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IToday

Questions?

Administrivia

* Faux Quiz

Agenda:
e Lock Freedom




Faux Quiz Questions: 5 min, pick any 2

 What is obstruction freedom, wait freedom, lock freedom?
* How can one compose lock free data structures?

* What is the difference between linearizability and strong consistency?
Between linearizability and serializability?

* What is the ABA problem? Give an example.

* How do lock-free data structures deal with the “inconsistent view”
problem?
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Solution: don’t use locks



Non-Blocking Synchronization

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance



Lock-free programming



Lock-free programming

e Subset of a broader class: Non-blocking Synchronization



Lock-free programming

e Subset of a broader class: Non-blocking Synchronization
 Thread-safe access shared mutable state without mutual exclusion



Lock-free programming

e Subset of a broader class: Non-blocking Synchronization
 Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
e e.g. Lamport’s Concurrent Buffer
* ...but not really practical wo HW



Lock-free programming

e Subset of a broader class: Non-blocking Synchronization
 Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
e e.g. Lamport’s Concurrent Buffer
* ...but not really practical wo HW

* Built on atomic instructions like CAS + clever algorithmic tricks



Lock-free programming

e Subset of a broader class: Non-blocking Synchronization
 Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
e e.g. Lamport’s Concurrent Buffer
* ...but not really practical wo HW

* Built on atomic instructions like CAS + clever algorithmic tricks
* Lock-free algorithms are hard, so



Lock-free programming

e Subset of a broader class: Non-blocking Synchronization
 Thread-safe access shared mutable state without mutual exclusion

* Possible without HW support
e e.g. Lamport’s Concurrent Buffer
* ...but not really practical wo HW

* Built on atomic instructions like CAS + clever algorithmic tricks
* Lock-free algorithms are hard, so

* General approach: encapsulate lock-free algorithms in data structures
* Queue, list, hash-table, skip list, etc.
* New LF data structure = research result



Basic List Append



struct Node
{

Basic List Append int data;

struct Node *next;

};



struct Node

{

Basic List Append int data;

struct Node *next;

};

vold append(Node** head ref, int new data) {
Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
return,
}
while (last=>next !'= NULL)
last = last=>next;
last=>next = new node;



struct Node

{

Basic List Append int data;

struct Node *next;

};

vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
return;
}
while (last=>next !'= NULL)
last = last=>next;
last=>next = new node;

}

* |s this thread safe?



struct Node

{

Basic List Append int data;

struct Node *next;

};

vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
return;
}
while (last=>next !'= NULL)
last = last=>next;
last=>next = new node;

}

* |s this thread safe?
* What can go wrong?



Example: List Append struct Node

{
int data;

struct Node *next;

};

vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
lock () ;
if (*head ref == NULL) {

*head ref = new node;
} else {

while (last=>next != NULL)

last = last=>next;
last=>next = new node;

}
unlock() ;
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Example: List Append struct Node

{
int data;

struct Node *next;

};

vold append(Node** head ref, int new data) {

Node* new node = mknode (new data, head ref);
if (*head ref == NULL) {
*head ref = new node;
} else {
while (last=>next != NULL)
last = last=>next;
last=>next = new node;

}

* What property do the locks enforce?

What does the mutual exclusion ensure?
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* Can we ensure consistent view (invariants hold) sans mutual exclusion?

Key insight: allow inconsistent view and fix it up algorithmically



. " struct Node
VgiéamnlﬁNJdgif Annpg}d .

appen * head r int new data) {
Node* new node = mknode (new data); - data;
new node->next = NULL; uct Node *next;
while (TRUE) {
Node * last = *head ref;
if(last == NULL) {
1f (cas (head ref, new node, NULL))
break;
}
while (last->next != NULL)

last = last->next;
1f(cas(&last->next, new node, NULL))

break;
a?

} sure?
* Can we ensure consistent view (invariants hold) sans mutual exclusion?

» Key insight: allow inconsistent view and fix it up algorithmically



Example: SP-SC Queue

next(x):

if(x == Q_size-1) return O;

else return x+1;

Q_get(data):
t = Q tail;
while(t == Q_head)

data = Q_buf[t]:
Q_tail = next(t);

 Single-producer single-consumer
 Why/when does this work?

Q_put(data):
h = Q_head;
while(next(h) == Q_tail)

Q_buf[h] = data:
Q_head = next(h);



Example: SP-SC Queue

next(x):

if(x == Q_size-1) return O;

else return x+1;

Q_get(data):
t = Q tail;
while(t == Q_head)

data = Q_buf[t]:
Q_taill = next(t);

* Single-producer single-consumer
 Why/when does this work?

