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Spark - Motivation

- Most Real Applications require multiple MR Steps
- Indexing Pipeline - 21 Steps
- Analytics Query - 5-11 Steps
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- Transformation to build RDDS and actions to execute

eaccunte O)
- Clean programmable AP

- Fault tolerance and in-memory processing

ApdA - c OmpideY O Fivnigatioan

10 L ¥aMme e

— T ot



Spark - Example P s
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- Read from a Log and filter errors . cives v“:':;.,‘**‘"‘ .
S ot w3
S S , i ‘ | P&C‘A’ /d o3
ines = spark.textFile(“hdfs://...") W e N
errors = Tines.filter(_.startswith(“ERROR")) L v L X
messages = errors.map(_.split(‘\t’)(2)) So\-

messages.cache()
messages.filter(_.contains(“fo0”)).count

messages.filter(_.contains(“bar”)).count



Stream Processing



The Dataflow Model: A Practical Approach to
Balancing Correctness, Latency, and Cost in
Massive-Scale, Unbounded, Out-of-Order
Data Processing



Motivation o how e 3

Consider an initial example: a streaming video provider O ), v D
wants to monetize their content by displaying video ads and
billing advertisers for the amount of advertising watched.
The platform supports online and offline views for content fa }'(Q
and ads. The video provider wants to know how much to bill Y aryY P
each advertiser each day, as well as aggregate statistics about /.77
the videos and ads. In addition, they want to efficiently run
offline experiments over large swaths of historical data. L

t

Advertisers/content providers want to know how often
and for how long their videos are being watched, with which
content/ads, and by which demographic groups. They also

want to know how much they are being charged /paid. They :. —
want all of this information as quickly as possible, so that — . x
they can adjust budgets and bids, change targeting, tweak . o y & cactdy tout 4
. ; . i b o> ~ G
campaigns, and plan future directions in as close to real
time as possible. Since money is involved, correctness is o 5’ ,>\’( YA

paramount. 6
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Streaming vs Batch
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Windowing

- Required for some operations, unnecessary for others

- Windowing in Batch data ??
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Fixed Sliding Sessions
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Data Flow Model API

- ParDo:

- GroupByKey:

- Windowing
- AssignWindow
- MergeWindow



Data Flow Model API

— akawmPA
Ll gime?
(kl, U1, 1_:1&2, [0) OO)),
(k27 v2, 1.3-1-4, [0’ OO)),
(kl , U3, 1&5-77 [01 OO)),
(k1,v4,13:20, [0, 00))

AssignWindows(
Sessions(30m))

(k1,v1,13:02, [13:02, 13:32)),
(k2,v2,13:14,[13:14, 13:44)),
(k1,vs, 13:57, [13:57, 14:27)),
(1, va, 13:20, [13:20, 13:50))

| DropTimestamps

(k:l,vl, [13:02, 13:32)),
(k2,v2, [13:14, 13:44)),
(kl,'vs, [13:57, 14:27)),

s >

GroupByKey

(k1, [(v1, [13:02, 13:32)),
(vs, [13:57,14:27)),
(va, [13:20,13:50))]),
(k2, [(ve, [13:14, 13:44))])

|

(kl, [(’U], [13:02, 13:50)),
(vs, [13:57,14:27)),

(v4, [13:02,13:50))]),
(kz, [('vz, [13!14, 13:44))})

MergeWindows(
Sessions(30m))

l GroupAlsoByWindow

(k1, [([v1, va], [13:02, 13:50)),
([vs], [13:57,14:27))]),
(kg, [( [Vz], [13:14, 13:44))])

| EzpandToElements

(K1, [v1,v4), 18:50, [13:02, 13:50)),
(k1, [vs], 14:27, [13:57, 14:27)),
(k2, [v2], 13:44, [13:14, 13:44))



Fixed Interval

PCollection<KV<String, Integer>> output = input

.apply (Window.trigger (Repeat (AtPeriod (1, MINUTE)))

.accumulating())
.apply (Sum.integersPerKey ());
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Event Time



Fixed Data Count

PCollection<KV<String, Integer>> output = input
.apply (Window.trigger (Repeat (AtCount (2)))
.discarding())
.apply (Sum.integersPerKey () );
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Micro-Batch Processing

PCollection<KV<String, Integer>> output = input
.apply (Window.into (FixedWindows.of (2, MINUTES))
.trigger (Repeat (AtWatermark () )))
.accumulating())
.apply (Sum.integersPerKey ());

12:08 12:09
[y
'S

Processing Time

12:06 12:07

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08
Event Time



