Race Detection

Pro Forma

Questions?

* Administrivia:
* Course/Instructor Survey :

* Thoughts on exam

* Thoughts on project presentation day
* Agenda

* Linearizability clarification

* Race Detection

* Acknowledgements:

https://utdirect.utexas.edu/ctl/ecis/
https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
https://www.cl.cam.ac.uk/teaching/1718/R204/slides-tharris-2-lock-free.pptx
http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition-and.html
http://concurrencyfreaks.blogspot.com/2013/05/lock-free-and-wait-free-definition-and.html
http://swtv.kaist.ac.kr/courses/cs492b-spring-16/lec6-data-race-bug.pptx
https://www.cs.cmu.edu/~clegoues/docs/static-analysis.pptx
http://www.cs.sfu.ca/~fedorova/Teaching/CMPT401/Summer2008/Lectures/Lecture8-GlobalClocks.pptx
http://www.cs.sfu.ca/~fedorova/Teaching/CMPT401/Summer2008/Lectures/Lecture8-GlobalClocks.pptx

Race

Detection
—aux Quiz

Are linearizable objects composable? Why/why not? Is
serializable code composable?

What is a data race? What kinds of conditions make them
difficult to detect automatically?

What is a consistent cut in a distributed causality interaction
graph?

List some tradeoffs between static and dynamic race detection

What are some pros and cons of happens-before analysis for
race detection? Same for lockset analysis?

Why might one use a vector clock instead of a logical clock?

What are some advantages and disadvantages of combined
lock-set and happens-before analysis?

Race Detection

Race Detection

Locks: a litany of problems

Race Detection

Locks: a litany of problems
e Deadlock

Race Detection

Locks: a litany of problems

* Deadlock
* Priority inversion

Race Detection

Locks: a litany of problems
e Deadlock
* Priority inversion

* Convoys

Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Solution: don’t use locks

non-blocking
Data-structure-centric
HTM

blah, blah, blah..

Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Race Detection

Locks: a litany of problems
* Deadlock

* Priority inversion

* Convoys

* Fault Isolation

* Preemption Tolerance

* Performance

Use locks!
But automate bug-finding!

Races

Races

* |s there a race here?

Races

* |s there a race here?
e What is a race?

Races

* |s there a race here?
* What is a race?
* Informally: accesses with missing/incorrect synchronization

Races

1 Lock(lock); 1
2 Read-Write (X) ; 2 Read-Write (X) ;
3 Unlock (lock) ; 3

* |sthere a race here?
 What is a race?
* Informally: accesses with missing/incorrect synchronization

* Formally:
e >1 threads access same item
* No intervening synchronization
e At least one access is a write

Races

* |s there a race here?

« What is a race? How to detect races:

* Informally: accesses with missing/incorrect sy forall(X) {

* Formally: if(not_synchronized(X))
* >1 threads access same item declare_race()

* No intervening synchronization
e At least one access is a write

Races

Is there a race here?
How can a race detector tell?

Races

Is there a race here?
How can a race detector tell?

Races

Is there a race here? Unsynchronized access can be

How can a race detector tell?

Races

1 read-write(X); 1 thread-proc() {
2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);
4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);

Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

Races

1 read-write(X); 1 thread-proc() {

2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);

4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);
Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

* Benign due to view serializability

Races

1 read-write(X); 1 thread-proc() {

2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);

4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);
Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

* Benign due to view serializability

* Benign due to application-level constraints

Races

1 read-write(X); 1 thread-proc() {

2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);

4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);
Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

* Benign due to view serializability
* Benign due to application-level constraints

* E.g. approximate stats counters

Detecting Races

* Static
* Run a tool that analyses just code
* Maybe code is annotated to help
* Conservative: detect races that never occur

How to detect races:
forall(X) {

* Dynamic
* Instrument code
* Check synchronization invariants on accesses
* More precise
* Difficult to make fast

* Lockset vs happens-before L Leeleileela) 1
2 Read-Write (X) ; 2 Read-Write (X) ;

if(not_synchronized(X))
declare_race()

Static Data Race Detection

* Type-based analysis

* Language type system augmented
e express common synchronization relationships”: correct typing—>no data races

 Difficult to do
e Restricts the type of synchronization primitives

e Language features

e e.g., use of monitors
* Only works for static data — not dynamic data

* Model Checking

* Path analysis
* Doesn’t scale well
* Too many false positives

Static Data Race Detection

* Type-based analysis

* Language type system augmented
e express common synchronization relationships”: correct typing—>no data races

e Difficult to do
e Restricts the type of synchronization primitives

e Language features

e e.g., use of monitors
* Only works for static data — not dynamic data

* Model Checking

* Path analysis | 1 5ck(10ck) ; 1

: 'Il?c?c??rr\]atnscl?a:i\e/\ 2 Read-Write (X) ; 2 Read-Write (X) ;
Y 3 Unlock (lock) ; 3

Static Data Race Detection

* Type-based analysis

e Language type system augmented
e express common synchronization relationships”: correct typing—>no data races

 Difficult to do
* Restricts the type of synchronization primitives

* Language features
* e.g., use of monitors
* Only works for static data — not dynamic dati\\ Vi f i d o == =0 = e 0l

* Model Checking concurrently? (False Positive)
* Path analysis | 1 5ck(10ck) ; 1

) ?c?f;:‘atnscgic‘e" 2 Read-Write (X); 2 Read-Write (X);
y 3 Unlock (lock) ; 3

Lockset Algorithm

Lockset Algorithm

* Locking discipline
e Every shared mutable variable is protected by some locks

Lockset Algorithm

* Locking discipline
e Every shared mutable variable is protected by some locks

e Core idea

Lockset Algorithm

* Locking discipline
e Every shared mutable variable is protected by some locks

* Core idea
* Track locks held by thread t

Lockset Algorithm

* Locking discipline
e Every shared mutable variable is protected by some locks

e Core idea

* Track locks held by thread t
* On access to var v, check if t holds the proper locks

Lockset Algorithm

* Locking discipline
e Every shared mutable variable is protected by some locks

e Core idea

* Track locks held by thread t
* On access to var v, check if t holds the proper locks
e Challenge: how to know what locks are required?