Q_put(data):
h = Q_head;
while(next(h) == Q_tail)

Q_buf[h] = data:
Q_head = next(h);




struct Node

Lock-Free Stack ' int data;

struct Node *next;

void push(int t) { };
Node* node = new Node(t) ;
do {
node=>next = head;

} while ('cas(&head, node, node-=->next));

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current->data;
return true;

}

current = head;

}

return false;
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}

bool pop(int& t) {
Node* current = head;
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struct Node

Lock-Free Stack ' int data;

struct Node *next;

void push(int t) { };
Node* node = new Node(t) ;
do {
node=>next = head;

} while ('cas(&head, node, node-=->next));

}

bool pop(int& t) {
Node* current = head;

| while(current) {

if (cas (&head, current->next, current)) {
t = current->data; // problem?
return true;

}

?Ufmﬂt = head; * Why does is it work?

return false; * Does it enforce all invariants?
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Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem s e

current = head;

}

return false;

Thread 1: pop() Thread
read A from head
store A.next 'somewhere’ \
™ pop ()
pops A, discards it

First el
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Lock-Free Stack: ABA Problem

Node* pop () {
Node* current =
while (current) {
if (cas (&head,

current->next,

head;

current))

return current;

current = head;

}

return false;

Thread 1: pop() Thread 2:

read A from head
store A.next 'somewhere’ \
pop ()
pops A, discards it

First element becomes B

Pop(): r

cas with A suceeds 4___———Push(hean, A)



Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem s e

current = head;
}

return false;
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Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem s e

current = head;
}

return false;

Node* pop()
Node* current = head;
while (current) {

Node * node = pop() ;
delete node;

node = new Node (blah blah);
push (node) ;




Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem s e

current = head;
}

return false;

Node* pop()
Node* current = head;
while (current) {

Node * node = pop() ;
delete node;

node = new Node (blah blah);
push (node) ;

1f (cas(&head, current->next, current))
return current;
current = head; s 4 B0 —
} s rm g N

return false;




Node* pop () {
Node* current = head;
while (current) {

I_OC k— F ree Sta C k A BA P ro b | em if (cas (&head, current->next, current))

return current;
current = head;

}

return false;

Node* pop()
Node* current = head;

Node * node = pop() ;
delete node;

ode = new Node(blah blah);
push (node)

1f (cas(&head, current->next, current))
return current;
current = head;

}

return false;

Thread 2:




Node* pop () {
Node* current = head;
while (current) {

Lock-Free Stack: ABA Problem s e

current = head;

}

return false;

Node* pop()
Node* current = head;

Node * node = pop() ;

delete node;

ode = new Node(blah blah);
push (node)

if (cas(&head, current->nextCurrent)))

return current;
current = head;

Thread 2:

}

return false;

memory manager recycles



ABA Problem

* Thread 1 observes shared variable 2> ‘A’
 Thread 1 calculates using that value

* Thread 2 changes variable to B
* if Thread 1 wakes up now and tries to CAS, CAS fails and Thread 1 retries

* Instead, Thread 2 changes variable back to A!
* CAS succeeds despite mutated state

* Very bad if the variables are pointers  Keep update count = DCAS

* Avoid re-using memory
* Multi-CAS support 2> HTM



Correctness: Searching a sorted list

e find(20):
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Correctness: Searching a sorted list

e find(20):

e

0

find(20) -> false
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Inserting an item with CAS

e insert(20):

s

L

insert(20) -> true

E
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Searching and inserting together
» find(20) * insert(20) -> true
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Searching and inserting together

» find(20) -> false * insert(20) -> true

-

s @i ol ]
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Searching and inserting together

» find(20) -> false * insert(20) -> true

This thread saw 20 ...but this thread

succeeded in putting

was not in the set... "
itin!

* |s this a correct implementation?

 Should the programmer be surprised if this happens?

e What about more complicated mixes of operations?

19



Correctness criteria

Informally:

Look at the behavior of the data structure
* what operations are called on it
e whattheirresults are

If behavior is indistinguishable from atomic calls to a
sequential implementation then the concurrent
implementation is correct.

