Read (“season-goals”);

 Write (“season-goals”, stat + score);

Stat Watcher

22

 do {

 stat = Read (“season-goals”);

 discuss stats with friends;

 sleep (1 day);

 }

Stat Watcher

Desired consistency?

22

 do {

 stat = Read (“season-goals”);

 discuss stats with friends;

 sleep (1 day);

 }

Stat Watcher

Desired consistency?

Eventual Consistency

22

 do {

 stat = Read (“season-goals”);

 discuss stats with friends;

 sleep (1 day);

 }

Official scorekeeper:
 score = Read (“visitors”);

 Write (“visitors”, score + 1);

Statistician:

 Wait for end of game;

 score = Read (“home”);

 stat = Read (“season-goals”);

 Write (“season-goals”, stat + score);

Referee:

Radio reporter:
 do {

 vScore = Read (“visitors”);

 hScore = Read (“home”);

 report vScore and hScore;

 sleep (30 minutes);

 }

Sportswriter:

 While not end of game {

 drink beer;

 smoke cigar;

 }

 go out to dinner;

 vScore = Read (“visitors”);

 hScore = Read (“home”);

 write article;

Stat watcher:

 stat = Read (“season-runs”);

 discuss stats with friends;

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

• Nothing is said about “most recent write”

Linearizability

Linearizability

• Assumes sequential consistency and
• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence

• Stronger than sequential consistency

• Difference between linearizability and serializability?

• Granularity: reads/writes versus transactions

Linearizability

• Assumes sequential consistency and
• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence

• Stronger than sequential consistency

• Difference between linearizability and serializability?

• Granularity: reads/writes versus transactions

•Example:
•Stay tuned…relevant for lock free data structures

•Importantly: a property of concurrent objects

Causal consistency

Causal consistency

• Causally related writes seen by all processes in same order.

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

Causal:
If a write produces a value that
causes another write, they are causally related

X = 1
if(X > 0) {
 Y = 1
}
Causal consistency → all see X=1, Y=1 in same order

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Not permitted

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Not permitted

Causal consistency

• Causally related writes seen by all processes in same order.
• Causally?

• Concurrent writes may be seen in different orders on different
machines

Not permitted
Permitted

Consistency models summary

Consistency models summary

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability
All processes must see all shared accesses in the same order. Accesses are furthermore ordered

according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order. Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO
All processes see writes from each other in the order they were used. Writes from different processes

may not always be seen in that order

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)

