
Dandelion: a Compiler and Runtime for Heterogeneous
Systems

Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis Fetterly
Microsoft Research Silicon Valley

Abstract

Computer systems increasingly rely on heterogeneity
to achieve greater performance, scalability and en-
ergy efficiency. Because heterogeneous systems typi-
cally comprise multiple execution contexts with differ-
ent programming abstractions and runtimes, program-
ming them remains extremely challenging.

Dandelion is a system designed to address this pro-
grammability challenge for data-parallel applications.
Dandelion provides a unified programming model for
heterogeneous systems that span diverse execution con-
texts including CPUs, GPUs, FPGAs, and the cloud. It
adopts the .NET LINQ (Language INtegrated Query) ap-
proach, integrating data-parallel operators into general
purpose programming languages such as C# and F#. It
therefore provides an expressive data model and native
language integration for user-defined functions, enabling
programmers to write applications using standard high-
level languages and development tools.

Dandelion automatically and transparently distributes
data-parallel portions of a program to available comput-
ing resources, including compute clusters for distributed
execution and CPU and GPU cores of individual nodes
for parallel execution. To enable automatic execution of
.NET code on GPUs, Dandelion cross-compiles .NET
code to CUDA kernels and uses the PTask runtime [85]
to manage GPU execution. This paper discusses the de-
sign and implementation of Dandelion, focusing on the
distributed CPU and GPU implementation. We evaluate
the system using a diverse set of workloads.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522715

1 Introduction
The computing industry is experiencing a paradigm shift
to heterogeneous systems in which general-purpose pro-
cessors, specialized cores such as GPUs and FPGAs, and
the cloud are combined to achieve greater performance,
scalability and energy efficiency. Such systems typ-
ically comprise multiple execution contexts with very
different programming abstractions and runtimes: this
diversity gives rise to a number of programming chal-
lenges such as managing the complexities of archi-
tectural heterogeneity, resource scheduling, and fault-
tolerance. The need for programming abstractions and
runtimes that allow programmers to write applications
in a high-level programming language portable across a
wide range of execution contexts is increasingly urgent.

In Dandelion, we consider the research problem of
writing data-parallel applications for heterogeneous sys-
tems. Our target systems are compute clusters whose
compute nodes are equipped with multi-core CPUs and
GPUs. We envision that a typical Dandelion cluster con-
sists of a small number of moderately powerful comput-
ers. Such a cluster can easily have aggregated compute
resources of more than 100,000 cores and 10TB of mem-
ory, and represents an attractive and affordable comput-
ing platform for many demanding applications such as
large-scale machine learning and computational biology.
Our goal is to make it simple for programmers to write
high performance applications for this kind of heteroge-
neous system, leveraging all the resources available in
the system.

Dandelion provides a “single machine” abstraction:
the programmer writes sequential code in a high-level
programming language such as C# or F#, and the sys-
tem automatically executes it utilizing all the parallel
compute resources available in the execution environ-
ment. Achieving this goal requires substantial work at
many layers of the technology stack including program-
ming languages, compilers, and distributed and parallel
runtimes. Dandelion addresses two primary challenges.
First, the architectural heterogeneity of the system com-
ponents must be well encapsulated: the programming
model must remain simple and familiar while insulat-

49

ing the programmer from challenges arising from the
presence of diverse execution models, memory models
and ISAs. Second, the system must integrate multiple
runtimes efficiently to enable high performance for the
overall system.

At the programming language level, the language
integration approach has enjoyed great success [101,
27, 103], and provides the most attractive high-level
programming abstraction. We use LINQ [3], a gen-
eral language integration framework, as the program-
ming model. In order to run the same code in differ-
ent architectural contexts, Dandelion introduces a new
general-purpose cross compiler framework that enables
the translation of .NET byte-code to multiple back-ends
including GPU, FPGA, and vector processors. In this
paper, we focus on our implementation for GPUs. The
FPGA backend [29] was implemented by others and re-
ported elsewhere.

At the runtime level, architectural heterogeneity de-
mands that the system’s multiple execution contexts
seamlessly interoperate and compose. We adopt the
dataflow execution model, where vertices of a graph rep-
resent computation and the edges represent data or con-
trol communication channels. Dandelion comprises sev-
eral execution engines: a distributed cluster engine, a
multi-core CPU engine, and a GPU engine. Each engine
represents its computation as a dataflow graph, and the
dataflow graphs of all the engines are composed by asyn-
chronous communication channels to form the global
dataflow graph for a Dandelion computation. Data
transfers among the execution engines are automatically
managed by Dandelion and completely transparent to
the programmer. This design offers great composabil-
ity and flexibility while making the parallelism of the
computation explicit to the runtimes.

A large number of research efforts have the same
goal as Dandelion: building scalable heterogeneous sys-
tems [58, 49, 98]. Most of these systems retrofit accel-
erators such as GPUs, FPGAs, or vector processors into
existing frameworks such as MapReduce or MPI. With
Dandelion, by contrast, we take on the task of building
a general framework for an array of execution contexts.
We believe that it is now time to take a fresh look at the
entire software stack, and Dandelion represents a step in
that direction. This paper makes the following contribu-
tions:

• The Dandelion prototype demonstrates the viability
of using a rich object-oriented programming language
as the programming abstraction for data-parallel com-
puting on heterogeneous systems.
• We build a general-purpose compiler framework that
automatically compiles a data-parallel program to run
on distributed heterogeneous systems. Multiple back-

ends including GPU and FPGA are supported. While
this framework enables the programmer to write code
in a mostly familiar way, target architectures do give
rise to some limitations on the programming model.
• We validate our design choice of treating a hetero-
geneous system as the composition of a collection of
dataflow engines. Dandelion composes three dataflow
engines: cluster, multi-core CPU, and GPU.
• We build a general purpose GPU library for a large
set of parallel operators including most of the relational
operators supported by LINQ. The library is built on
top of PTask [85], a high performance dataflow engine
for GPUs.

The remainder of this paper is organized as follows.
Section 2 introduces the programming model for Dan-
delion. Sections 3 and 4 describe the design and imple-
mentation of Dandelion, respectively. In Section 5, we
evaluate the Dandelion system using a variety of exam-
ple applications. Section 6 discusses related work and
Section 7 concludes.

2 Programming Model
To support data-parallel computation, Dandelion em-
beds a rich set of data-parallel operators using the LINQ
language integration framework. This leads to a pro-
gramming model in which the developer writes pro-
grams using a single unified programming front-end of
C# or F#. This section provides a high-level overview of
this programming model.

2.1 LINQ
LINQ is a .NET framework for language integration.
It introduces a set of declarative operators to manipu-
late collections of .NET objects. The operators are in-
tegrated seamlessly into high-level .NET programming
languages, giving developers direct access to all the
.NET libraries and user-defined application code. Col-
lections manipulated by LINQ operators can contain ob-
jects of any .NET type, making it easy to compute with
complex data such as vectors, matrices, and images.

LINQ operators perform transformations on .NET
data collections, and LINQ queries are computations
formed by composing these operators. Most LINQ op-
erators are familiar relational operators including projec-
tion (Select), filters (Where), grouping (GroupBy),
aggregation (Aggregate), and join (Join). LINQ
also supports set operations such as union (Union) and
intersection (Intersect).

The base type for a LINQ collection is
IEnumerable<T>, representing a sequence of .NET
objects of type T. LINQ also exposes a query interface

50

1 IQueryable<Vector>
2 OneStep(IQueryable<Vector> vectors,
3 IQueryable<Vector> centers) {
4 return vectors
5 .GroupBy(v => NearestCenter(v, centers))
6 .Select(g => g.Aggregate((x, y) => x+y)/g.Count());
7 }
8
9 int

10 NearestCenter(Vector vector,
11 IEnumerable<Vector> centers) {
12 int minIndex = 0;
13 double minValue = Double.MaxValue;
14 int curIndex = 0;
15 foreach (Vector center in centers) {
16 double curValue = (center - vector).Norm2();
17 if (minValue > curValue) {
18 minValue = curValue;
19 minIndex = curIndex;
20 }
21 curIndex++;
22 }
23 return minIndex;
24 }

Figure 1: A simplified k-means implementation in
LINQ.

IQueryable<T> (a subtype of IEnumerable<T>)
to enable deferred execution of LINQ queries by a
custom execution provider. Dandelion is implemented
as a new execution provider that compiles LINQ queries
to run on a distributed heterogeneous system.

As an example, Figure 1 shows a simplified version of
k-means written in C#/LINQ. The k-means algorithm is
a classical clustering algorithm for dividing a collection
of vectors into k clusters. It is a simple, iterative com-
putation that repeatedly performs OneStep until some
convergence criterion is reached.

At each iteration, OneStep first groups the input
vectors vectors by their nearest center, and then com-
putes the center for each new group by computing the
average of the vectors in the group. OneStep invokes
the user-defined function NearestCenter to com-
pute the nearest center of a vector. To run k-means on a
GPU, Dandelion cross-compiles the user-defined func-
tions to CUDA and uses the resulting GPU binaries to
instantiate primitives from a library of primitives that
are common to the underlying relational algebra. These
primitives are treated in detail in Section 4.2.

2.2 Dandelion Extension

The overriding goal of Dandelion is to enable the au-
tomatic execution of programs such as the one shown
in Figure 1 on distributed heterogeneous systems with-
out any modification. Our main challenge is therefore
to preserve the LINQ/.NET programming model, rather
than designing new language features. This section de-
scribes a very small set of Dandelion specific extensions

that we believe are essential. They are integrated in the
LINQ programming model as user-defined operators and
language attributes.

Dandelion extends LINQ with three
new operators. The first operator is
source.AsDandelion(gpuType). It turns
the LINQ collection source into a Dandelion col-
lection, enabling any LINQ query using it as input to
be executed by Dandelion. For example, to run the
k-means program in Figure 1 using Dandelion, we add
a call to AsDandelion to the two inputs as follows:

vectors = vectors.AsDandelion();
centers = centers.AsDandelion();
OneStep(vectors, centers);

The argument gpuType of AsDandelion is op-
tional. It specifies the GPU type of the objects in the in-
put collection. Dandelion can improve the performance
of computations on the GPU when it knows ahead of
time that it is operating on a sequence of fixed-length
records. This argument informs the Dandelion runtime
of the record size. In k-means, the vectors are all the
same size; if we know the size is, e.g. 100, we write
AsDandelion(GPU.Array(100)). Section 4 ex-
plains how this information is used to generate a more
efficient execution plan for the GPU.