Lockset Algorithm

* Locking discipline
e Every shared mutable variable is protected by some locks

e Core idea

* Track locks held by thread t
* On access to var v, check if t holds the proper locks
e Challenge: how to know what locks are required?

* Infer protection relation
* Infer which locks protect which variable from execution history.

Lockset Algorithm

* Locking discipline
e Every shared mutable variable is protected by some locks

e Core idea

* Track locks held by thread t
* On access to var v, check if t holds the proper locks
e Challenge: how to know what locks are required?

* Infer protection relation
* Infer which locks protect which variable from execution history.
* Assume every lock protects every variable

Lockset Algorithm

* Locking discipline
e Every shared mutable variable is protected by some locks

e Core idea

* Track locks held by thread t
* On access to var v, check if t holds the proper locks
e Challenge: how to know what locks are required?

* Infer protection relation
* Infer which locks protect which variable from execution history.
* Assume every lock protects every variable
* On each access, use locks held by thread to narrow that assumption

Lockset Algorithm

* Locking discipline
e Every shared mutable variable is protected by some locks

* Core idea
* Track locks held by thread t

Let locks held(t) be the set of locks held by thread ¢.
For each v, initialize C(v) to the set of all locks.

. On each access to v by thread ¢,
set C(v) := C(v) N locks _held(t);

if C(v) = { }, then issue a warning. il feidac

T RADJUITIC CVElY IULKN pIUuLcELLS Cvely vdadiiawvic

Narrow down set of

protecting v
* On each access, use locks held by thread to narrow that assumption

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}

lock(lockA);
V++;
unlock(lockA);

lock(lockB) ;
V++;
unlock(lockB);

Lockset Algorithm Example

—

lock(lockA);
V++;
unlock(lockA);

lock(lockB) ;
V++;
unlock(lockB);

locks _held(t)
{}

C(v)
{lockA, lockB}

24

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
=) lock(lockA); {lockA}
V++;
unlock(lockA);
lock(lockB) ;
V++;

unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
) V4 {lockA} cC) N'locks held(t)
unlock(lockA);
lock(lockB);
V++;

unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
V++; {lockA}

m==) unlock(lockA); {}

lock(lockB) ;
V++;
unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
V++; {lockA}
unlock(lockA); {}

> lock(lockB); {lockB}

V++;
unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
V++; {lockA}
unlock(lockA); {}

lock(lockB) ; {lockB}

) Vit {}

unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
V++; {lockA}
unlock(lockA); {}

lock(lockB) ; {lockB}

|:> V++; {} C(v) r‘l_vlocks_helc:’i(t_)
unlock(lockB); {}

Lockset Algorithm Example

lock(lockA);
V++;
unlock(lockA);

lock(lockB) ;

) Vit

unlock(lockB);

locks _held(t) C(v)

1}
{lockA}

1}

{1lockB}

1}

{lockA, lockB}

{lockA}

@ACK! race

24

Lockset Algorithm Example

lock(lockA);
V++;
unlock(lockA);

lock(lockB) ;

) Vit

unlock(lockB);

locks _held(t) C(v)
{lockA, lockB}

1}
{lockA}

1}

{1lockB}

1}

{1lockA}

/
ACK! race

A\

Pretty clever!

Why isn’t this

a complete
solution?

4

Improving over lockset

thread A

Improving over lockset

thread A

Lockset detects a race
There is no race: why not?

Improving over lockset

thread A

Lockset detects a race

There is no race: why not?

* A-1 happens before B-3

* B-3 happens before A-6

* Insight: races occur when “happens-before” cannot be known

Happens-before

* Happens-before relation
* Within single thread
* Between threads

* Accessing variables not ordered
by “happens-before” is a race

e Captures locks and dynamism

* How to track “happens-before”?

* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before Thread

4 N
* Happens-before relation Locki(mu);
* Within single thread vi= v
* Between threads !
] . Unlock(mu);
* Accessing variables not ordered -)

by “happens-before” is a race
e Captures locks and dynamism

* How to track “happens-before”?

* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before

* Happens-before relation
* Within single thread
* Between threads

* Accessing variables not ordered
by “happens-before” is a race

e Captures locks and dynamism

* How to track “happens-before”?

* Sync objects are ordering events
* Generalizes to fork/join, etc

Thread 1

/
Lock (mu);
v =v+l;

!

Unlock(mu);

.

~

Thread 2

/
Lock (mu);
v =v+l;

!

Unlock(mu);

/

.

~

/

Happens-before

* Happens-before relation
* Within single thread
* Between threads

* Accessing variables not ordered
by “happens-before” is a race

e Captures locks and dynamism

* How to track “happens-before”?

* Sync objects are ordering events
* Generalizes to fork/join, etc

Thread 1

/
Lock (mu);
v =v+l;

!

Unlock(mu);

.