20
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Sequential history
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Sequential history
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Sequential history

* No overlapping invocations

— —

- N =
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— — time
10 10, 20 10, 20

Linearizability: concurrent behaviour should be similar
* even whenthreads canseeintermediate state

* Recall: mutual exclusion precludes overlap 21



Concurrent history

Allow overlapping invocations

insert(10)->true insert(20)->true

Thread 1:

time

Thread 2:

find(20)->false

22
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Linearizability:
* Istherea correct sequential history:

CO ﬂ C U rre ﬂt h IStO ry  Same results as the concurrent one

* Consistent with the timing of the
invocations/responses?

Allow overlapping invocations

Start/end impose ordering constraints

insert(10)->true insert(20)->true Why is this one OK?
Thread 1:
time
. Total Order:
Thread 2. 1. Insert(10)
2. Find(20)

find(20)->false 3. Insert(20)
* |s consistent with real-time order
e 2,3 overlap, but return order OK

22



Example: linearizable

insert(10)->true insert(20)->true

Thread 1:

time

Thread 2:

find(20)->false
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Example: linearizable

Thread 1:

insert(10)->true insert(20)->true

time

Thread 2:

find(20)->false

A valid sequential history:

this concurrent execution
is OK
Note: linearization point

23
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time

Note: return values are meaningful!
Thread 2: Linearizable = consistent with return values
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Example: not linearizable

insert(10)->true insert(10)->false

Thread 1: o
Why is this one NOT OK?
time

Note: return values are meaningful!
Thread 2: Linearizable = consistent with return values

Possible Total Orders
delete(10)->true 1. Insert(10) 1. Delete(10)

2. Delete(10) 2. Insert(10)

3. Insert(10) 3. Insert(10)
* Both consistent with real-time order
e 1, 2overlap, but 3 doesn’t

How can things like this happen?
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Example Revisited

* find(20) * insert(20) -> true
" - E{ 0 - i@
20
Thread 1: l
Thread 2: 1

v
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Example Revisited

« find(20) _s false * insert(20) -> true
s E{ 0 ————71
20

A

find(20)->false

G

Thread 1:

Thread 2: T insert(20)->true

v

25



Example Revisited

° flnd(ZO) -> false

.

s

Thread 1: T

> 10

30

* insert(20) -> true

L

A valid sequential history:
this concurrent execution

is OK because a
linearization point exists

find(20)->false

Thread 2:

\ 4

i$sert(20)->true

25



Example Revisited

« find(20) _s false * insert(20) -> true

Thread 1: T l
Thread 2:
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Wait-free

* A thread finishes its own operation if it continues executing steps
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Wait-free

* A thread finishes its own operation if it continues executing steps

1e1s
1e1s

time

ystu
ysiut4

ysiud
1ie1s
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Lock-free

 Some thread finishes its operation if threads continue taking steps
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Lock-free

 Some thread finishes its operation if threads continue taking steps

1e1s
14e1s
14e1s
14815

time

ysiui4
ysiuld
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Lock-free

 Some thread finishes its operation if threads continue taking steps

1e1s
14e1s
14e1s
14815

time

ystui
ystui4

ysiui4

 Red never finishes
* Orange does
e Still lock-free .
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* A thread finishes its own operation if it runs in isolation
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Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Meaning, if you de-schedule contenders

1Jels
1Jels

time

ysiut4

Interference here can prevent

any operation finishing v

33



Formal Properties

* Wait-free
* A thread finishes its own operation if it continues executing steps
e Strong: everyone eventually finishes

e Lock-free

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

e Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes



Blocking
1. Blocking

. S
Formal Properties 2. Starvation-Free :
Obstruction-Free r
3. Obstruction-Free o
. Lock-Free n
* Wait-free 4. Lock-Free (LF) o
* Athread finishes its own operation if it continue Wait-Free =
* Strong: everyone eventually finishes 5. Wait-Free (WF) r
6. Wait-Free Bounded (WFB)
e Lock-free 7. Wait-Free Population Oblivious (WFPO)

* Some thread finishes its operation if threads continue taking steps
* Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

e Obstruction-free

* A thread finishes its own operation if it runs in isolation
* Very weak. Means if you remove contention, someone finishes
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e Obstruction-free

* A thread finishes its own operation if it runs in isolation
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Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

* local property:
e a system is linearizable iff each individual object is linearizable.
e gives us composability.

* Why is it important?
* Serializability is not composable.