The second operator added in Dandelion is
source.DoWhile(body, cond), a do while
loop construct for iterative computations. The argu-
ments body and cond are both Dandelion query
functions, and DoWhile repeatedly executes body
until cond is false. For example, our iterative k-means
program is expressed as follows. DoWhile enables
Dandelion to ship the execution of the entire conditional
loop to the cluster or GPU, thus avoiding unnecessary
context switching.

vectors = vectors.AsDandelion();
centers = centers.AsDandelion();
centers.DoWhile(
centers => OneStep(vectors, centers),
(centers, newCenters) =>

NotConverged(centers, newCenters)
);

The third operator is source.Apply(f), which is
semantically equivalent to f(source) but its execu-
tion is deferred, along with the other LINQ operators. At
the cluster level, the input data is partitioned across the
cluster machines, and the function f is applied to each
of the partitions independently in parallel. At the ma-
chine level, the function f runs on either CPU or GPU,
depending on its implementation. The primary use of
Apply is to integrate existing CPU and GPU libraries
such as CUBLAS [78] and MKL [56] into Dandelion,
making the primitives defined in those libraries accessi-
ble at the programming API. Unlike all the other LINQ

51

operators, the correct use of Apply may require that the
input data be partitioned in a certain way. The Apply
operator has overloads that allows the programmer to
specify the data partitioning of the input. Hash and range
partitioning are supported. Dandelion introduces a data
partitioning operation in the execution plan if it cannot
infer that the input is not already partitioned correctly.

Dandelion also introduces an Accelerated anno-
tation. By default, Dandelion automatically “kernelizes”
the user-defined .NET functions invoked by the LINQ
operators to run on the GPUs. However, some func-
tions may already have an existing high-performance
GPU implementation, which the developer would def-
initely like to use. In Dandelion, the developer can
add an Accelerated(dev, dll, op) attribute to
a .NET function to override the cross-compilation by
Dandelion. The annotation tells the system that the cur-
rent .NET function can be replaced by the function op in
the DLL dll on the computing device type dev. This is
similar to the .NET PInvoke and Java JNI mechanisms.

2.3 Limitations

Dandelion imposes some restrictions on programs. First,
all the user-defined functions invoked by the LINQ oper-
ators must be side-effect free, and Dandelion makes this
assumption about user programs without either static or
runtime checking. Similar systems [101, 27] we are
aware of make the same assumption.

Second, Dandelion depends on low-level GPU run-
times such as CUDA. These runtimes have very lim-
ited support for device-side dynamic memory allocation,
and even when it is supported, the performance can be
poor. Consequently, we choose not to kernelize any
.NET function that contains dynamic memory alloca-
tion, and execute such functions on CPUs. When cross-
compiling .NET code, Dandelion uses static analysis to
infer the size of .NET memory allocations in the code
and translates the fixed-size allocations to stack alloca-
tions on GPUs. In our k-means example above, Dande-
lion is able to infer the sizes for all the memory alloca-
tions in the code, given the size of the input vectors.

3 System Architecture
Figure 2 shows an architectural overview of the Dande-
lion system. There are two main components: the Dan-
delion compiler generates the execution plans and the
worker code to be run on the CPUs and GPUs of cluster
machines, and the Dandelion runtime uses the execution
plans to manage the computation on the cluster, taking
care of issues such as scheduling and distribution at mul-
tiple levels of the cluster. An execution plan describes

Client
User Program

Data-flow graphs
(cluster, machine, GPU)

Worker Vertex Code
(CPU and GPU)

Dandelion Compiler

Machine
Runtime

Dandelion Vertex

Cluster Runtime GPU Runtime

Worker Vertex CodeData-flow graphs

Cluster

Figure 2: The Dandelion system architecture.

a computation as a dataflow graph. Each vertex in the
dataflow graph represents a fragment of the computation
and the edges represent communication channels. This
section provides an overview of the system, highlighting
its key features.

3.1 Dandelion Compiler

Consider the k-means example shown in Figure 1. To
run it on a compute cluster comprising CPUs and GPUs,
the Dandelion compiler generates CUDA code, and
three levels of dataflow graphs to orchestrate the execu-
tion. In this case, Dandelion generates CUDA impleme-
nations for the NearestCenter function, along with
the other supporting functions such as Norm2 and other
vector arithmetic operators.

The first dataflow graph is at the cluster level. The
compiler applies query rewrite rules to the LINQ pro-
gram to transform it into a dataflow graph that is op-
timized for parallel execution on the distributed com-
pute substrate. At runtime, the graph is then anno-
tated, deciding on which machine each vertex should
execute, leveraging information gleaned at runtime. Be-
cause this aspect of the system is similar to existing sys-
tems [101, 103, 52] we do not elaborate on it further.

At the next level, as vertices from the cluster-level
dataflow graph are assigned to machines, they are ex-
panded into a machine-level dataflow graph describing
the execution on that machine. The system decides
which vertices are executed on GPUs. In our k-means
example, the entire computation can be offloaded to
GPU(s).

Finally, for vertices that are assigned to the GPU, a
GPU-level dataflow graph is generated to describe the
computation. It combines the CUDA-code generated
earlier with GPU code for the LINQ operators that use

52

A B

C

D

User Program

Memory, TCP, Files

V V V

Cluster Machine GPU

Figure 3: A global view of a Dandelion dataflow
graph.

them. Dandelion implements LINQ operators via a GPU
library consisting of a large collection of modular primi-
tives. Most of the primitives are implemented as generic
templates. For example, the primitive for Select is
parameterized by both the data type and the processing
function, which Dandelion instantiates using the cross-
compiled CUDA code. The primitives are designed for
composability: new composite primitives can be formed
from more basic ones. The library supports relational
operators and a number of well-known basic parallel op-
erators and data structures such as parallel scan (inclu-
sive and exclusive prefix sum), hash-table and sorting.

3.2 Dandelion Runtime
Figure 3 shows the three dataflow graphs, each corre-
sponding to an execution layer in the system. These
three layers together form the Dandelion runtime, and
the composition of those graphs forms the global
dataflow graph for the entire computation.

The cluster execution engine assigns vertices to avail-
able machines and distributes code and graphs, orches-
trating the computation. Each machine executes its own
dataflow graph, managing input/output and execution
threads. Vertices in the machine dataflow graph run on
either CPUs or GPUs. The execution of the GPU ver-
tices is delegated to the GPU dataflow engine; we use
PTask [85] as our GPU dataflow engine.

Dandelion manages machine-machine and CPU-GPU
data communication automatically. The compiler gen-
erates efficient serialization code for all the data types
involved in both cases. All data communication is im-
plemented using asynchronous channels.

4 Implementation
This section provides implementation details of the com-
ponents of the Dandelion system, including various lay-
ers of the compiler and runtime. Dandelion is a complex
system and it leverages a number of existing technolo-
gies that have been published elsewhere. We therefore

focus our attention mainly on the novel aspects of the
system. We continue to use the k-means example in Fig-
ure 1 as a running example.

4.1 GPU Compiler and Code Generation

A key goal of Dandelion is to enable automatic ex-
ecution on GPUs for programs written in C# or F#.
The Dandelion compiler relies on a library of generic
primitives to construct the execution plans and a cross-
compiler to translate user-defined types and lambda
functions from .NET to GPU code. This compilation
step takes .NET bytecode as input and produces CUDA
source code as output. Working at the bytecode level
allows us to handle binary-only application code.

We build our cross-compiler using the Common Com-
piler Infrastructure (CCI) [2]. CCI provides the ba-
sic mechanism of reading the bytecode from a .NET
assembly into an abstract representation (AST) that is
amenable to analysis. To perform the cross-compilation,
Dandelion maps all referenced .NET object types to
CUDA struct types, translating all the reachable .NET
methods into GPU kernel functions. For generic meth-
ods, each reachable instance is translated into a sep-
arate CUDA function. The compiler must also gen-
erate serialization and deserialization code so that ob-
jects in managed space can be translated back and
forth between C# and GPU-compatible representations
as Dandelion performs data transfers between CPU
and GPU memory. Figure 4 shows the CUDA code
generated by Dandelion for the user-defined function
NearestCenter in the k-means example. Functions
called by NearestCenter such as Norm2 are also
translated by recursively walking through the call graph.
KernelVector is the translated CUDA type for the
.NET type Vector.

While Dandelion’s cross-compiler is quite general,
there are limitations on its ability to find a usable map-
ping between .NET code and GPU code. The primary
constraint, discussed in Section 2.3, derives from the
presence of dynamic memory allocation. Dandelion
converts dynamic allocation to stack allocation in cases
where the object size can be unambiguously inferred,
and falls back to executing on the CPU when it cannot
infer the size.

Converting from dynamic (heap) allocation to stack
allocation requires Dandelion to know the allocation size
statically. Dandelion applies standard static analysis
techniques to infer the allocation size at each allocation
site. It makes three passes of the AST. The first pass col-
lects summary information for each basic block and each
assignment statement. The second pass performs type
inference and constant propagation through the code us-
ing the summary. The final pass emits the CUDA code.

53

In languages such as C# and Java, array size is dy-
namic, so Dandelion will fail to convert any functions
involving array allocations. Dandelion provides an an-
notation that allows the programmer to specify the size
when the array actually has a known fixed size. For ex-
ample, the vector size in k-means is known and fixed:
annotation on the inputs of k-means enables Dandelion
to convert the entire k-means computation to run on
GPU.

A major issue with GPU computing is the difficulty
of handling variable-length records. To address this
problem, Dandelion treats a variable-length record as an
opaque byte array, coupled with metadata recording the
total size of the record and the offset of each field. In
the generated CUDA code, field accesses are converted
into kernel functions that take the byte array and meta-
data as arguments and return a properly typed CUDA
value. Such data are logically decoupled into separate
channels: records in the data channel are laid out in a
format optimal for GPU processing. To avoid destroying
that data layout, metadata are kept in a separate chan-
nel that is associated with the data channel to transfer
the metadata. Dandelion performs this transformation
for all the inputs to GPU when it generates the serial-
ization code. This enables us to automate the handling
of variable-length input records. This is a very general
scheme and works for nested data types, but the over-
head of the metadata and additional wrappers functions
can cause performance problems. Dandelion resorts to
this general mapping only when it fails to statically infer
the size of the record type.

Another important problem that Dandelion must ad-
dress is the GPU execution context for a cross-compiled
kernel function. This involves capturing all the global
variables referenced by the function and transferring
their values to GPU. When the compiler comes across
a global variable, if its value is small, the compiler just
inlines it in the generated code. If a value is large, the
compiler adds a binding in the context and uses it to ref-
erence the value in the generated code. The context is
treated as a GPU value and transferred to GPU using a
dedicated vertex in the PTask computation graph.