~

T1 accessto V
“Happens-before”
T2 accesstoV

Thread 2

-

TSa
Lock (mu);

v =v+l;

!

Unlock(mu);

.

~

/

Ordering and Causality

Time

M
A - = n
B = & - - - / I

Ordering and Causality

Time

— A, B, C have local orders
A - - m B
B = & - - - / I

Ordering and Causality

Time

— A, B, C have local orders
A - - m B
* Want total order
e But only for causality
B = & = - - / I

Ordering and Causality

Time

— A, B, C have local orders
A - - m B
* Want total order
e But only for causality
B = & = - - / I

Different types of clocks

Ordering and Causality

Time
— A, B, C have local orders
A - - m B
* Want total order
e But only for causality
B = & = - - / I

Different types of clocks
* Physical

Ordering and Causality

Time
— A, B, C have local orders
A - - m B
* Want total order
e But only for causality
B = & = - - / I
Different types of clocks
* Physical
C—= » . "—=a * Logical

* TS(A) later than others A knows about

Ordering and Causality

Time
— A, B, C have local orders
A - - m B
 Want total order
* But only for causality
B = & = - - / I
Different types of clocks
* Physical
C—= - " R * Logical
* TS(A) later than others A knows about
* Vector

* TS(A): what A knows about other TS’s

Ordering and Causality

Time
— A, B, C have local orders
A - - m B
* Want total order
* But only for causality
B = & = - - / I
Different types of clocks
* Physical
C—= - " R * Logical
* TS(A) later than others A knows about
* Vector
* TS(A): what A knows about other TS’s
* Matrix

e TS(A) is NA2 showing pairwise
knowledge

A Naive Approach

* Each system records each event it performed and its timestamp
e Suppose events in the this system happened in this real order:

A Naive Approach

* Each system records each event it performed and its timestamp

e Suppose events in the this system happened in this real order:

e Time Tc0: System C sent data to System B (before C stopped
responding)

TcO

A Naive Approach

* Each system records each event it performed and its timestamp

e Suppose events in the this system happened in this real order:

e Time Tc0: System C sent data to System B (before C stopped
responding)

* Time Ta0: System A asked for work from System B

TcO Ta0

A Naive Approach

* Each system records each event it performed and its timestamp

e Suppose events in the this system happened in this real order:

e Time Tc0: System C sent data to System B (before C stopped
responding)

* Time Ta0: System A asked for work from System B
* Time TbO: System B asked for data from System C

TcO Ta0 TbO

A Naive Approach (cont)

* Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A

System B

System C

A Naive Approach (cont)

* Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A

System B
@
System C
sent data

System C

Tc

A Naive Approach (cont)

* Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A Ta
System A
asked for
System B work
@
System C
sent data
System C

Tc

A Naive Approach (cont)

* Ideally, we will construct real order of events from local timestamps
and detect this dependency chain:

System A Ta
System A
asked for Th
System B work
9
System B
System C asked for
sent data data
System C

Tc

A Naive Approach (cont)

e Butin reality, we do not know if Tc occurred before Ta and Tb, because
in an asynchronous distributed system clocks are not synchronized!

System A Ta
>
System A
asked for b
System B work T
@ >
System B
System C asked for
sent data data
System C N

Tc

A Naive Approach (cont)

e Butin reality, we do not know if Tc occurred before Ta and Tb, because
in an asynchronous distributed system clocks are not synchronized!

System A Ta
=
System A
asked for
System B work
@ 9 >
System B
asked for
data
System C N

Tc Tc

Rules for Ordering of Events

* local events precede one another = precede one another globally:
e If e/ e/ € h; and k < m, then ef—e™

* Sending a message always precedes receipt of that message:
* If ;= send(m) and e= receive(m), then e,—e;

* Event ordering is transitive:
e Ife—e’and e’ — e”, then e — e”

Space-time Diagram for Distributed Computation

p e,! e,? e’ e,? e,;” e’
1
o D 9 >
1 2 3
€, €,
P>
J o >
e;’ e;’ €3 €3 es’ 6
Ps3
J 9 D D 9 >

local events precede one another - precede one another globally:
If eX ;e € h; and k <m, then ef—e™
Sending a message always precedes receipt of that message:
If ;= send(m) and e= receive(m), then e,—e¢;
Event ordering is associative:
Ife —e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

1 2 3 4 5 6
p; €; €; €; €; €; €;
o D 9 >
1 2 3
€, €,
P> S
<o y
1 2 5 6
€3 €3 €3 €3 €3
Ps3
J 9 D D 9 >

local events precede one another - precede one another globally:
If eX ;e € h; and k <m, then ef—e™
Sending a message always precedes receipt of that message:
If ;= send(m) and e= receive(m), then e,—e¢;
Event ordering is associative:
Ife —e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

1 2 3 4 5 6
p; €; €; €; €; €; €;
o D 9 >
1 2 3
€, €,
P> S
<o y
1 2 5 6
€3 €3 €3 €3 €3
Ps3

local events precede one another - precede one another globally:
If eX ;e € h; and k <m, then ef—e™
Sending a message always precedes receipt of that message:
If ;= send(m) and e= receive(m), then e,—e¢;
Event ordering is associative:
Ife —e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

1 2 4 5 6
p; €; €; €; €; €;
J Jr =
1 2 3
€, €,
P> S
<o y
e,! X e’ 6
Ps3
e o = >
e,! e;f

local events precede one another - precede one another globally:
If eX ;e € h; and k <m, then ef—e™
Sending a message always precedes receipt of that message:
If ;= send(m) and e= receive(m), then e,—e¢;
Event ordering is associative:
Ife —e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

