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Administrivia

Agenda:

• Concurrency & Consistency at Scale
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(Yet) Another Framework
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Strong: ACID Eventual: BASE
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Key Value Stores

Document Stores

Replication

Storage

Query Support

Still not a perfect framework

Cons:

● Many dimensions contain sub-dimensions

● Many concerns fundamentally coupled

● Dimensions are often un- or partially-ordered

Pros: 

• Makes important concerns explicit

• Cleanly taxonomizes most modern systems
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• Clients perform reads and writes
• Data is replicated among a set of servers

• Writes must be performed at all servers
• Reads return the result of one or more past writes

R1 R2
writer reader

Write(k,v) Read(k,v)

• How should we implement write?
• How to implement read?
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• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency: 

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability: 
• system allows operations all the time, 

• and operations return quickly

3. Partition-tolerance: 
• system continues to work in spite of network partitions

Why care about CAP Properties?

Availability
• Reads/writes complete reliably and quickly.
• E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency 
• all nodes see same data at any time, or reads return latest 

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

if(partition) { keep going } → !consistent && available

if(partition) { stop } → consistent && !available



CAP Implications

• A distributed storage 
system can achieve at 
most two of C, A, and P.

• When partition-
tolerance is important, 
you have to choose 
between consistency and 
availability

Consistency

Partition-tolerance Availability

RDBMSs 
(non-replicated)

Cassandra, RIAK, 
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner



CAP Implications

• A distributed storage 
system can achieve at 
most two of C, A, and P.

• When partition-
tolerance is important, 
you have to choose 
between consistency and 
availability

Consistency

Partition-tolerance Availability

RDBMSs 
(non-replicated)

Cassandra, RIAK, 
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner

CAP is 
flawed



CAP Implications

• A distributed storage 
system can achieve at 
most two of C, A, and P.

• When partition-
tolerance is important, 
you have to choose 
between consistency and 
availability

Consistency

Partition-tolerance Availability

RDBMSs 
(non-replicated)

Cassandra, RIAK, 
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner

PACELC: 

if(partition) {
    choose A or C
} else {
    choose latency or consistency
}

CAP is 
flawed
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Spectrum Ends: Eventual Consistency

• Eventual Consistency
• If writes to a key stop, all replicas of key will converge

• Originally from Amazon’s Dynamo and LinkedIn’s Voldemort systems
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Spectrum Ends: Strong Consistency

• Strict/Strong:
• Absolute time ordering of all shared accesses, reads always return last write

• Linearizability: 
• Each operation is visible (or available) to all other clients in real-time order

• Sequential Consistency [Lamport]:
• "... the result of any execution is the same as if the operations of all the processors 

were executed in some sequential order, and the operations of each individual 
processor appear in this sequence in the order specified by its program.

• After the fact, find a “reasonable” ordering of the operations (can re-order operations) 
that obeys sanity (consistency) at all clients, and across clients.

• ACID properties
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Eventual
Strong 

(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Question: How to choose what 
to use or support?

• Amazon S3 – eventual consistency

• Amazon Simple DB – eventual or strong

• Google App Engine – strong or eventual

• Yahoo! PNUTS – eventual or strong

• Windows Azure Storage – strong (or eventual)

• Cassandra – eventual or strong (if R+W > N)

• ...
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Write(k,v)
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Write(k,v)

Example: elastic read and writes
• Writers hit replicas wR1..wR3
• Readers hit replicas rR1..rR4
• Writes propagated
• What happens: c1 reads own writes?
• Different guarantees → 
           different sync policies
           different w/r routing policies



Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.
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Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.
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Desired consistency?

Strong Consistency (1st read)

Read My Writes (2nd read)
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Eventual Consistency
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      do {

            stat = Read (“season-goals”);

            discuss stats with friends;

            sleep (1 day);

     }



Official scorekeeper:
     score = Read (“visitors”);

     Write (“visitors”, score + 1);

Statistician:

     Wait for end of game;

     score = Read (“home”);

     stat = Read (“season-goals”);

     Write (“season-goals”, stat + score);

Referee:

Radio reporter:
     do {

          vScore = Read (“visitors”);

          hScore = Read (“home”);

          report vScore and hScore;

          sleep (30 minutes);    

     }

Sportswriter:

      While not end of game {

            drink beer;

            smoke cigar;

     }

     go out to dinner;

     vScore = Read (“visitors”);

     hScore = Read (“home”);

     write article;

Stat watcher:

       stat = Read (“season-runs”);

       discuss stats with friends;
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Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order 

• each process issues operations in program order

• Any valid interleaving is allowed 

• All  agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

• Nothing is said about “most recent write”
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Linearizability

• Assumes sequential consistency and
• If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence

• Stronger than sequential consistency

• Difference between linearizability and serializability?

• Granularity: reads/writes versus transactions

•Example:
•Stay tuned…relevant for lock free data structures

•Importantly: a property of concurrent objects
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Causal consistency

• Causally related writes seen by all processes in same order. 
• Causally?

Causal:
If a write produces a value that
causes another write, they are causally related

X = 1
if(X > 0) {
    Y = 1
}
Causal consistency → all see X=1, Y=1 in same order
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Causal consistency

• Causally related writes seen by all processes in same order. 
• Causally?

• Concurrent writes may be seen in different orders on different 
machines

Not permitted
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Consistency models summary

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability
All processes must see all shared accesses in the same order.  Accesses are furthermore ordered 

according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order.  Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO
All processes see writes from each other in the order they were used.  Writes from different processes 

may not always be seen in that order

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)
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