Huh? Composable?
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Composability

T * list::remove (Obj key) {
LOCK (this) ;
tmp = _ do remove (key) ;
UNLOCK (this) ;
return tmp;

}

void list::insert (Obj key, T * wval) {
LOCK (this) ;
__do_insert(key, val);
UNLOCK (this) ;

}



Composability

void move(list s, list d, Obj key) {
tmp = s.remove (key) ;

T * list::remove (Obj key) {
d.insert (key, tmp);

LOCK (this) ;

tmp = _ do_remove (key) ; }
UNLOCK (this) ;

return tmp;

}

void list::insert (Obj key, T * wval) {
LOCK (this) ;
__do_insert(key, val);
UNLOCK (this) ;

}



Composability

Thread-safe?

void move(list s, list d, Obj key) {

T * list::remove(Obj key) { tmp = s.remove (key) ;
LOCK (this) ; d. insert (key, tmp);
tmp = do_remove (key) ; }

UNLOCK (this) ;
return tmp;

}

void list::insert (Obj key, T * wval) {
LOCK (this) ;
__do_insert(key, val);
UNLOCK (this) ;

}



Composability

T * list::remove (Obj key) {

LOCK (this) ;
tmp = __do_remove (key) ; void move(list s, list d, Obj key) {
UNLOCK (this) ; LOCK (s) ;
return tmp; LOCK (d) ;
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d. insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do_insert(key, val); UNLOCK (s) ;

UNLOCK (this) ; }
}



Composability

T * list::remove (Obj key) {

LOCK (this) ;
tmp = __do_remove (key) ; void move(list s, list d, Obj key) {
UNLOCK (this) ;
return tmp; LOCK (=) ;
’ LOCK (d) ;
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d. insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do_insert(key, val); UNLOCK (s) ;
UNLOCK (this) ; }

}

* Lock-based code doesn’t compose
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T * list::remove (Obj key) {

LOCK (this) ;
tho: —:‘_’—re_m"e (key) ; void move (list s, list d, Obj key) {
ratuzn topy LOCK(s) ;
’ LOCK(d) ;
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d. insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do_insert(key, val); UNLOCK (s) ;
UNLOCK (this) ; }

}

* Lock-based code doesn’t compose
* If list were a linearizable concurrent data structure, composition OK?



Composability

T * list::remove (Obj key) {

LOCK (this) ;
tmp = __do_remove (key) ; void move (list s, list d, Obj key){
return tmp; LOCK(d)C
} tmp = s.remove (key) ;
void list::insert(Obj key, T * wval) { d. insert (key, tmp);
LOCK (this) ; UNLOCK (d) ;
__do_insert(key, val); UNLOCK (s) ;
UNLOCK (this) ; }
} Painting with a very broad brush
Composition with linearizability is really
Vi
* Lock-based code doesn’t compose about composed schedules

* If list were a linearizable concurrent data structure, composition OK?



Linearizability Properties

* non-blocking
 one method is never forced to wait to sync with another.

e applies to histories and objects and systems:

* a history can be linearizable
e an object is linearizable if all valid histories of its use are linearizable

* local property:
e asystem is linearizable iff each individual object is linearizable.
* gives us composability.

* Why is it important?
 Serializability is not composable.

* Core hypotheses:
 structuring all as concurrent objects buys composability
* structuring all as concurrent objects is tractable/possible
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More on Composability and Compositionality

 High level /informal meaning:

* Can you compose codes that provide property P
e ...and expect the composition to preserve P?

* More nuanced meanings:
e Can you compose codes
e Can you compose schedules

* These are related but differ in subtle ways

* Non-composability of serializability is really about composing
schedules



Consider A Concurrent Register



Consider A Concurrent Register

* Threads A, B write integers to a register R



Consider A Concurrent Register

* Threads A, B write integers to a register R

e Because it is concurrent, method invocations overlap



Consider A Concurrent Register

* Threads A, B write integers to a register R
e Because it is concurrent, method invocations overlap

A B R
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Two Concurrent Registers

* Register value is initially zero A B R

* The following operations occur: R M | an| wa
 Thread A:
* writerl=1
e readr2 2 7?
 Thread B:
* B:writer2->2
e B:readrl > 7

Q2: WI(2)




Two Concurrent Registers

e Register value is initially zero A 3 R

* The following operations occur: | - | oau ww
* Thread A:

* writerl=1
e readr2 2> ?
 Thread B:
* B:writer2->2
* B:readrl1 >7?
* Serializability:
e Execution equivalent to some serial order
* All see same order