1 2 4 5 6
p; €; €; €; €; €;
J Jr =
1 2 3
€, €,
P> S
<o y
p e,! X e’ 6
3
e o = >
e,l>es®

local events precede one another - precede one another globally:
If eX ;e € h; and k <m, then ef—e™
Sending a message always precedes receipt of that message:
If ;= send(m) and e= receive(m), then e,—e¢;
Event ordering is associative:
Ife —e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

1 2 4 5 6
p; €; €; €; €; €;
J Jr =
1 2 3
€, €,
P> S
<o y
p e,! X e’ 6
3
e o = >
e,l>es®

local events precede one another - precede one another globally:
If eX ;e € h; and k <m, then ef—e™
Sending a message always precedes receipt of that message:
If ;= send(m) and e= receive(m), then e,—e¢;
Event ordering is associative:
Ife —e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

1 2 4 5 6
p; €; €; €; €; €;
>9 Jr =
e,! e,? 3
P> S
<o ¥
e,! e e 6
Ps3
e o = >
e,l>es®

local events precede one another - precede one another globally:
If eX ;e € h; and k <m, then ef—e™
Sending a message always precedes receipt of that message:
If ;= send(m) and e= receive(m), then e,—e¢;
Event ordering is associative:
Ife —e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

1 2 4 5 6
p; €; €; €; €; €;
>9 Jr =
e,! e,? 3
P> S
<o ¥
e,! e e 6
Ps3
e o = >
e,l>es®

local events precede one another - precede one another globally:
If eX ;e € h; and k <m, then ef—e™
Sending a message always precedes receipt of that message:
If ;= send(m) and e= receive(m), then e,—e¢;
Event ordering is associative:
Ife —e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

1 2 4 5 6
p, e; e; e; e, e;
>9 Jr =
ezl eZZ 3
P> S
<o .
e31 e32 e35 6
Ps3
e o <&~ >
e,l>es® e’ e}

local events precede one another - precede one another globally:
If eX ;e € h; and k <m, then ef—e™
Sending a message always precedes receipt of that message:
If ;= send(m) and e= receive(m), then e,—e¢;
Event ordering is associative:
Ife —e’and e’ — e”, then e — e”’

Space-time Diagram for Distributed Computation

1 2 4 5 6
p; €; €; €; €; €;
> <@ =
p e,! e, 3
2 >
<o y
p e,! X e’ 6
3
e o <&~ >
e;'->e;° e’ || es®

local events precede one another - precede one another globally:
If eX ;e € h; and k <m, then ef—e™
Sending a message always precedes receipt of that message:
If ;= send(m) and e= receive(m), then e,—e¢;
Event ordering is associative:
Ife —e’and e’ — e”, then e — e”’

Cuts of a Distributed Computation

e Suppose there is an external monitor process

* External monitor constructs a global state:
* Asks processes to send it local history

 Global state constructed from these local histories is:
a cut of a distributed computation

Example Cuts

e,! e,? e’ e,? e,;” e’
P
o "
e21 eZZ 3
P
9 0 9
e’ e e es’ es’ 6
P3

Example Cuts

BYE

P> 6‘2&/ e,’ 3

9 @ @
Ps3

9 9 (9 9

C

Example Cuts

Consistent vs. Inconsistent Cuts

e A cutis consistent if

* for any event e included in the cut
* any event e’ that causally precedes e is also included in that cut

* For cut C:
(e€C)A(e’>—e)=e’€C

Are These Cuts Consistent?

[N

e 1 e 2 3
pz 2\/ |
o 9 @
e;’ e;’ e/ 3! es’ \\'5
Ps
o o { o @

C

Are These Cuts Consistent?

Y] \\\
s /“x |

CI

Are These Cuts Consistent?

Y] \\\
v /\% |

CI

Are These Cuts Consistent?

Y] \\\
v /\% |

\wsistent

CI

Are These Cuts Consistent?

Y] \\\
v /\%

>
- inconsistent
included
in C ¢

Are These Cuts Consistent?

causally
6
precedes e,

X]
\//\%

|nduded
in C

|ncon5|stent

Are These Cuts Consistent?

causally
6
precedes e,

X]
\//\%

...but not
|nduded

W]C

|ncon5|stent

|nduded
in C c’

Are These Cuts Consistent?

causally
6
precedes e,

> >
...but not
included
e, ex in C
9 >

@ <. ®
0
wN
0%";-\
0
‘K:EL\\\\\i
®
¢
(<)Y

>
- inconsistent
included

in C o
A consistent cut corresponds to a consistent global state

What Do We Need to Know to
Construct a Consistent Cut?

causally
precedes ej®

>
...but not
We must know the causal included
ordering of events. If we € in C
>

do we can detect an
inconsistent cut

included
in C

>
inconsistent

CI

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

LC=1 LC=2 LC=3

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

LC=1 LC=2 LC=3 LC=4

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

LC=1 LC=2 LC=3 LC=4 LC=5

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of process p counts how many events in a distributed computation causally
preceded the current event at p (including the current event).

LC(e;) —the logical clock value at process p; at event ¢;

Suppose we had a distributed system with only a single process

e,! e,? e’ e,? e’ e’
@ L L 9 @ @ >

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Logical Clocks (cont.)

* In a system with more than one process logical clocks are updated as
follows:

* Each message m that is sent contains a timestamp TS(m)

e TS(m) is the logical clock value associated with sending event at the
sending process

Logical Clocks (cont.)