4.2 GPU Primitive Library

The GPU primitive library exposes a set of primitives
that are used by the Dandelion compiler to construct the
GPU dataflow graph. It also provides an API that al-
lows programmers to form new primitives by compos-
ing existing ones. The primitives exposed include low-
level building blocks (e.g., parallel scan and hash tables)
and high-level primitives for relational operators (e.g.,
GroupBy and Join).

Almost all the primitives are generic: the input/out-

1 __device__ __host__ int
2 NearestCenter(KernelVector point,
3 KernelVector *centers,
4 int centers_n) {
5 KernelVector local_6;
6 int local_0 = 0;
7 double local_1 = 1.79769313486232E+308;
8 int local_2 = 0;
9 int centers_n_idx = -1;

10 goto IL_0041;
11 {
12 IL_0018:
13 KernelVector local_3 = centers[centers_n_idx];
14 local_6 = op_Subtraction_Kernel(local_3, point);
15 double local_4 = ((double)(Norm2_Kernel(local_6)));
16 if (((local_1) > (local_4))) {
17 local_1 = local_4;
18 local_0 = local_2;
19 }
20 local_2 = ((local_2) + (1));
21 IL_0041:
22 if (((++centers_n_idx) < centers_n)) {
23 goto IL_0018;
24 }
25 goto IL_0058;
26 }
27 IL_0058:
28 return local_0;
29 }

Figure 4: CUDA code generated by the Dandelion
compiler for the C# code in the k-means workload.

put datatypes and user-defined functions are template
parameters of the primitives. When constructing GPU
dataflow graphs, the Dandelion compiler instantiates the
primitives using generated GPU datatypes and code.
This design leads to a clean separation of graph con-
struction and cross compilation. The parallelization
strategy for each operator is primarily the concern of the
primitive implementation rather than of compiler, yield-
ing a general approach to parallelization.

We again use the k-means example to illustrate the
primitives and their compositions to form new prim-
itives. Figure 5 shows the GPU dataflow graph for
k-means. Recall that the k-means LINQ query is a
GroupBy followed by an aggregation expressed as
a Select operation. A naı̈ve implementation of
this query would connect a subgraph that implements
the GroupBy with a subgraph that implements the
Select. However, as described in [100], a better ap-
proach is to fuse the aggregation with the grouping on
each input datablock. The k-means graph uses this opti-
mization.

The graph starts with a stateless incremental group-
ing primitive (grouper). Mapping the grouping oper-
ation to the parallel architecture leverages its fundamen-
tal similarity to shuffling: shuffle a block of records into
contiguous regions such that the records with the same
keys end up in the same region. To perform this op-
eration in parallel, each hardware thread reads a single
input record and writes it to the output at some offset in

54

its key region. 1 Finding the output offset for each record
requires us to know the start index of each group in the
output, which in turn requires us to know the number of
groups and the number of elements in each group. The
grouper primitive computes these numbers in several
stages.

In the first stage, the buildHT primitive uses a lock-
free hash table to maintain the set of unique group keys:
each hash entry is a record containing a key and an
integer-valued group identifier, which is assigned upon
successful insertion. Each thread computes the key for a
record and attempts to insert it into the hash table. The
hash-table uses a CAS operation on hash table record
pointers to ensure that only the first attempting to insert a
particular key value will succeed; upon successful inser-
tion, we rely on atomic increment support on the GPU to
maintain the number of unique groups. The result of this
increment becomes the group identifier for a new group.
The buildHT primitive produces two outputs: the hash
table (hashtbl) and the unique key count (unq cnt).
The keymap primitive uses the hash table and the key
counts to build a map from each record in the current
input datablock to its group identifier. The hash table
and key count are then returned on back edges of the
dataflow graph to be used in subsequent invocations of
buildHT.

The groupsizes primitive then uses the output of
keymap to compute the number of elements present in
each group. It allocates an array of counters for the keys,
and each thread increments the count in the array for
an input key using the atomic increment operation. The
output of groupsizes is the array of counters, which
is used by prefixsum to compute the start offsets for
each group. The shuffle primitive then uses the off-
sets to shuffle the original input datablock. The output
of the shuffle primitive is a triple of arrays: the group
keys, the group sizes, and the records shuffled into con-
tiguous groups. When the grouper is not followed by
an aggregation, the three arrays are synthesizeed into an
object of type IEnumerable<IGrouping<K,T>>,
the return type of the LINQ GroupBy API.

When, as is the case with k-means, the grouper is
followed by an aggregator, the graph is extended with
a subgraph consisting of aggregate, accumulate,
and reduce primitives. The aggregate primitive
computes a segmented prefix scan (implemented us-
ing thrust [77]) over each shuffled datablock, produc-
ing a partial aggregated value for each group. The
accumulate primitive then accumulates those par-

1In practice, we take advantage of memory coalescing support on
the GPU by mapping each thread to multiple input records at some
fixed stride apart, but for purposes of understanding the primitives, it
suffices to think of all input records being processed in parallel, each
by a unique hardware thread.

accumulate

in
(p
,c)

h
ash

tb
l

in
(p
,c)

u
n
q
_cn

t

h
ash

tb
l

hashtbl

unq_cnt

u
n
q
_cn

t

u
n
q
_cn

t

keym
ap

sizes
o
ffsets

in
(p
,c)

keym
ap

grp
s

accn
t

p
rvacc

p
rvcn

ts

reduce

keymap

prefixsum

shuffle

groupsizes

buildHT

acc

accvals

grp
cn
ts

aggregate

grouper

group-aggregator

Figure 5: The GPU dataflow graph for the k-means
workload.

tial aggregated values over all input datablocks. The
reduce primitive produces a final aggregation value
for each group, which in k-means gives us the set of new
centers.

4.3 GPU Dataflow Engine
The primitives that compose the computation are linked
together in a dataflow graph driven by PTask, Dande-
lion’s GPU dataflow engine. PTask extends the DAG-
based dataflow execution engine described in [85] with
constructs that can be composed to express iterative
structures and data-dependent control flow; these con-
structs are required to handle cyclic dataflow and stream-
ing for Dandelion. PTask is a token model [35] dataflow
system: computations, or nodes in the graph are tasks,
whose inputs and outputs manifest as ports. Ports are
connected by channels, and data moves through chan-
nels discretized into chunks called datablocks. The
programmer codes to an API to construct graphs from
these objects, and drives the computation by pushing
and pulling datablocks to and from channels. A task
is ready for execution when all of its input ports have
available datablocks and all of its output ports have ca-
pacity. PTask multiplexes a number of threads over the
tasks in a graph, ideally mapping a unique thread to each
task, and degrading to a pool-based assignment when the
number of nodes in the graph is large. This approach al-
lows PTask to overlap data movement and computation

55

for many concurrent tasks. We extended PTask with the
following abstractions to expose control flow constructs
needed by Dandelion:

ControlSignals. PTask graphs carry control signals
by annotating each datablock with a stack of control
codes. Operations that examine control codes always
examine the top of the stack. The programmer defines
arbitrary flow paths for these signals using an API to
define scope entries and scope exits, and control propa-
gation pairs. Scope entries and exits can be either ports
or channels and represent locations in the graph where a
subgraph that requires its own control signals can push
and pop control signals as datablocks enter and leave the
subgraph. PTask additionally supports an API for defin-
ing actions that occur in response to control signals ob-
served at scope entries and exits. Control propagation
pairs connect ports: the control code stack observed on
a datablock received at the first port, will be propagated
in its entirety to the datablock at the second port (or to
the next one that is bound to the second port). Exam-
ples of control signals include BEGIN/END-STREAM
for streaming and BEGIN/END-ITERATION for it-
eration. In the k-means example described above,
BEGIN/END-STREAM control signals are used exten-
sively to enable stateful primitives to emit output only
when all the input datablocks have been processed, and
scope entries and exits are used to enable composition of
stateful primitives.

MultiPort. A MultiPort is a specialized input port
that can be connected to multiple (prioritized) input
channels. If a datablock is available on any of the in-
put channels, the MultiPort will dequeue it, preferring
the highest priority channel if many are ready. Dande-
lion relies heavily on MultiPorts to support cyclic con-
structs and to allow primitives to unambiguously choose
amongst input datablocks when they may be available
on both forward and back channels bound to a port.

PredicatedChannel. PredicatedChannelsare used to
define conditional routing for datablocks. A Predicat-
edChannel allows a datablock to pass through it only
if the predicate holds for the datablock. In general,
the predicate function is a programmer-supplied call-
back, but we provide common predicates for prede-
fined control signals such as BEGIN/END-STREAM
and BEGIN/END-ITERATION. For example, in the k-
means graph from Figure 5, the forward and back chan-
nels labelled acc and accnt are predicated such that
the forward channels block any datablocks that do not
have an END-STREAM control signal, while the back
channels do the converse: as a result, the accumulate
primitive produces an output datablock only when all in-
put datablocks have been processed upstream.

InitializerChannel. An InitializerChannel provides a
pre-defined initial value datablock. InitializerChannels

can be predicated similarly to PredicatedChannels: they
are always ready, except when the predicate fails. Initial-
izerChannels simplify construction of sub-graphs where
the initial iteration of a loop requires an initial value that
is difficult to supply through an externally exposed chan-
nel. InitializerChannels are convenient for providing
seed values for stateful primitives and for avoiding the
proliferation of channels exposed to the runtime: their
primary use is to provide initial values in response to
control signals. For example, in the k-means graph, the
unq cnt and hashtbl inputs are InitializerChannel-
swith predicates that allow them to produce a new ini-
tial value only when a BEGIN-STREAM control signal
is observed on a datablock received at the in(p,c) in-
put to buildHT. This enables the grouper primitive
to create new hash table and unique key count blocks
for each distinct stream of datablocks without requiring
synchronous intervention from the runtime to reset the
primitives to an initial state.

IteratorPort. An IteratorPort is a port responsible
for maintaining iteration state and propagating control
signals when iterations begin and end. An Iterator-
Port maintains a list of ports within its scope, which
are signaled when iteration state changes. An Iterator-
Port also propagates BEGIN/END-ITERATION con-
trol signals along programmer-defined control propaga-
tion paths, which in combination with backward/forward
PredicatedChannels can conditionally route data either
back to the top for another iteration, or forward in the
graph when a loop completes. IteratorPorts can use call-
backs to implement arbitrary iterators, or select from a
handful of pre-defined functions, such as integer-valued
loop induction variables.

Collectively, these constructs allow us to implement
rich control flow constructs and iteration in PTask.
The routing decisions for datablocks are by construc-
tion always made locally, so scheduling and resource-
management for tasks remain conceptually simple.