	Slide 1: Programming at Scale: Consistency
	Slide 2: Today
	Slide 3: Data-Parallel Computation Systems
	Slide 4: Data-Parallel Computation Systems
	Slide 5: Data-Parallel Computation Systems
	Slide 6: Data-Parallel Computation Systems
	Slide 7: Data-Parallel Computation Systems
	Slide 8: Data-Parallel Computation Systems
	Slide 9: Data-Parallel Computation Systems
	Slide 10: Data-Parallel Computation Systems
	Slide 11: Data-Parallel Computation Systems
	Slide 12: Data-Parallel Computation Systems
	Slide 13: Data-Parallel Computation Systems
	Slide 14: Data-Parallel Computation Systems
	Slide 15: Data-Parallel Computation Systems
	Slide 16: (Yet) Another Framework
	Slide 17: (Yet) Another Framework
	Slide 18: (Yet) Another Framework
	Slide 19: (Yet) Another Framework
	Slide 20: (Yet) Another Framework
	Slide 21: (Yet) Another Framework
	Slide 22: (Yet) Another Framework
	Slide 23: (Yet) Another Framework
	Slide 24: (Yet) Another Framework
	Slide 25: (Yet) Another Framework
	Slide 26: (Yet) Another Framework
	Slide 27: (Yet) Another Framework
	Slide 28: (Yet) Another Framework
	Slide 29: (Yet) Another Framework
	Slide 30: (Yet) Another Framework
	Slide 31: (Yet) Another Framework
	Slide 32: (Yet) Another Framework
	Slide 33: (Yet) Another Framework
	Slide 34: (Yet) Another Framework
	Slide 35: (Yet) Another Framework
	Slide 36: (Yet) Another Framework
	Slide 37: (Yet) Another Framework
	Slide 38: (Yet) Another Framework
	Slide 39: (Yet) Another Framework
	Slide 40: (Yet) Another Framework
	Slide 41: Consistency
	Slide 42: Consistency
	Slide 43: Consistency
	Slide 44: Consistency
	Slide 45: Consistency
	Slide 46: Consistency
	Slide 47: Consistency
	Slide 48: Consistency
	Slide 49: Consistency: the core problem
	Slide 50: Consistency: the core problem
	Slide 51: Consistency: the core problem
	Slide 52: Consistency: the core problem
	Slide 53: Consistency: the core problem
	Slide 54: Consistency: the core problem
	Slide 55: Consistency: the core problem
	Slide 56: Consistency: CAP Theorem
	Slide 57: Consistency: CAP Theorem
	Slide 58: Consistency: CAP Theorem
	Slide 59: Consistency: CAP Theorem
	Slide 60: Consistency: CAP Theorem
	Slide 61: Consistency: CAP Theorem
	Slide 62: Consistency: CAP Theorem
	Slide 63: Consistency: CAP Theorem
	Slide 64: Consistency: CAP Theorem
	Slide 65: Consistency: CAP Theorem
	Slide 66: Consistency: CAP Theorem
	Slide 67: Consistency: CAP Theorem
	Slide 68: Consistency: CAP Theorem
	Slide 69: Consistency: CAP Theorem
	Slide 70: Consistency: CAP Theorem
	Slide 71: Consistency: CAP Theorem
	Slide 72: CAP Implications
	Slide 73: CAP Implications
	Slide 74: CAP Implications
	Slide 75: Consistency Spectrum
	Slide 76: Spectrum Ends: Eventual Consistency
	Slide 77: Spectrum Ends: Strong Consistency
	Slide 78: Many Many Consistency Models
	Slide 79: Many Many Consistency Models
	Slide 80: Many Many Consistency Models
	Slide 81: Review: Some Consistency Guarantees
	Slide 82: Review: Some Consistency Guarantees
	Slide 83: Review: Some Consistency Guarantees
	Slide 84: Review: Some Consistency Guarantees
	Slide 85: Review: Some Consistency Guarantees
	Slide 86: Review: Some Consistency Guarantees
	Slide 87: Review: Some Consistency Guarantees
	Slide 88: Review: Some Consistency Guarantees
	Slide 89: Review: Some Consistency Guarantees
	Slide 90: Review: Some Consistency Guarantees
	Slide 91: Review: Some Consistency Guarantees
	Slide 92: Review: Some Consistency Guarantees
	Slide 93: Review: Some Consistency Guarantees
	Slide 94: Review: Some Consistency Guarantees
	Slide 95: Hold the phone! How can all these different guarantees come up?
	Slide 96: Hold the phone! How can all these different guarantees come up?
	Slide 97: Hold the phone! How can all these different guarantees come up?
	Slide 98: Hold the phone! How can all these different guarantees come up?
	Slide 99: Hold the phone! How can all these different guarantees come up?
	Slide 100: Hold the phone! How can all these different guarantees come up?
	Slide 101: Hold the phone! How can all these different guarantees come up?
	Slide 102: Hold the phone! How can all these different guarantees come up?
	Slide 103: Hold the phone! How can all these different guarantees come up?
	Slide 104: Hold the phone! How can all these different guarantees come up?
	Slide 105: Some Consistency Guarantees
	Slide 106: Some Consistency Guarantees
	Slide 107: Some Consistency Guarantees
	Slide 108: The Game of Soccer
	Slide 109: The Game of Soccer
	Slide 110: The Game of Soccer
	Slide 111: The Game of Soccer
	Slide 112: The Game of Soccer
	Slide 113: The Game of Soccer
	Slide 114: The Game of Soccer
	Slide 115: The Game of Soccer
	Slide 116: The Game of Soccer
	Slide 117: The Game of Soccer
	Slide 118: The Game of Soccer
	Slide 119: The Game of Soccer
	Slide 120: The Game of Soccer
	Slide 121: The Game of Soccer
	Slide 122: The Game of Soccer
	Slide 123: The Game of Soccer
	Slide 124: The Game of Soccer
	Slide 125: The Game of Soccer
	Slide 126: The Game of Soccer
	Slide 127: The Game of Soccer
	Slide 128: Official Scorekeeper
	Slide 129: Official Scorekeeper
	Slide 130: Official Scorekeeper
	Slide 131: Official Scorekeeper
	Slide 132: Official Scorekeeper
	Slide 133: Referee
	Slide 134: Referee
	Slide 135: Referee
	Slide 136: Radio Reporter
	Slide 137: Radio Reporter
	Slide 138: Radio Reporter
	Slide 139: Radio Reporter
	Slide 140: Radio Reporter
	Slide 141: Radio Reporter
	Slide 142: Sportswriter
	Slide 143: Sportswriter
	Slide 144: Sportswriter
	Slide 145: Sportswriter
	Slide 146: Statistician
	Slide 147: Statistician
	Slide 148: Statistician
	Slide 149: Statistician
	Slide 150: Stat Watcher
	Slide 151: Stat Watcher
	Slide 152: Stat Watcher
	Slide 153
	Slide 154: Sequential Consistency
	Slide 155: Sequential Consistency
	Slide 156: Sequential Consistency
	Slide 157: Linearizability
	Slide 158: Linearizability
	Slide 159: Linearizability
	Slide 160: Causal consistency
	Slide 161: Causal consistency
	Slide 162: Causal consistency
	Slide 163: Causal consistency
	Slide 164: Causal consistency
	Slide 165: Causal consistency
	Slide 166: Causal consistency
	Slide 167: Causal consistency
	Slide 168: Causal consistency
	Slide 169: Causal consistency
	Slide 170: Consistency models summary
	Slide 171: Consistency models summary