* In a system with more than one process logical clocks are updated as
follows:

* Each message m that is sent contains a timestamp TS(m)

e TS(m) is the logical clock value associated with sending event at the
sending process

e,! e,? e’ e,? e,;” e’

LC=1

Logical Clocks (cont.)

* In a system with more than one process logical clocks are updated as
follows:

* Each message m that is sent contains a timestamp TS(m)

e TS(m) is the logical clock value associated with sending event at the
sending process

e,! e,? e’ e,? e,;” e’

LC=1

Logical Clocks (cont.)

* In a system with more than one process logical clocks are updated as
follows:

* Each message m that is sent contains a timestamp TS(m)

e TS(m) is the logical clock value associated with sending event at the
sending process

LC=1

Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

e,! e,? e’ e,? e,;’ e’
L >
LC=1
e,
@ >

Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

e,! e,? e’ e,? e,;’ e’
@ @ >
Le=1 send(m)
e,’
@ >

Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

e,! e,? e’ e,? e,;’ e’
@

send(m) TS(m) =1

Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

send(m) TS(m) =1

What is the LC
value of e,??
ezl 2
> =

Logical Clocks (cont)

* When the receiving process receives message m, it updates its
logical clock to:

max{LC, TS(m)} + 1

send(m) TS(m) =1

What is the LC
value of e,??
ezl 2
> =

LC=1 LC=2

llustration of a Logical Clock

AN
AL

llustration of a Logical Clock

N
AN

1
P

llustration of a Logical Clock

Y TN
NI

llustration of a Logical Clock

Y TN
NI

llustration of a Logical Clock

Y TN
NI/

llustration of a Logical Clock

Y TN
NI/

llustration of a Logical Clock

Y TN
NI/

3

llustration of a Logical Clock

Y TN
NI/

llustration of a Logical Clock

Y TN
Nd

llustration of a Logical Clock

Y N
Nd

llustration of a Logical Clock

N
N

llustration of a Logical Clock

N
YV

llustration of a Logical Clock

N
YR

llustration of a Logical Clock

N
YR

llustration of a Logical Clock

1 2 .‘: 5

P; J >
1\/ / 5\}

P @ 9 >
1 \é 3/ 4/ 5 \

P & & @ >

llustration of a Logical Clock

N
YR

llustration of a Logical Clock

.‘: 5 6

P; J >

1\/ / 5\}

P @ 9 >
1 \é 3 / 4 / 5 \7

P & & @ >

llustration of a Logical Clock

.‘: 5 6 7

P; J >

1\/ / 5\}

P @ 9 >
1 \é 3 / 4 / 5 \7

P & & @ >

llustration of a Logical Clock

P \
P / \
Awesome, right?
Any drawbacks?
P

llustration of a Logical Clock

P \
P / \
Awesome, right?
Any drawbacks?
P

e x<e y =2 TS(e x)<TS(e_y), but
TS(e _x) < TS(e_y) doesn’t guarantee e x<e_y

Vector Clock

Vector Clock

Replace Single Logical value with Vector!

Vector Clock

Replace Single Logical value with Vector!
V[i] : #events occurred at i
V.[j] : #events i knows occurred at j

Update

* On local-event: increment V[I]

* On send-message: increment,
piggyback entire local vector V
* On recv-message: V,[k] = max(
VilkL,Vilk])
* V|[i] = V|[i]+1 (increment local clock)

* Receiver learns about number of
events sender knows occurred
elsewhere

Vector Clock

. , , |
Vector Clock Replace Single Logical value with Vector!

V[i] : #events occurred at i

V.[j] : #events i knows occurred at j

Update

* On local-event: increment V[I]

* On send-message: increment,
piggyback entire local vector V

* On recv-message: V,[k] = max(

Vi[k,Vilk])
* V|[i] = V|[i]+1 (increment local clock)
g - * Receiver learns about number of
: A:2
B:3 85| |B:5 events sender knows occurred
C:3 C4 C:5 elsewhere

C:0

Vector Clock

. , , |
Vector Clock Replace Single Logical value with Vector!

V[i] : #events occurred at i

V.[j] : #events i knows occurred at j

Update

* On local-event: increment V[I]

* On send-message: increment,
piggyback entire local vector V

* On recv-message: V,[k] = max(

Vi[k,Vilk])
* V|[i] = V|[i]+1 (increment local clock)
g - * Receiver learns about number of
: A:2
B:3 85| |B:5 events sender knows occurred
C:3 C4 C:5 elsewhere

C:0

Vector Clock

. , , |
Vector Clock Replace Single Logical value with Vector!

V[i] : #events occurred at i

V.[j] : #events i knows occurred at j

Update

* On local-event: increment V[I]

* On send-message: increment,
piggyback entire local vector V
* On recv-message: V,[k] = max(
VilkL,Vilk])
* V|[i] = V|[i]+1 (increment local clock)

* Receiver learns about number of
events sender knows occurred
elsewhere

Vector Clock

Vector Clock

Not ordered!