Our goal with Dandelion is to bring GPUs to general-
purpose programs, which in turn implies some kind of
OS multiplexing of the machine between multiple appli-
cations. PTask, as originally envisioned, proposes OS-
level abstractions for building and managing dataflow
graphs that perform heterogeneous computations: in re-
turn for expressing computations as a graph, the user
gets an environment where the OS can make (potentially
best-effort) guarantees about fairness and isolation in the
presence of multiple computations, as well as minimal
(or zero-) copy data movement as data are shared dy-
namically across devices that may have disjoint or in-
coherent memory spaces. Due to lack of direct PTask
support in Windows, we rely on a user-mode implemen-
tation of PTask. However, we hold that a production im-
plementation of Dandelion would rely on OS-level sup-

56

port from a kernel-mode PTask implementation to en-
sure that local machine resources are well-multiplexed
across concurrent computations that share the cluster.

4.4 Cluster Dataflow Engine

Dandelion can run in two modes on a compute cluster.
When it runs on a large cluster where fine grained fault
tolerance matters, it uses the Dryad dataflow execution
engine. In this design, the output of a vertex is written to
disk files so transient failures can be recovered by vertex
re-execution using its disk inputs. However, for our main
target platform of relatively small clusters of powerful
machines with GPUs, we favor a different design that
attempts to maximize performance. We therefore built
a new distributed dataflow engine called Moxie that al-
lows the entire computation to stay in memory when the
aggregate cluster memory is sufficient. Disk I/O is only
needed at the very beginning (to load the input) and at
the very end (to write the result). Similarly to Spark’s
RDD [103], Moxie holds intermediate data in memory
and can checkpoint them to disk. The high-level archi-
tecture of Moxie is similar to Dryad and YARN [1]. A
Moxie job consists of an application master and a col-
lection of containers, all running on the compute nodes
of a cluster. The application master is responsible for as-
signing tasks to the containers which perform the actual
computations. Below we highlight some of the impor-
tant features of Moxie.

First, Moxie aggressively caches in memory datasets
(including intermediate data) that will be used multi-
ple times in a single job. This is especially important
for applications involving iterative computations such as
k-means or PageRank that would otherwise reload the
same large input for each iteration. Each container main-
tains a cache. A cached value is exposed as a .NET col-
lection, but it could be stored either in the CPU mem-
ory or the GPU memory. A cache entry is reference-
counted and is removed when its reference count reaches
0. When there is memory pressure, Moxie automatically
detects it and spills some of the cached datasets to disk.
To maximize the benefits of caching, the Moxie applica-
tion master tries to assign a vertex to the container where
its input was generated and possibly cached in memory.
This allows us to reuse the cached objects by pointer
passing. In the event that the input of a vertex is in a
remote cache, Moxie uses TCP to transfer the data from
the remote memory to the current container.

Second, Moxie uses asynchronous checkpoints to
support coarse-grained fault tolerance. Moxie selec-
tively checkpoints the intermediate results that it con-
siders to be important to protect. For example, Moxie
may choose to protect the output of an expensive task.
In the current implementation, Moxie creates a check-

point for the outputs of every iteration of the DoWhile
operator. Any failure would trigger the re-execution of
all the unprotected upstream tasks. The checkpointing is
asynchronous so it does not introduce unnecessary syn-
chronization barriers in the execution. Checkpoints are
stored in a distributed fault tolerant file system.

4.5 Machine Dataflow Engine

The machine dataflow engine manages the computa-
tions on a compute node. Each vertex of its dataflow
graph represents a unit of computation that can always
be executed on CPU and possibly on GPU. For ver-
tices running on CPU, the dataflow engine schedules
and parallelizes them to execute on the multiple CPU
cores. Dandelion contains a new multi-core implemen-
tation of LINQ operators that substantially outperforms
PLINQ [4] for the kind of data intensive workloads we
are interested in. To run a vertex on GPU, it dispatches
the computation to the GPU dataflow engine described
in Section 4.3.

Asynchronous channels are created to transfer data
between the CPU and GPU memory spaces. In general
Dandelion tries to discover a well-balanced chunk size
for input and output streams, and will dynamically ad-
just the chunk size to attempt to overlap stream I/O with
compute. The presence of a GPU substrate can compli-
cate this effort for a number of reasons. First since PCI
express transfer latency is non-linear in the transfer size,
latencies for larger transfers are more easily amortized.
Second, some primitives may be unable to handle dis-
cretized views of input streams for some inputs. For ex-
ample the hash join implementation from our primitive
library assumes that the outer relation is not streamed
while the inner relation may be. This requires that prim-
itives be able to interact dynamically with readers and
writers on channels connecting local dataflow graphs to
the global graph, and in some cases all the input for a
particular channel must be accumulated before a transfer
can be initiated between GPU and CPU memory spaces
and GPU side computation can begin.

5 Evaluation

In this section, we evaluate Dandelion in both single-
machine and distributed cluster environments. We com-
pare the performance of the sequential LINQ implemen-
tation shipped in .NET against Dandelion using only
multiple CPU cores and Dandelion using GPUs to of-
fload parallel work. Additionally, to provide perspective
on the quality of Dandelion’s generated code and query
plans, we compare the performance of Dandelion’s k-
means on a single machine against a number of hand

57

benchmark small medium large description
k-means k:10, N :20, M :106 k:10, N :20, M :106 k:80, N :40, M :106 k-means: M N -dim points→ k clusters
pagerank P :100k L:20 P :500k L:20 P :1m L:20 page rank: P pages, L links per page
skyserver O:105 N :106 O:105 N :107 O:105 N :5x107 skyserver Q18 [102]: O objects, N neighbors
black-scholes P:105 P:106 P:107 option pricing: P prices
terasort R:106 R:107 R:108 sort R 100-byte records [5]
decision tree R:105, A:100 R:106, A:100 R:105, A:1000 ID3 decision trees R records, A attributes
bm25f D:218 D:219 D:220 search engine ranking [104], D documents

Table 1: Benchmarks used to evaluate Dandelion. For skyserver, and pagerank, inputs for the single-machine
experiments are synthesized to match the profile of the cluster scale inputs. For bm25f, inputs are drawn
from [19].

Configuration
Processor 2×Intel Xeon E5-2630 2.30GHz
CPU Cores 12 (2 threads per core)
L1 32 KB i + 32 KB d per core
L2 unified 256 KB per core
L3 15MB
Memory 256 GB
GPU 1 × NVIDIA Tesla K20M
GPU cores 13 SMs→ 2496 cores per GPU
GPU Memory 5 GB GDDR5
GPU Engine user-mode PTask, CUDA 5.0
OS Windows Server 2008 R2 64-bit
Network Mellanox ConnectX-3 10 Gigabit Ethernet

Table 2: Machine and platform parameters for all
experiments.

tuned C#, C++, and CUDA implementations. Table 1
provides a summary of benchmarks and inputs used in
the evaluation, while machine and platform parameters
are detailed in Table 2.

5.1 Single Machine Performance

In this section we consider the performance of Dande-
lion running on a single host with a multi-core CPU
and one GPU. Figure 6 shows speedups over sequen-
tial LINQ (labelled LINQ), Dandelion using only CPU
parallelism (labelled Dandelion-M), and two versions of
Dandelion using only GPU parallelism. The first (la-
belled Dandelion) represents the Dandelion default con-
figuration. The second (labelled Dandelion-H) reflects
the performance of Dandelion with additional hints, pro-
vided with annotations, about expected dataset sizes. In
all cases, we measure wall-clock time, which for the
GPU case, includes serialization and de-serialization of
C# objects as well as PCI transfer latencies incurred
moving data to and from the GPU memory.

In its default configuration, Dandelion is generally
able to outperform parallel CPU dandelion: the geo-
metric mean across all benchmarks for Dandelion-M is
3.1×, while the GPU dandelion sees 6.1× and 6.4× for

the default and hint-based variants respectively. Because
serialization and PCI transfer costs are fundamental in
any GPU offload system we do not report device-only
execution times; however, it is worth noting that if we
neglect such costs, the geometric mean speedup of Dan-
delion over all benchmarks is over 30×.

The Dandelion-H data demonstrate that memory man-
agement and transfer overheads are a first order concern:
additional speedup is available if the runtime has some
hints to help it avoid memory allocation and PCI trans-
fers. Device-side memory allocations force the GPU
driver to synchronize with the host, eliminating the run-
time’s ability to hide data transfer latencies with GPU
execution. However dynamic memory allocation is a re-
quirement in many of our benchmarks. For example, a
group-by operation must compute the number of groups
before allocating downstream buffers for those groups.
Pooling of datablocks, the PTask encapsulation of GPU
buffers, can mostly eliminate device memory allocation
on the critical path: PTask adopts a strategy similar to the
Linux slab allocator to provision in advance for such dy-
namic allocations. However, because PTask’s pools are
sized heuristically, the runtime may still need to perform
memory allocation at GPU dispatch time if pools are
poorly sized for the workload. The Dandelion-H vari-
ant shown in Figure 6 shows the performance achiev-
able when block pools are sized to avoid critical-path al-
locations. The improvements enabled by this optimiza-
tion range from under 1% to 20% over Dandelion in its
default configuration, with a geometric mean across all
benchmarks of 8.9%. We do not consider the need for
such hints fundamental to Dandelion: this need could
be eliminated by fully virtualizing all of GPU memory
within PTask. We leave this virtualization effort as fu-
ture work; in the current prototype, we use annotation to
communicate such hints to the runtime.

While Dandelion is performance profitable over se-
quential and multi-core CPUs, the extent of that prof-
itability depends heavily on the ratio of arithmetic com-
putation to memory access, as illustrated by the perfor-
mance of PageRank. In LINQ, PageRank is expressed

58

0

5

10

15

20

sm
al

l

m
ed

iu
m

la
rg

e

sm
al

l

m
ed

iu
m

la
rg

e

sm
al

l

m
ed

iu
m

la
rg

e

sm
al

l

m
ed

iu
m

la
rg

e

sm
al

l

m
ed

iu
m

la
rg

e

sm
al

l

m
ed

iu
m

la
rg

e

sm
al

l

m
ed

iu
m

la
rg

e

terasort k-means skyserver black-scholes pagerank ID3 bm25f

Sp
ee

d
u

p
 o

ve
r

se
q

u
en

ti
al

 C
P

U
 (

LI
N

Q
)

LINQ Dandelion-M Dandelion Dandelion-H

Figure 6: The speedup over sequential CPU (LINQ) of parallel CPU (Dandelion-M), GPU enabled (Dandelion)
and GPU enabled with memory allocation hints (Dandelion-H) versions of Dandelion, for different workloads
and input data sizes.

using join, groupby and select, where the key extractor
and join predicates are very simple computations, mak-
ing it a mostly memory-bound workload on the GPU.
Nonetheless, while Dandelion PageRank performance
on the GPU is modest compared to the other bench-
marks, it still improves over sequential implementations
by a geometric mean of 2.9× over all the input sizes. Be-
cause Dandelion’s join implementation is a hash join, the
performance of the GPU version has some sensitivity to
the size of the outer relation. Our lock-free GPU hash-
table manages its own memory allocation for hash ta-
ble entries to avoid relying on the performance-sapping
CUDA malloc implementation; however, we do fall
back to CUDA malloc under heavy memory pressure,
which occurs with the large input, explaining a drop off
from 3.2× to 2.44× moving from the medium to large
input. We believe this performance loss can be ame-
liorated with better heuristics for provisioning our hash-
table sub-allocator.