Q2: WI(2)
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* Consider all possible permutations of atomic invocations

* (That respect program order)
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Histories for multiple concurrent registers

* Consider all possible permutations of atomic invocations

e (That respect program order)

____________ A writes (1) to r1
———————— >
A written }_t_o_[l _________
A Etutuiuil t
| hB_wrltes (2) tor2
_____________ N
B written 2 t_O _1:2 __________
it iee

A reads r2

.
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e ™S
—,ee -
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A reads r2

A read from r2

A read from r2
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B read from r2
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%

B read from r2



Histories for multiple concurrent registers

* Consider all possible permutations of atomic invocations
e (That respect program order)

Frrecrnendas A _"‘iri_te_s Mtorr1 | peeeeea. | _A_Mirl_te_s -
___________ R L
A written 1_t_(_)_£l ___________ . Wrmfr_‘ 1_t-9£1 ___________
e antchsing | T
be _B_\Airfe_s iZl tor2 i
S A read from r2
B written 2 t_(_)_[z ___________
A P N sreeon [
Ay 20900 | 0000000 1 000 [tveetsssacswsssawes )‘
A read from r2 " wri_tt_c_arl 2_t£)£2 ___________
& ‘ o
B reads r1 W-)
B read from 2 B read from r2
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Histories for multiple concurrent registers

* Consider all possible permutations of atomic invocations et |
* (That respect program order)
* Call them “sub-histories”: from A, B “perspective”

H2b B writes r2=2, reads r1 2 1

. A B R
Hla A writes r1=1, readsr2 2 0 Foeeee) - Awteson
H2a A writes r1=1, readsr2 2 2 e
T —— N
Hib B writes r2=2, readsr1 2> 0 LSt )




Histories for multiple concurrent registers

* Consider all possible permutations of atomic invocations

e (That respect program order) :»‘;‘;&;I::;3
 Call them “sub-histories”: from A, B “perspective”

Hla A writes r1=1, readsr2 2 0
H2a A writes r1=1, reads r2 2 2
Hilb B writes r2=2, readsr1 2> 0
H2b B writes r2=2, reads r1 2 1

From the perspective of threads A, B, all sub-histories are serializable

* They respect program order for each of A, B

* And are equivalent to *some* serial execution

* If we “compose” these histories, some composed histories not serializable
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* Compose sub-histories to form all possible histories

Hla A writes r1=1,readsr2 2> 0
H2a A writes r1=1, reads r2 =2 2
Hib B writes r2=2, reads r1 = 0

H2b B writes r2=2, readsrl1 2 1



Histories for multiple concurrent registers

* Compose sub-histories to form all possible histories

Hla A writes r1=1, readsr2 2 0 Hlab A writes r1=1, B writes r2=2
H2a A writes r1=1, reads r2 - 2 Areadsr2 =0, Breadsrl >0
H1b B s =0, resde L o 0 H2ab A writes r1=1, B writes r2=2
Areadsr2 2> 0,Breadsrl1 > 1
H2b B writes r2=2, readsrl1 2 1 _ ,
H3ab A writes r1=1, B writes r2=2
Areadsr2 2> 2,Breadsrl 2> 0
H4ab A writes r1=1, B writes r2=2

Areadsr2 2> 2,Breadsrl 2> 1



Histories for multiple concurrent registers

* Compose sub-histories to form all possible histories
* Composition of serializable histories = non-serializable histories

Hla A writes r1=1, readsr2 2 0 Hlab A writes r1=1, B writes r2=2
H2a A writes r1=1, reads r2 - 2 Areadsr2 =0, Breadsrl >0
H1b B s =0, resde L o 0 H2ab A writes r1=1, B writes r2=2
Areadsr2 2> 0,Breadsrl1 > 1
H2b B writes r2=2, readsrl1 2 1 _ ,
H3ab A writes r1=1, B writes r2=2
Areadsr2 2> 2,Breadsrl 2> 0
H4ab A writes r1=1, B writes r2=2

Areadsr2 2> 2,Breadsrl 2> 1



Histories for multiple concurrent registers

* Compose sub-histories to form all possible histories
* Composition of serializable histories = non-serializable histories
* Ex. Hlab is not serializable