A:3>2
B:3<4

A:2 A2
B:4 B:
C: C:

B:3
C:2

: A:2
B:3 B:5 B:5
C3 C:4 C:5

Replace Single Logical value with Vector!
V[i] : #events occurred at i
V.[j] : #events i knows occurred at j

Update

* On local-event: increment V[I]

* On send-message: increment,
piggyback entire local vector V
* On recv-message: V,[k] = max(
Vi[k],Vi[k])
* V|[i] = V|[i]+1 (increment local clock)
* Receiver learns about number of

events sender knows occurred
elsewhere

Vector Clock Example

Each process i maintains a vector V,

* V/[i] : number of events that have occurred at i
e V/[j] : number of events | knows have occurred at

process j
Update
A2 * Local event: increment V,[1]
(E:;‘il * Send a message :piggyback entire vector V
* Receipt of a message: V/[k] = max(V/[k],V[k])
* Receiver is told about how many events the
sender knows occurred at another process k
A:2 | A2 . .
B:3| B:3 B:5|B:5 * Also V{i] = Vifij+1
c:2| IC:3 C:4|C:5

Vector Clock Example

Each process i maintains a vector V,

e VJ[i] : number of events that have occurred at i

* V[j] : number of events | knows have occurred at
process j

Update
* Local event: increment V,[1]

* Need to order operations

* Can’trely on real-time

* Vector clock: timestamping algorithm s.t.
* TS(A) <TS(B) = A happens before B
* Independent ops remain unordered

See any drawbacks?

Happens-before

* Happens-before relation
* Within single thread
* Between threads

* Accessing variables not ordered
by “happens-before” is a race

e Captures locks and dynamism

* How to track “happens-before”?

* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before Thread

4 N
* Happens-before relation Locki(mu);
* Within single thread vi= v
* Between threads !
] . Unlock(mu);
* Accessing variables not ordered -)

by “happens-before” is a race
e Captures locks and dynamism

* How to track “happens-before”?

* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before

* Happens-before relation
* Within single thread
* Between threads

* Accessing variables not ordered
by “happens-before” is a race

e Captures locks and dynamism

* How to track “happens-before”?

* Sync objects are ordering events
* Generalizes to fork/join, etc

Thread 1

/
Lock (mu);
v =v+l;

!

Unlock(mu);

.

~

Thread 2

/
Lock (mu);
v =v+l;

!

Unlock(mu);

/

.

~

/

Happens-before

* Happens-before relation
* Within single thread
* Between threads

* Accessing variables not ordered
by “happens-before” is a race

e Captures locks and dynamism

* How to track “happens-before”?

* Sync objects are ordering events
* Generalizes to fork/join, etc

Thread 1

/
Lock (mu);
v =v+l;

!

Unlock(mu);

.

~

T1 accessto V
“Happens-before”
T2 accesstoV

Thread 2

-

TSa
Lock (mu);

v =v+l;

!

Unlock(mu);

.

~

/

Flaws of Happens-before

* Difficult to implement
* Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example

Flaws of Happens-before

* Difficult to implement
* Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example

Thread 1

y =ytl;
!
Lock(mu);
|
vi=v+l;
!
Unlock(mu); Thread 2
\ LOCli (mu);
vi=v+l;
!
Unlock(mu);
!

y =y+l;

Flaws of Happens-before

* Difficult to implement
* Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example
e T1-acc(v) happens before T2-acc(v)
T1-acc(y) happens before T1-acc(v)

T2-acc(v) happens before T2-acc(y)
Conclusion: no race on Y!

Finding doesn’t generalize

Thread 1

y = y-i-l;
!
Lock(mu);
|
vi=v+l;
Unlock(mu); Thread 2
\ LOCli (mu);
vi=v+l;
!
Unlock(mu);
!

y =y+l;

Flaws of Happens-before

Difficult to implement
* Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example

e T1-acc(v) happens before T2-acc(v)
e T1-acc(y) happens before T1-acc(v)
e T2-acc(v) happens before T2-acc(y)
e Conclusion: noraceonY!

* Finding doesn’t generalize

Flaws of Happens-before

Difficult to implement
* Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example

e T1-acc(v) happens before T2-acc(v)
e T1-acc(y) happens before T1-acc(v)
e T2-acc(v) happens before T2-acc(y)
e Conclusion: noraceonY!

* Finding doesn’t generalize

Thread 2

Lock(mu);
v :=v+l;

Unlock(mu);

Thread 1 / S
y =y+l; /
|

Lock(mu);
v :=v+tl;

Unlock(mu);

Dynamic Race Detection Summary

o Lockset: verify locking discipline for shared memory
v’ Detect race regardless of thread scheduling
x False positives because other synchronization primitives
(fork/join, signal/wait) not supported
o Happens-before: track partial order of program events
v’ Supports general synchronization primitives
x Higher overhead compared to lockset
x False negatives due to sensitivity to thread scheduling

False positive using Lockset

L
1 .
St Fur]:(u} u Tracking accesses to X
I Py o W Inst State Lockset |
3 t:Wrix) 6 u:Wr(x) 1 Virgin {}
2 4t ['nluck{a} 7 w:Unlockia) 3 Exclusive:t {}

Shared Modified | {a}

‘81 i‘ Jmﬂ{u}
9 t:Wrix)
10 t-Fork(v) D 9 Report race {}
11 t:Lock(a) > 14 v:Lock(a)
12 t:Wr(x) 15 v:Wr(x)
3| 13 t:Unlock(a) 16 v:Unlock(a)

17 t:Join(v)

N

RaceTrack Notations
Notation | Meaning | §

i -
= {teT:V(t) >0
L Lockset of thread t N { t_ (t) >0} . .
t Inc(Vit) = w—if u =1 then V(u)+ 1 else V(u)
C Lockset of memory x Merge(V.W) = u— maz(V(u), W (u))
X Remove(V, W) 2w if Vi(u) < W(u) then 0 else V(u)
Bu Vector clock of thread u
SX Threadset of memory x
ti Thread t at clock time i