5.2 K-means in depth
In this section we compare the performance of 15 imple-
mentations of k-means across 3 different input sizes to
provide a detailed characterization the trade-offs in per-
formance and developer effort for Dandelion relative to
more familiar tool-chains such as C++, C#, as well as a
GPU-specific tool-chain: CUDA. Table 3 describes the
implementations, characterizes them in terms of imple-
mentation difficulty (a subjective estimate based on the
level of architectural expertise required of the program-
mer for each implementation), the number of lines of
code, as well as the speedup of each over the sequential
C++ implementation. Figure 7 plots the speedups over

C++ for the medium size input only; other input sizes
show the same trend.

The number of CUDA implementations illustrates the
range of optimization strategies that any performance-
hungry CUDA programmer must explore, and provides
a backdrop against which to consider the performance
of the GPU code generated by Dandelion. A typical
CUDA optimization effort must consider multiple spe-
cialized low-latency memories, such as constant and
shared, and hard-to-manage optimizations like memory
coalescing [79]. To ensure we characterize this space
with reasonable fidelity, we implement CUDA versions
of k-means that represent a cross-product of these strate-
gies: in Table 3, only those that illustrate an impor-
tant performance delta are represented. Similar to Sec-
tion 5.1, we evaluate Dandelion in both default and hint-
driven configurations.

The data illustrate that Dandelion provides a com-
pelling fraction of the available performance for min-
imal programmer effort, out-performing sequential na-
tive managed code by 45×, 56×, and beating multi-
threaded C# (using 24 cores) by 4×, simultaneously re-
ducing the number of lines of code required to express
the workload by 10×, 4.9×, and 12.4× respectively.
Performance of the CUDA implementations varies dra-
matically across input sizes: an optimization strategy ef-
fective for one input may be ineffective for another (e.g.
the constant memory optimization does little to improve
the cuda-ro variant for the small input but provides a
dramatic benefit for the medium input because the L1
GPU cache is able to provide the same reduction in ef-
fective memory latency). In general, the most effective
optimization is the arrangement of input data to pro-
mote memory coalescing (which for k-means can be rea-

59

0.1

1

10

100

1000

LI
N

Q

D
an

d
e

lio
n

-M

C
#

C
#-

m
t

cu
d

a

cu
d

a-
S

cu
d

a-
ro

cu
d

a-
ro

S

cu
d

a-
C

cu
d

a-
C

S

cu
d

a-
ro

C

cu
d

a-
ro

C
S

D
an

d
e

lio
n

D
an

d
e

lio
n

-H

Sp
ee

d
u

p
 o

ve
r

se
q

u
en

ti
al

 C
+

+

Figure 7: The speedup over sequential C++ for vari-
ous hand-optimized implementations and the Dande-
lion implementation of k-means, shown only for the
“medium” input, as the trend across other input sizes
is similar. Speedups are shown in logarithmic scale -
higher is better.

sonably understood as arranging input vectors column-
major instead row-major), followed closely by the abil-
ity to leverage the GPU shared memory.

All these optimizations require programmer exper-
tise, and all of the hand-optimized CUDA versions re-
quire 20× more lines of code to express than Dande-
lion. However, Dandelion’s generated implementation
provides performance that we consider to be a reason-
able fraction of that achieved by the hand-optimized im-
plementations, ranging from 2× to 6.7×, 1.6× to 2.8×,
and 2.8× to 7× slower for the small, medium, and large
inputs respectively. With the benefit of memory alloca-
tion hints, Dandelion is able to make up much of the re-
maining performance gaps, coming within a factor of 1.9
of the best-case hand-optimized CUDA for the medium
input. Finally, we believe that many of these optimiza-
tions can be automated in the future in Dandelion (see
the Automatable column in Table 3). For example,
LINQ collections are immutable, giving the Dandelion
compiler the flexibility to place them in GPU constant
memory when a collection is small enough.

5.3 Distributed Performance

In this section we consider the performance of Dande-
lion running on a small GPU cluster of 10 machines. The
primary objective is to evaluate the effectiveness of GPU
offloading in a distributed setting. Similar to our single
machine evaluation, we first take an in-depth look at the
performance of a single benchmark, k-means, and then
report on the overall system performance of Dandelion
by comparing Dandelion running with the GPU against
Dandelion running single-threaded and multi-threaded
without the GPU.

Table 4 details the benchmarks. There are four

experiment data
k-means 1B 40-dimensional points, 120 centers. 152.7 GB.
PageRank CatB ClueWeb dataset, 14.5 GB.
SkyServer SkyServer datasets. 53.6 GB .
Terasort 500M 10-byte keys, 100-byte records. 50 GB.

Table 4: Input sizes for distributed experiments.

31 min

5.2 min

3.4 min

49.4 s

0

5

10

15

20

25

30

35

40

Dandelion-S DryadLINQ Dandelion-M Dandelion

sp
e

e
d

u
p

 v
s

1
-t

h
re

a
d

 D
a

n
d

e
li

o
n

Figure 8: k-means performance comparison against
DryadLINQ and Dandelion-M.

benchmarks: k-means, PageRank, SkyServer and Sort.
For PageRank, the input dataset is the “Category B”
dataset of the widely used ClueWeb09 datasets. Sky-
Server is the most time consuming query (Q18) from
the Sloan Digital Sky Survey database [44]. Terasort
is a general-purpose sort running on 50GB of Terasort
records, evenly partitioned over the 10 machines. The
benchmarks were originally written for CPU; running
them on Dandelion required no modification beyond the
AsDandelion() extension discussed in Section 2.2.

K-means. Figure 8 compares the k-means perfor-
mance of Dandelion against DryadLINQ and two vari-
ants of Dandelion. Dandelion-S and Dandelion-M both
use the Dandelion distributed execution engine but run
the vertex code using single threaded and multi-threaded
CPU LINQ implementations respectively. In this exper-
iment, we run one iteration of k-means. The evalua-
tion shows that Dandelion with GPU has the best perfor-
mance, approximately 5× and 3.9× faster than the base
system DryadLINQ and our CPU variant Dandelion-M
respectively. Since DryadLINQ and Dandelion-M use
a very similar CPU execution engines, we attribute the
speedup gained by Dandelion-M over DryadLINQ to
two factors: a) keeping the data in memory and using
TCP for data transfer as opposed to disk file based com-
munication and b) a bigger constant job startup/exit costs
of DryadLINQ. While the performance gain from using
GPU is quite good, it is significantly less than the single
machine case. We attribute it to the overhead associ-
ated to distributed execution. For example, in this exper-
iment, the input data need to be read from disk files, de-
serialized to CPU memory, and then transferred to GPU
memory.

60

Speedup over sequential C++
Name Description Difficulty Automatable LOC Small Medium Large
C++ sequential C++, CPU easy 491 1.0 1.0 1.0
LINQ sequential LINQ, CPU easy 38 0.2 0.26 0.24
Dandelion-M parallel LINQ, CPU easy 38 0.5 0.56 0.64
C# sequential C#, CPU easy 186 0.7 0.8 0.78
C#-mt parallel C#, 24 cores moderate 473 3.64 9.88 6.66
cuda basic CUDA moderate 651 15.8 71.4 45.6
cuda-S CUDA + shared memory hard yes 781 25.8 81.4 49.6
cuda-ro CUDA + constant memory moderate yes 668 17.1 114.6 62.7
cuda-roS CUDA + const + shared mem hard yes 815 30.7 125.3 70.8
cuda-C CUDA coalesced mem access moderate maybe 731 38.9 104.1 83.6
cuda-CS CUDA + coalesced + shared hard no 874 41.6 81.22 77.5
cuda-roC CUDA + coalesced + const moderate no 757 46.0 70.6 112.7
cuda-roCS CUDA + coalesced + const + shared hard no 909 50.8 60.2 102.5
Dandelion dandelion default configuration easy 38 7.7 45.2 16.6
Dandelion-H dandelion, memalloc hints moderate no 42 14.4 66.2 28.8

Table 3: Comparison of different implementations of k-means, in terms of difficulty of implementation, lines
of code and speedup over C++ CPU variant. The Difficulty and Automatable columns represent our subjective
appraisal of the level of programming challenge and whether or not a the set of GPU optimizations could be
applied automatically by the Dandelion compiler.

0

5

10

15

20

25

30

DryadLINQ Dandelion-M Dandelion

ru
n

 t
im

e
 (

m
in

)

Figure 9: The performance of 5 steps k-means.

We next evaluate the k-means performance of Dan-
delion running five iterations (Figure 9), which make
the benefits of caching datasets in memory apparent:
Dandelion-M outperforms DryadLINQ by more than
2×. The speedup is primarily due to the effective use
of caching to avoid reading the points dataset from disk
at every iteration as DryadLINQ does. Dandelion with
the GPU gives a further factor of 2×. The GPU speedup
is less than in the single iteration evaluation, largely be-
cause garbage collection of PTask datablocks and graph
structures between iterations introduces some synchro-
nization.

We use the k-means benchmark to measure Dande-
lion’s scalability by varying the size of the inputs. Fig-
ure 10 shows the performance of one step k-means on
two datasets. We observe that the total running time is
roughly proportional to the size of the input.

Overall system performance. Figure 11 shows
the overall system performance of Dandelion on the
four benchmarks, comparing runtime on the 10-machine

0

2

4

6

8

10

12

DryadLINQ Dandelion-M Dandelion

ru
n

 t
im

e
 (

m
in

)

1 billion points 2 billion points

Figure 10: k-means data scaling

name Dandelion-S Dandelion-M Dandelion
kmeans-5x 10033s 723s 153s
PageRank-5x 272s 257s 190s
SkyServer 421s 126s 229s
Terasort 243s 101s 79s

Figure 11: Overall system performance

cluster using a single thread per machine (Dandelion-
S), all 24 cores (Dandelion-M), and using GPUs (Dan-
delion). For k-means and PageRank, the computations
is for 5 iterations. The data show that while Dande-
lion is able to improve performance using parallel hard-
ware in all cases, the end-to-end speedup can erode sig-
nificantly due to I/O. Moreover, the degree to which
GPU parallelism is profitable relative to CPU parallelism
varies significantly as a function of Dandelion’s ability
to hide data marshalling, transfer, and memory manage-
ment latencies with device-side execution. For example,
Dandelion is able to achieve 65.6× and 4.7× speedups
over Dandelion-S and Dandelion-M for k-means not just

61

because the computation is overwhelmingly compute-
bound, but because of its modest state requirements:
only the centers list must remain in GPU memory (230K
for the problem size reported here), while the points
list can be streamed through GPU memory freely. This
property combines with abundant GPU compute, to en-
able Dandelion to effectively hide almost all serializa-
tion costs and PCI transfer costs.