Hla A writes r1=1, readsr2 2 0 Hlab A writes r1=1, B writes r2=2
H2a A writes r1=1, reads r2 - 2 Areadsr2 =0, Breadsrl >0
H1b B s =0, resde L o 0 H2ab A writes r1=1, B writes r2=2
Areadsr2 2> 0,Breadsrl1 > 1
H2b B writes r2=2, reads rl1 =2 1 : :
H3ab A writes r1=1, B writes r2=2
Areadsr2 2> 2,Breadsrl 2> 0
H4ab A writes r1=1, B writes r2=2

Areadsr2 2> 2,Breadsrl 2> 1



Histories for multiple concurrent registers

* Compose sub-histories to form all possible histories

* Composition of serializable histories = non-serializable histories

e Ex. Hlab is not serializable

Hla
H2a
H1lb
H2b

A writes r1=1,readsr2 2> 0
A writes r1=1, reads r2 =2 2
B writes r2=2, reads r1 = 0
B writes r2=2, readsrl1 2 1

4 serializable sub-histories composed
To form 4 complete histories,
Only H4ab is actually serializable

bistory efect

Hlab A writes r1=1, B writes r2=2
Areadsr2 > 0,Breadsrl 2> 0

H2ab A writes r1=1, B writes r2=2
Areadsr2 2> 0,Breadsrl1 > 1

H3ab A writes r1=1, B writes r2=2

Areadsr2 2 2,Breadsrl1 2> 0

4ab A writes r1=1, B writes r2=2
Areadsr2 2> 2,Breadsrl 2> 1




...Now back to Linearizability

e A concurrent register implementation that allows Hlab, H2ab, H3ab is not linearizable

* To be linearizable its implementation must disallow those histories

* Simplest technique to achieve this: make writes atomic (CAS)
* such that overlapping reads cannot be reordered (e.g. A reads r2->0 after B writes r2=2
* Equivalent to adding constraint that operations respect real time order of operations
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H2ab A writes r1=1, B writes r2=2
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readsr2 2 2,Breadsr1 >0
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readsr2 2 2,Breadsrl 2> 1
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* such that overlapping reads cannot be reordered (e.g. A reads r2->0 after B writes r2=2
* Equivalent to adding constraint that operations respect real time order of operations



...Now back to Linearizability
ory et

Hlab A writes r1=1, B writes r2=2
readsr2 2 0, Breadsrl > 0

H2ab A writes r1=1, B writes r2=2
readsr2 2> 0,Breadsrl 2> 1

H3ab A writes r1=1, B writes r2=2

readsr2 2 2, Breadsrl1 2 0

A writes r1=1, B writes r2=2
readsr2 2 2,Breadsrl 2> 1

This history IS linearizable
— 4ab

e A concurrent register implementation that allows Hlab, H2ab, H3ab is not linearizable

* To be linearizable its implementation must disallow those histories

* Simplest technique to achieve this: make writes atomic (CAS)
* such that overlapping reads cannot be reordered (e.g. A reads r2->0 after B writes r2=2
* Equivalent to adding constraint that operations respect real time order of operations



...Now back to Linearizability

Hla A writes r1=1, B writes r2=2
These histories are NOT linearizable readsr2 = 0, Breadsrl =0
H2ab A writes r1=1, B writes r2=2

readsr2 2 0,Breadsrl > 1

A writes r1=1, B writes r2=2
readsr2 2 2, Breads r

This history IS linearizable
— 4ab A writes r1=1, B writes r2=2
readsr2 2 2,Breadsrl 2> 1

e A concurrent register implementation that allows Hlab, H2ab, H3ab is not linearizable

* To be linearizable its implementation must disallow those histories

* Simplest technique to achieve this: make writes atomic (CAS)
* such that overlapping reads cannot be reordered (e.g. A reads r2->0 after B writes r2=2
* Equivalent to adding constraint that operations respect real time order of operations




Another Perspective

Serializability

invocations and responses can be reordered to yield a sequential history

the sequential history is correct according to the sequential definition of the object

Linearizability

invocations and responses can be reordered to yield a sequential history

the sequential history is correct according to the sequential definition of the/each
object

if a response preceded an invocation in the original history, it must still precede it in the
sequential reordering



Linearizability Redux

* non-blocking
 one method is never forced to wait to sync with another.

* applies to histories and objects and systems:

* a history can be linearizable
e an object is linearizable if all valid histories of its use are linearizable

* local property:
e asystem is linearizable iff each individual object is linearizable.
* gives us composability.
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* Key-value mapping

* Population count

* |teration

* Resizing the bucket array
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Practical difficulties:

e Key-value ma
* Population cc
* |[teration

* Resizing the |

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

47
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