RaceTrack Algorithm
Notaion | Meaning

|_t Lockset of thread t

CX Lockset of memory x

Bt Vector clock of thread t

SX Threadset of memory x

t1 Thread t at clock time 1

V| & [{teT:V(t) >0}
Ine(V,t) 2y if u=tthen Vi(u)+ 1 else V(u)
Merge(V,W) 2y mazx(V(u), W(u))
A

Remove(V, W)

w— if V(u) < W(u) then 0 else V(u)

At t:Lock(l):
L: — L U{l}

At t:Unlock(l):
Lt — Lt - {E}

At t:Fork(u):
L.~ {)
Bu — *'F.’IET'gE({ "{“! l:"ll }'.- Bt)
B; — Ine(B,,t)

At t:Join(u):
B; «— Merge(By, By)

At t:Rd(z) or t:Wr(z):
Sz — Merge(Remove(Sg, Bt), {(t, B:(t))})
if |5z > 1
then C', — C, M Ly
else Cy — Ly
if |Sz| > 1 A C; = {} then report race

Avoiding Lockset's false positive (1)

L
1
S~ 1 r_:Fur]{(u}

2 ff]_ﬂﬂkii;'}
3t:Wrix)

*é_i‘_:jﬂiﬂf 1)
9t:-Wrix)
/10 t:Fork(v)

11 t:Lock(a)
12 t:Wr(x)

“17 t:Join(v)

N

2 4 t:Unlock(a) ﬂ

u

3| 13 t:Unlock(a)

5 u:Lockia)
6 u:Wrix)
7 w:Unlock(a)

U

4 14 v:Lockia)
15 v:Wr(x)
16 v:Unlock(a)

L, Lockset of thread t

Lockset of memory x

B, Vector clock of thread t

Threadset of memory x

t, Thread t at clock time 1

0 ALy Y] {t) - -

1 {t,} {} {tuy}
2 {a}

3 fa) | {t)

4 ()

S {a}

6 {t,u,}

7 {}

8 {t,u,} - -

L
1
S Fur]{(u]l u

2t Lur:]{(a 5 u:Lockia)
3t:Wrix) 6 u:Wrix)

2 41t ['rulunk(a 7 w:Unlock(a)
8 i‘ Jmﬂl,'u]l
9t:-Wrix)

XZ_‘I_EL EFE'I]I(U}' U

11 t:Lock(a) 4 14 v:Lockia)
15 v:Wr(x)
16 v:Unlock(a)

12 t:Wr(x)
3| 13 t:Unlock(a)

17 t:Join(v)

N

{a}

{t;u,}

{}

Avoiding Lockset's false positive (2)

{t;uy}

L, Lockset of thread t

Lockset of memory x

B, Vector clock of thread t

Threadset of memory x

t, Thread t at clock time 1

{}

{t}

10

{t;,u,}

{}

{t,vy}

11

12

{t}

13

{1}

14

{a}

15
16

{t;,v,}

{}

L
1
~1 _r_:Fnr]{(u}l u

2 t:Lock(a) 5 uw:Lock(a)
3 t:Wrix) 6 u:Wr(x)
2 4 t:Unlock(a) 7 u:Unlock(a)
‘8 t:Join(u)
9t:-Wrix)
XZ_‘I_EL t:Fork(v) U

11 t:Lock(a)
12 t:Wr(x)

4 14 v:Lockia)
15 v:Wr(x)
3| 13 t:Unlock(a) 16 v:Unlock(a)

“17 t:Join(v)

N

{}

Avoiding Lockset's false positive (2)

{t;uy}

L, Lockset of thread t

Lockset of memory x

B, Vector clock of thread t

Threadset of memory x

t, Thread t at clock time 1

{t;,u,}

{} | {tyvy}

11

{a}

12

{a}

{t}

13

{1}

14

{a}

15
16

{t;,v,}

{}

Only one thread!
Are we done?