In contrast, SkyServer is in many respects a worst-
case workload for Dandelion due to unmaskable mar-
shalling costs and memory managment overheads. Sky-
Server features two joins, implemented in Dandelion
as GPU hash joins which require one relation to be
fully present in memory while the other relation may be
streamed. This places the serialization from C# objects
to GPU memory for one relation on the critical path. In-
termediate state required for the computation is large rel-
ative to GPU memory, forcing PTask to perform frequent
garbage collection to avoid exhaustion of GPU memory.
In the SkyServer executions reported in Table 11, GPU
memory pressure resulted in over 100 GC sweeps. The
result is that Dandelion-M, which enjoys no serializa-
tion costs and abundant CPU memory, is 1.8× faster
for SkyServer. We argue that while some marshalling
overheads are imposed by our design, their performance
impact can be dramatically reduced through engineer-
ing effort. By contrast, memory management overheads
are imposed by the hardware. While our cluster com-
prises latest-generation GPU and CPU hardware, nodes
in our cluster have over 50× more CPU memory than
GPU memory. Our experience with Dandelion suggests
that for GPUs to be more generally applicable to more
“big-data” workloads, a better balance of GPU to CPU
memory is necessary, regardless of whether such sys-
tems rely on front-end programming and runtime sys-
tems like Dandelion.

6 Related work

General-purpose GPU computing. The research com-
munity has focused considerable effort on the problem
of general-purpose programming interfaces for GPUs
and other specialized hardware [6, 62, 84, 28, 34]. GPU
frameworks such as CUDA [79], OpenCL [63], and
others [88, 17, 71, 22, 48, 94] provide rich front-end
programming models, specific to the underlying par-
allel GPU architecture. Dandelion, provides a high-
level managed programming model that generalizes well
across diverse execution environments and exposes the
programmer to comparatively little architectural detail.

OS-support for GPUs and peripherals The Dande-
lion prototype relies on user-mode PTask, making OS-
level support a largely orthogonal concern. A production
implementation of Dandelion could benefit significantly

from kernel- or hypervisor-level support for GPUs to
enable fairness and/or isolation guarantees [85, 47] in
the presence of cluster sharing, or to optimize data
movement with demand-driven data movement to the
GPU [89] or with zero-copy I/O [36].

Dataflow and streaming. execution directly in hard-
ware. Click [65], CODE2 [76], and P-RIO [68] pro-
vide graph-based programming models but do not gen-
eralize across diverse hardware. Self/star [42] and
Dryad [57] are graph-based programming models for
distributed execution, the latter of which is extended by
DryadLINQ [101] to support LINQ. Dandelion provides
the same programming abstraction over a cluster of het-
erogeneous compute nodes: DryandLINQ can use only
CPUs. Dandelion’s support for caching of intermediate
data in RAM is similar to the RDDs used in Spark [103].

FFPF [20] provides support for compiling code writ-
ten in different languages such as FPL [32, 31] and
Ruler [54] to heterogeneous targets, composing the re-
sult in a graph-like structure. Dandelion shares many
basic objectives and similarly relies on dataflow to ad-
dress heterogeneity; however, Dandelion targets GPU-
based clusters and general-purpose computations, mak-
ing the application and execution domains quite differ-
ent. FFPF later evolved into Streamline [37], which
details I/O optimizations and front-end programming
model techniques that could benefit Dandelion’s GPU
engine, PTask, significantly. PTask requires a program-
mer (or the Dandelion compiler) to construct dataflow
graphs explicitly through API calls, while Streamline
enables a much more compact and easily encapsulated
graph construction front end that manipulates graph ob-
jects through the file system interface. PTask imple-
ments many of the copy-minimization techniques de-
scribed by FFPF and Streamline, however the presence
of disjoint, non-coherent memory spaces required to tar-
get GPUs requires a coherence protocol not required by
these systems.

GPUs and Dataflow. StreamIt [93] and Di-
rectShow [67] support graph-based parallelism.
OmpSs [23], Hydra [96], and PTask [85] all provide
a graph-based dataflow programming models for of-
floading tasks across heterogeneous devices. IDEA [33]
extends PTask to support cyclic and iterative graph
structures required to efficiently support relational
operators on GPUs. Liquid Metal [55] and Lime [9]
are programming platforms for heterogeneous targets
such as systems comprising CPUs and FGPAs. Lime’s
filters, and I/O containers allow a computation to be
expressed as a pipeline. Flextream [53] is compilation
framework for synchronous dataflow models that
dynamically adapts applications to FPGA, GPU, or
CPU target architectures, and Flextream applications
are represented as a graph. Unlike these systems,

62

Dandelion does not directly expose the graph-based
execution model. Extending dataflow systems to
support iteration [21, 40, 70, 75] or incremental iterative
computation [72, 41, 73, 74] is an active research
area. Dandelion provides front support for expressing
iteration that it maps to the control flow constructs in
PTask.

Front-end programming models Many systems pro-
vide GPU support in a high-level language: C++ [45],
Java [99, 8, 81, 24], Matlab [7, 80], Python [25, 64].
While some go beyond simple GPU API bindings, and
provide support for compiling the high-level language
to GPU code, none have Dandelion’s cluster-scale sup-
port; unlike Dandelion, all expose the underlying de-
vice abstraction. Merge [66] provides a high-level lan-
guage based on MapReduce that transparently chooses
amongst implementations dynamically, it is targeted at
a single machine unlike Dandelion. Many workloads
we evaluate have enjoyed research attention in a single-
machine GPU context [39, 60] or cluster-scale GPU
implementations [86], using GPU programming frame-
works directly; Dandelion represents a new level of pro-
grammability for such platforms and workloads.

Dandelion explores an automatic parallelization prob-
lem that has challenged the research community for
decades, and in its current form, relies entirely on
language-level support in .NET for relational algebra via
LINQ to identify code regions that may be safely paral-
lelized. Liszt’s [38] static meshes, Halide’s [82] coor-
dinate spaces, and Legion’s [16] logical regions provide
runtimes and compilers with similar leverage for identi-
fying automatically parallelizable code: all enable high-
level programs to be parallelized and compiled to differ-
ent target architectures. All define new front-end pro-
gramming models and language, while Dandelion relies
on model and language support that have been present
in production tool-chains. Moreover, Liszt, Halide, and
Legion all rely on static schedules: Dandelion supports
dynamic scheduling and dynamic re-targeting of com-
putations based on the available resources at each node
in a heterogeneous cluster.

Scheduling and Execution engines for heteroge-
neous processors. Scheduling for heterogeneous sys-
tems is an active research area: systems such as
PTask [85], TimeGraph [61] and others [95] focus on
eliminating destructive performance interference in the
presence of GPU sharing. Maestro [90] also shares
GPUs but focuses on task decomposition, automatic data
transfer, and auto-tuning of dynamic execution parame-
ters in some cases. Sun et al. [91] share GPUs using task
queuing. Others focus on making sure that both the CPU
and GPU can be shared [59], on sharing CPUs from mul-
tiple (heterogeneous) computers [14, 15], or on schedul-
ing on multiple (heterogeneous) CPU cores [18, 13].

Several systems [69, 46] automatically choose whether
to send jobs to the CPU or GPU [11, 12, 10, 30, 87],
others focus on support for scheduling in the presence
of heterogeneity in a cluster [23]. Several systems con-
sider support a MapReduce primitive on GPUs, taking
care of scheduling the various tasks and moving data in
and out of memory [49, 26, 97]. The same abstraction
can be extended to a cluster of machines with CPUs and
GPUS [58]. This work was later improved with better
scheduling [83]. Teodoro et al. describe a runtime that
accelerates the analysis of microscopy image data sets
on GPU-CPU clusters [92]. Like Dandelion, the result-
ing system relies on task-level dataflow to map the ap-
plication to a heterogeneous platform, and requires sup-
port for cyclic structures in the di-graphs that express the
image-processing pipeline; unlike Dandelion the sys-
tem is absent the front-end language support enabling
a programmer to express the application in a high-level,
declarative language.

Relational Algebra on GPUs The Thrust [77] library,
included with CUDA, offers some higher level opera-
tions like reduces, sorts, or prefix sums. Dandelion uses
the sort and scan primitives from Thrust library in sev-
eral higher-level relational primitives. Others have ex-
plored primitives for supporting GPU-based relational
algebra [51, 50] and database operations [43], with em-
phasis on optimization and performance for operations
over a very limited set of data types (primitive types).

7 Conclusion
Heterogeneous systems have entered the mainstream of
computing. The adoption of these systems by the de-
veloper community hinges on their programmability. In
Dandelion, we take on the ambitious goal to address
this challenge for data-parallel applications on hetero-
geneous clusters.

Dandelion is a research prototype under active devel-
opment. The design goal of Dandelion is to build a com-
plete, high performance system for a small to medium
sized cluster of powerful machines with GPUs. We be-
lieve that there are a lot of potential applications of such
a system, in particular in the areas of machine learning
and computational biology. We plan to continue to in-
vestigate the applicability of Dandelion across a broader
range of workloads in the future.

8 Acknowledgements
We thank Igor Ostrovsky for sharing his GPU Kernel-
izer work, which served as a starting point for our cross-
compiler. We thank Herman Venter and Mike Barnett
for answering CCI related questions. Thanks also to the
SOSP review committee and our shepherd Herbert Bos
for valuable feedback.

63

References
[1] Apache YARN. http://hadoop.apache.

org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html.

[2] The CCI project.
http://cciast.codeplex.com/.

[3] The LINQ project.
http://msdn.microsoft.com/en-us/
library/vstudio/bb397926.aspx.

[4] The PLINQ project.
http://msdn.microsoft.com/en-us/
library/dd460688.aspx.

[5] Sort benchmark home page.
http://sortbenchmark.org/.

[6] IBM 709 electronic data-processing system: ad-
vance description. I.B.M., White Plains, NY,
1957.

[7] Matlab plug-in for CUDA. https://
developer.nvidia.com/matlab-cuda,
2007.

[8] JCuda: Java bindings for CUDA. http:
//www.jcuda.org/jcuda/JCuda.html,
2012.

[9] J. S. Auerbach, D. F. Bacon, P. Cheng, and R. M.
Rabbah. Lime: a java-compatible and synthesiz-
able language for heterogeneous architectures. In
OOPSLA, 2010.

[10] C. Augonnet, J. Clet-Ortega, S. Thibault, and
R. Namyst. Data-Aware Task Scheduling on
Multi-Accelerator based Platforms. In 16th Inter-
national Conference on Parallel and Distributed
Systems, Shangai, Chine, Dec. 2010.

[11] C. Augonnet and R. Namyst. StarPU: A Uni-
fied Runtime System for Heterogeneous Multi-
core Architectures.

[12] C. Augonnet, S. Thibault, R. Namyst, and M. Ni-
jhuis. Exploiting the Cell/BE Architecture with
the StarPU Unified Runtime System. In SAMOS
’09, pages 329–339, 2009.

[13] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta,
R. Mayo, and E. S. Quintana-Ortı́. An exten-
sion of the starss programming model for plat-
forms with multiple gpus. In Proceedings of the
15th International Euro-Par Conference on Par-
allel Processing, Euro-Par ’09, pages 851–862,
Berlin, Heidelberg, 2009. Springer-Verlag.

[14] R. M. Badia, J. Labarta, R. Sirvent, J. M. Prez,
J. M. Cela, and R. Grima. Programming Grid
Applications with GRID Superscalar. Journal of
Grid Computing, 1:2003, 2003.

[15] C. Banino, O. Beaumont, L. Carter, J. Ferrante,
A. Legrand, and Y. Robert. Scheduling strategies
for master-slave tasking on heterogeneous proces-
sor platforms. 2004.

[16] M. Bauer, S. Treichler, E. Slaughter, and
A. Aiken. Legion: expressing locality and in-
dependence with logical regions. In Proceed-
ings of the International Conference on High Per-
formance Computing, Networking, Storage and
Analysis, SC ’12, pages 66:1–66:11, Los Alami-
tos, CA, USA, 2012. IEEE Computer Society
Press.

[17] A. Bayoumi, M. Chu, Y. Hanafy, P. Harrell,
and G. Refai-Ahmed. Scientific and Engineering
Computing Using ATI Stream Technology. Com-
puting in Science and Engineering, 11(6):92–97,
2009.

[18] P. Bellens, J. M. Perez, R. M. Badia, and
J. Labarta. CellSs: a programming model for the
cell BE architecture. In SC 2006.

[19] B. Billerbeck, N. Craswell, D. Fetterly, and
M. Najork. Microsoft Research at TREC 2011
Web Track. In Proc. of the 20th Text Retrieval
Conference, 2011.

[20] H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and
G. Portokalidis. Ffpf: Fairly fast packet filters. In
Proceedings of OSDI’04, 2004.

[21] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
Haloop: efficient iterative data processing on
large clusters. Proc. VLDB Endow., 3(1-2):285–
296, Sept. 2010.

[22] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fa-
tahalian, M. Houston, and P. Hanrahan. Brook
for GPUs: Stream Computing on Graphics Hard-
ware. ACM TRANSACTIONS ON GRAPHICS,
2004.

[23] J. Bueno, L. Martinell, A. Duran, M. Farreras,
X. Martorell, R. M. Badia, E. Ayguade, and
J. Labarta. Productive cluster programming with
ompss. In Proceedings of the 17th international
conference on Parallel processing - Volume Part I,
Euro-Par’11, pages 555–566, Berlin, Heidelberg,
2011. Springer-Verlag.

64

http://cciast.codeplex.com/
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://msdn.microsoft.com/en-us/library/dd460688.aspx
http://msdn.microsoft.com/en-us/library/dd460688.aspx
http://sortbenchmark.org/
https://developer.nvidia.com/matlab-cuda
https://developer.nvidia.com/matlab-cuda
http://www.jcuda.org/jcuda/JCuda.html
http://www.jcuda.org/jcuda/JCuda.html

[24] P. Calvert. Part II dissertation, computer science
tripos, university of cambridge, June 2010.

[25] B. Catanzaro, M. Garland, and K. Keutzer. Cop-
perhead: compiling an embedded data parallel
language. In Proceedings of the 16th ACM sym-
posium on Principles and practice of parallel pro-
gramming, PPoPP ’11, pages 47–56, 2011.

[26] B. Catanzaro, N. Sundaram, and K. Keutzer. A
map reduce framework for programming graphics
processors. In In Workshop on Software Tools for
MultiCore Systems, 2008.

[27] C. Chambers, A. Raniwala, F. Perry, S. Adams,
R. Henry, R. Bradshaw, and N. Weizenbaum.
FlumeJava: easy, efficient data-parallel pipelines.
In PLDI’10.

[28] S. C. Chiu, W.-k. Liao, A. N. Choudhary, and
M. T. Kandemir. Processor-embedded distributed
smart disks for I/O-intensive workloads: architec-
tures, performance models and evaluation. J. Par-
allel Distrib. Comput., 65(4):532–551, 2005.

[29] E. Chung, J. Davis, and J. Lee. Linqits: Big data
on little clients. In Proceedings of the 40th In-
ternational Symposium on Computer Architecture
(ISCA), 2013.

[30] C. H. Crawford, P. Henning, M. Kistler, and
C. Wright. Accelerating computing with the cell
broadband engine processor. In CF 2008, 2008.

[31] M.-L. Cristea, W. de Bruijn, and H. Bos. Fpl-3:
towards language support for distributed packet
processing. In Proceedings of IFIP Networking
2005, 2005.

[32] M. L. Cristea, C. Zissulescu, E. Deprettere, and
H. Bos. Fpl-3e: towards language support for
reconfigurable packet processing. In Proceed-
ings of the 5th international conference on Em-
bedded Computer Systems: architectures, Mod-
eling, and Simulation, SAMOS’05, pages 82–92,
Berlin, Heidelberg, 2005. Springer-Verlag.

[33] J. Currey, S. Baker, and C. J. Rossbach. Support-
ing iteration in a heterogeneous dataflow engine.
In SFMA, 2013.

[34] A. Currid. TCP offload to the rescue. Queue,
2(3):58–65, 2004.

[35] A. L. Davis and R. M. Keller. Data flow program
graphs. IEEE Computer, 15(2):26–41, 1982.

[36] W. de Bruijn and H. Bos. Pipesfs: Fast linux i/o
in the unix tradition. ACM SigOps Operating Sys-
tems Review, 42(5), July 2008. Special Issue on
R&D in the Linux Kernel.

[37] W. de Bruijn, H. Bos, and H. Bal. Application-
tailored i/o with streamline. ACM Trans. Comput.
Syst., 29:6:1–6:33, May 2011.

[38] Z. DeVito, N. Joubert, F. Palacios, S. Oakley,
M. Medina, M. Barrientos, E. Elsen, F. Ham,
A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and
P. Hanrahan. Liszt: a domain specific language
for building portable mesh-based pde solvers. In
Proceedings of 2011 International Conference for
High Performance Computing, Networking, Stor-
age and Analysis, SC ’11, pages 9:1–9:12, New
York, NY, USA, 2011. ACM.

[39] N. T. Duong, Q. A. P. Nguyen, A. T. Nguyen, and
H.-D. Nguyen. Parallel pagerank computation us-
ing gpus. In Proceedings of the Third Symposium
on Information and Communication Technology,
SoICT ’12, pages 223–230, 2012.

[40] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-
H. Bae, J. Qiu, and G. Fox. Twister: a runtime for
iterative mapreduce. In HPDC ’10. ACM, 2010.

[41] S. Ewen, K. Tzoumas, M. Kaufmann, and
V. Markl. Spinning fast iterative data flows.
VLDB, 2012.

[42] C. Fetzer and K. Hgstedt. Self/star: A data-
flow oriented component framework for pervasive
dependability. In 8th IEEE International Work-
shop on Object-Oriented Real-Time Dependable
Systems (WORDS 2003), 15-17 January 2003,
Guadalajara, Mexico, pages 66–73. IEEE Com-
puter Society, 2003.

[43] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin,
and D. Manocha. Fast computation of database
operations using graphics processors. In ACM
SIGGRAPH 2005 Courses, SIGGRAPH ’05,
2005.

[44] J. Gray, A. Szalay, A. Thakar, P. Kunszt,
C. Stoughton, D. Slutz, and J. Vandenberg. Data
mining the SDSS SkyServer database. In Dis-
tributed Data and Structures 4: Records of the
4th International Meeting, pages 189–210, Paris,
France, March 2002. Carleton Scientific. also as
MSR-TR-2002-01.

[45] K. Gregory and A. Miller. C++ Amp: Acceler-
ated Massive Parallelism With Microsoft Visual
C++. Microsoft Press Series. Microsoft GmbH,
2012.

65

[46] D. Grewe and M. OBoyle. A static task parti-
tioning approach for heterogeneous systems using
opencl. Compiler Construction, 6601:286–305,
2011.

[47] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and
P. Ranganathan. Pegasus: coordinated schedul-
ing for virtualized accelerator-based systems. In
Proceedings of the 2011 USENIX conference on
USENIX annual technical conference, USENIX-
ATC’11, pages 3–3, Berkeley, CA, USA, 2011.
USENIX Association.

[48] T. D. Han and T. S. Abdelrahman. hiCUDA: a
high-level directive-based language for GPU pro-
gramming. In GPGPU 2009.

[49] B. He, W. Fang, Q. Luo, N. K. Govindaraju,
and T. Wang. Mars: a mapreduce framework
on graphics processors. In Proceedings of the
17th international conference on Parallel archi-
tectures and compilation techniques, PACT ’08,
pages 260–269, 2008.

[50] B. He, M. Lu, K. Yang, R. Fang, N. K. Govin-
daraju, Q. Luo, and P. V. Sander. Relational query
coprocessing on graphics processors. ACM Trans.
Database Syst., 34(4):21:1–21:39, Dec. 2009.

[51] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju,
Q. Luo, and P. Sander. Relational joins on graph-
ics processors. SIGMOD ’08, 2008.

[52] The HIVE project.
http://hadoop.apache.org/hive/.

[53] A. Hormati, Y. Choi, M. Kudlur, R. M. Rabbah,
T. Mudge, and S. A. Mahlke. Flextream: Adap-
tive compilation of streaming applications for het-
erogeneous architectures. In PACT, pages 214–
223, 2009.