	Slide 1: Race Detection
	Slide 2: Pro Forma
	Slide 6: Race Detection Faux Quiz
	Slide 62: Race Detection
	Slide 63: Race Detection
	Slide 64: Race Detection
	Slide 65: Race Detection
	Slide 66: Race Detection
	Slide 67: Race Detection
	Slide 68: Race Detection
	Slide 69: Race Detection
	Slide 70: Race Detection
	Slide 71: Race Detection
	Slide 72: Race Detection
	Slide 73: Races
	Slide 74: Races
	Slide 75: Races
	Slide 76: Races
	Slide 77: Races
	Slide 78: Races
	Slide 79: Races
	Slide 80: Races
	Slide 81: Races
	Slide 82: Races
	Slide 83: Races
	Slide 84: Races
	Slide 85: Races
	Slide 86: Detecting Races
	Slide 87: Static Data Race Detection
	Slide 88: Static Data Race Detection
	Slide 89: Static Data Race Detection
	Slide 90: Lockset Algorithm
	Slide 91: Lockset Algorithm
	Slide 92: Lockset Algorithm
	Slide 93: Lockset Algorithm
	Slide 94: Lockset Algorithm
	Slide 95: Lockset Algorithm
	Slide 96: Lockset Algorithm
	Slide 97: Lockset Algorithm
	Slide 98: Lockset Algorithm
	Slide 99: Lockset Algorithm
	Slide 101: Lockset Algorithm Example
	Slide 102: Lockset Algorithm Example
	Slide 103: Lockset Algorithm Example
	Slide 104: Lockset Algorithm Example
	Slide 105: Lockset Algorithm Example
	Slide 106: Lockset Algorithm Example
	Slide 107: Lockset Algorithm Example
	Slide 108: Lockset Algorithm Example
	Slide 109: Lockset Algorithm Example
	Slide 110: Lockset Algorithm Example
	Slide 111: Improving over lockset
	Slide 112: Improving over lockset
	Slide 113: Improving over lockset
	Slide 114: Happens-before
	Slide 115: Happens-before
	Slide 116: Happens-before
	Slide 117: Happens-before
	Slide 118: Ordering and Causality
	Slide 119: Ordering and Causality
	Slide 120: Ordering and Causality
	Slide 121: Ordering and Causality
	Slide 122: Ordering and Causality
	Slide 123: Ordering and Causality
	Slide 124: Ordering and Causality
	Slide 125: Ordering and Causality
	Slide 126: A Naïve Approach
	Slide 127: A Naïve Approach
	Slide 128: A Naïve Approach
	Slide 129: A Naïve Approach
	Slide 130: A Naïve Approach (cont)
	Slide 131: A Naïve Approach (cont)
	Slide 132: A Naïve Approach (cont)
	Slide 133: A Naïve Approach (cont)
	Slide 134: A Naïve Approach (cont)
	Slide 135: A Naïve Approach (cont)
	Slide 136: Rules for Ordering of Events
	Slide 137: Space-time Diagram for Distributed Computation
	Slide 138: Space-time Diagram for Distributed Computation
	Slide 139: Space-time Diagram for Distributed Computation
	Slide 140: Space-time Diagram for Distributed Computation
	Slide 141: Space-time Diagram for Distributed Computation
	Slide 142: Space-time Diagram for Distributed Computation
	Slide 143: Space-time Diagram for Distributed Computation
	Slide 144: Space-time Diagram for Distributed Computation
	Slide 145: Space-time Diagram for Distributed Computation
	Slide 146: Space-time Diagram for Distributed Computation
	Slide 147: Cuts of a Distributed Computation
	Slide 148: Example Cuts
	Slide 149: Example Cuts
	Slide 150: Example Cuts
	Slide 151: Consistent vs. Inconsistent Cuts
	Slide 152: Are These Cuts Consistent?
	Slide 153: Are These Cuts Consistent?
	Slide 154: Are These Cuts Consistent?
	Slide 155: Are These Cuts Consistent?
	Slide 156: Are These Cuts Consistent?
	Slide 157: Are These Cuts Consistent?
	Slide 158: Are These Cuts Consistent?
	Slide 159: Are These Cuts Consistent?
	Slide 160: What Do We Need to Know to Construct a Consistent Cut?
	Slide 161: Logical Clocks
	Slide 162: Logical Clocks
	Slide 163: Logical Clocks
	Slide 164: Logical Clocks
	Slide 165: Logical Clocks
	Slide 166: Logical Clocks
	Slide 167: Logical Clocks
	Slide 168: Logical Clocks
	Slide 169: Logical Clocks (cont.)
	Slide 170: Logical Clocks (cont.)
	Slide 171: Logical Clocks (cont.)
	Slide 172: Logical Clocks (cont.)
	Slide 173: Logical Clocks (cont)
	Slide 174: Logical Clocks (cont)
	Slide 175: Logical Clocks (cont)
	Slide 176: Logical Clocks (cont)
	Slide 177: Logical Clocks (cont)
	Slide 178: Logical Clocks (cont)
	Slide 179: Illustration of a Logical Clock
	Slide 180: Illustration of a Logical Clock
	Slide 181: Illustration of a Logical Clock
	Slide 182: Illustration of a Logical Clock
	Slide 183: Illustration of a Logical Clock
	Slide 184: Illustration of a Logical Clock
	Slide 185: Illustration of a Logical Clock
	Slide 186: Illustration of a Logical Clock
	Slide 187: Illustration of a Logical Clock
	Slide 188: Illustration of a Logical Clock
	Slide 189: Illustration of a Logical Clock
	Slide 190: Illustration of a Logical Clock
	Slide 191: Illustration of a Logical Clock
	Slide 192: Illustration of a Logical Clock
	Slide 193: Illustration of a Logical Clock
	Slide 194: Illustration of a Logical Clock
	Slide 195: Illustration of a Logical Clock
	Slide 196: Illustration of a Logical Clock
	Slide 197: Illustration of a Logical Clock
	Slide 198: Illustration of a Logical Clock
	Slide 199: Vector Clock
	Slide 200: Vector Clock
	Slide 201: Vector Clock
	Slide 202: Vector Clock
	Slide 203: Vector Clock
	Slide 204: Vector Clock
	Slide 205: Vector Clock
	Slide 206: Vector Clock Example
	Slide 207: Vector Clock Example
	Slide 208: Happens-before
	Slide 209: Happens-before
	Slide 210: Happens-before
	Slide 211: Happens-before
	Slide 212: Flaws of Happens-before
	Slide 213: Flaws of Happens-before
	Slide 214: Flaws of Happens-before
	Slide 215: Flaws of Happens-before
	Slide 216: Flaws of Happens-before
	Slide 217: Dynamic Race Detection Summary
	Slide 218: False positive using Lockset
	Slide 219: RaceTrack Notations
	Slide 220: RaceTrack Algorithm
	Slide 221: Avoiding Lockset's false positive (1)
	Slide 222: Avoiding Lockset's false positive (2)
	Slide 223: Avoiding Lockset's false positive (2)