[54] T. Hruby, K. van Reeuwijk, and H. Bos. Ruler:
high-speed packet matching and rewriting on
npus. In ANCS ’07: Proceedings of the 3rd
ACM/IEEE Symposium on Architecture for net-
working and communications systems, pages 1–
10, New York, NY, USA, 2007. ACM.

[55] S. S. Huang, A. Hormati, D. F. Bacon, and R. M.
Rabbah. Liquid metal: Object-oriented program-
ming across the hardware/software boundary. In
ECOOP, pages 76–103, 2008.

[56] Intel. Math kernel library. http:
//developer.intel.com/software/
products/mkl/.

[57] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: distributed data-parallel programs
from sequential building blocks. In EuroSys 2007.

[58] W. Jiang and G. Agrawal. Mate-cg: A map
reduce-like framework for accelerating data-
intensive computations on heterogeneous clus-
ters. Parallel and Distributed Processing Sympo-
sium, International, 0:644–655, 2012.

[59] V. J. Jiménez, L. Vilanova, I. Gelado, M. Gil,
G. Fursin, and N. Navarro. Predictive runtime
code scheduling for heterogeneous architectures.
In HiPEAC 2009.

[60] P. K., V. K. K., A. S. H. B., S. Balasubramanian,
and P. Baruah. Cost efficient pagerank computa-
tion using gpu. 2011.

[61] S. Kato, K. Lakshmanan, R. Rajkumar, and
Y. Ishikawa. Timegraph: GPU scheduling for
real-time multi-tasking environments. In Pro-
ceedings of the 2011 USENIX conference on
USENIX annual technical conference, 2011.

[62] K. Keeton, D. A. Patterson, and J. M. Hellerstein.
A case for intelligent disks (IDISKs). SIGMOD
Rec., 27(3):42–52, 1998.

[63] Khronos Group. The OpenCL Specification, Ver-
sion 1.2, 2012.

[64] A. Kloeckner. pycuda. https://pypi.
python.org/pypi/pycuda, 2012.

[65] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. F. Kaashoek. The click modular router. ACM
Trans. Comput. Syst., 18, August 2000.

[66] M. D. Linderman, J. D. Collins, H. Wang, and
T. H. Meng. Merge: a programming model
for heterogeneous multi-core systems. SIGPLAN
Not., 43(3):287–296, Mar. 2008.

[67] M. Linetsky. Programming Microsoft Direct-
show. Wordware Publishing Inc., Plano, TX,
USA, 2001.

[68] O. Loques, J. Leite, and E. V. Carrera E. P-rio:
A modular parallel-programming environment.
IEEE Concurrency, 6:47–57, January 1998.

[69] C.-K. Luk, S. Hong, and H. Kim. Qilin: ex-
ploiting parallelism on heterogeneous multipro-
cessors with adaptive mapping. In Proceedings of
the 42nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 42, pages
45–55, 2009.

66

http://hadoop.apache.org/hive/
http://developer.intel.com/software/products/mkl/
http://developer.intel.com/software/products/mkl/
http://developer.intel.com/software/products/mkl/
https://pypi.python.org/pypi/pycuda
https://pypi.python.org/pypi/pycuda

[70] G. Malewicz, M. H. Austern, A. J. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing.
In SIGMOD. ACM, 2010.

[71] M. D. McCool and B. D’Amora. Programming
using RapidMind on the Cell BE. In SC ’06: Pro-
ceedings of the 2006 ACM/IEEE conference on
Supercomputing, page 222, 2006.

[72] F. McSherry, D. G. Murray, R. Isaacs, and M. Is-
ard. Differential dataflow. In CIDR, 2013.

[73] S. R. Mihaylov, Z. G. Ives, and S. Guha.
Rex: recursive, delta-based data-centric computa-
tion. Proc. VLDB Endow., 5(11):1280–1291, July
2012.

[74] D. G. Murray, F. McSherry, R. Isaacs, M. Is-
ard, P. Barham, and M. Abadi. Naiad: a timely
dataflow system. SOSP, 2013.

[75] D. G. Murray, M. Schwarzkopf, C. Smowton,
S. Smith, A. Madhavapeddy, and S. Hand. Ciel:
a universal execution engine for distributed data-
flow computing. In NSDI, 2011.

[76] P. Newton and J. C. Browne. The code 2.0 graph-
ical parallel programming language. In Proceed-
ings of the 6th international conference on Super-
computing, ICS ’92, pages 167–177, 1992.

[77] NVIDIA. The thrust library. https://
developer.nvidia.com/thrust/.

[78] NVIDIA. CUDA Toolkit 4.0 CUBLAS Library,
2011.

[79] NVIDIA. NVIDIA CUDA 5.0 Programming
Guide, 2013.

[80] A. Prasad, J. Anantpur, and R. Govindarajan. Au-
tomatic compilation of matlab programs for syn-
ergistic execution on heterogeneous processors.
In Proceedings of the 32nd ACM SIGPLAN con-
ference on Programming language design and im-
plementation, PLDI ’11, pages 152–163, 2011.

[81] P. C. Pratt-Szeliga, J. W. Fawcett, and R. D.
Welch. Rootbeer: Seamlessly using gpus from
java. In HPCC-ICESS, pages 375–380, 2012.

[82] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris,
F. Durand, and S. Amarasinghe. Halide: a lan-
guage and compiler for optimizing parallelism,
locality, and recomputation in image processing
pipelines. In Proceedings of the 34th ACM SIG-
PLAN conference on Programming language de-
sign and implementation, PLDI ’13, pages 519–
530, New York, NY, USA, 2013. ACM.

[83] V. T. Ravi, M. Becchi, W. Jiang, G. Agrawal, and
S. Chakradhar. Scheduling concurrent applica-
tions on a cluster of cpu-gpu nodes. In Proceed-
ings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Comput-
ing (ccgrid 2012), CCGRID ’12, pages 140–147,
2012.

[84] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Na-
gle. Active disks for large-scale data processing.
Computer, 34(6):68–74, 2001.

[85] C. Rossbach, J. Currey, M. Silberstein, B. Ray,
and E. Witchel. Ptask: Operating system abstrac-
tions to manage gpus as compute devices. In
SOSP, 2011.

[86] A. Rungsawang and B. Manaskasemsak. Fast
pagerank computation on a gpu cluster. In Pro-
ceedings of the 2012 20th Euromicro Interna-
tional Conference on Parallel, Distributed and
Network-based Processing, PDP ’12, pages 450–
456, 2012.

[87] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S.
Stone, D. B. Kirk, and W.-m. Hwu. Optimiza-
tion principles and application performance eval-
uation of a multithreaded GPU using CUDA. In
PPoPP 2008.

[88] M. Segal and K. Akeley. The opengl graphics
system: A specification version 4.3. Technical
report, OpenGL.org, 2012.

[89] M. Silberstein, B. Ford, I. Keidar, and E. Witchel.
Gpufs: integrating file systems with gpus. In Pro-
ceedings of the Eighteenth International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13.
ACM, 2013.

[90] K. Spafford, J. S. Meredith, and J. S. Vetter. Mae-
stro: Data orchestration and tuning for opencl de-
vices. In P. D’Ambra, M. R. Guarracino, and
D. Talia, editors, Euro-Par (2), volume 6272 of
Lecture Notes in Computer Science, pages 275–
286. Springer, 2010.

[91] E. Sun, D. Schaa, R. Bagley, N. Rubin, and
D. Kaeli. Enabling task-level scheduling on het-
erogeneous platforms. In Proceedings of the 5th
Annual Workshop on General Purpose Process-
ing with Graphics Processing Units, GPGPU-5,
pages 84–93, 2012.

67

https://developer.nvidia.com/thrust/
https://developer.nvidia.com/thrust/

[92] G. Teodoro, T. Pan, T. Kurc, J. Kong, L. Cooper,
N. Podhorszki, S. Klasky, and J. Saltz. High-
throughput analysis of large microscopy image
datasets on cpu-gpu cluster platforms. 2013.

[93] W. Thies, M. Karczmarek, and S. P. Amarasinghe.
StreamIt: A Language for Streaming Applica-
tions. In CC 2002.

[94] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and
W.-M. W. Hwu. CUDA-Lite: Reducing GPU Pro-
gramming Complexity. In LCPC 2008.

[95] U. Verner, A. Schuster, and M. Silberstein. Pro-
cessing data streams with hard real-time con-
straints on heterogeneous systems. In Proceed-
ings of the international conference on Supercom-
puting, ICS ’11, pages 120–129, New York, NY,
USA, 2011. ACM.

[96] Y. Weinsberg, D. Dolev, T. Anker, M. Ben-
Yehuda, and P. Wyckoff. Tapping into the foun-
tain of CPUs: on operating system support for
programmable devices. In ASPLOS 2008.

[97] P. Wittek and S. DaráNyi. Accelerating text min-
ing workloads in a mapreduce-based distributed
gpu environment. J. Parallel Distrib. Comput.,
73(2):198–206, Feb. 2013.

[98] H. Wu, G. Diamos, S. Cadambi, and S. Yala-
manchili. Kernel weaver: Automatically fusing
database primitives for efficient gpu computation.
In Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO-45 ’12, 2012.

[99] Y. Yan, M. Grossman, and V. Sarkar. JCUDA:
A programmer-friendly interface for accelerating
java programs with CUDA. In Euro-Par, pages
887–899, 2009.

[100] Y. Yu, P. K. Gunda, and M. Isard. Distributed ag-
gregation for data-parallel computing: interfaces
and implementations. In SOSP, pages 247–260,
2009.

[101] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlings-
son, P. K. Gunda, and J. Currey. DryadLINQ:
A system for general-purpose distributed data-
parallel computing using a high-level language.
In Proceedings of the 8th Symposium on Operat-
ing Systems Design and Implementation (OSDI),
pages 1–14, 2008.

[102] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Er-
lingsson, P. K. Gunda, J. Currey, F. McSherry,
and K. Achan. Some sample programs written in
DryadLINQ. Technical Report MSR-TR-2008-
74, Microsoft Research, May 2008.

[103] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

[104] H. Zaragoza, N. Craswell, M. Taylor, S. Saria,
and S. Robertson. Microsoft Cambridge at
TREC-13: Web and HARD tracks. In Proc. of
the 13th Text Retrieval Conference, 2004.

68

	Introduction
	Programming Model
	LINQ
	Dandelion Extension
	Limitations

	System Architecture
	Dandelion Compiler
	Dandelion Runtime

	Implementation
	GPU Compiler and Code Generation
	GPU Primitive Library
	GPU Dataflow Engine
	Cluster Dataflow Engine
	Machine Dataflow Engine

	Evaluation
	Single Machine Performance
	K-means in depth
	Distributed Performance

	Related work
	Conclusion
	Acknowledgements

