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Foreword

This year’s edition of the international federated conferences on Distributed
Computing Techniques took place in Lisbon during June 9–11. It was hosted by
the Faculty of Sciences of the University of Lisbon and formally organized by
the Institute of Telecommunications, the research center I am associated with.

The DisCoTec conferences jointly cover the complete spectrum of distributed
computing subjects ranging from theoretical foundations to formal specification
techniques to practical considerations. The event this year comprised the 11th
International Conference on Coordination Models and Languages (COORDINA-
TION), the 9th IFIP International Conference on Distributed Applications and
Interoperable Systems (DAIS), and the IFIP International Conference on Formal
Techniques for Distributed Systems (FMOODS/FORTE). COORDINATION fo-
cused on languages, models, and architectures for concurrent and distributed
software; DAIS on methods, techniques, and system infrastructures needed to
design, build, operate, evaluate, and manage modern distributed applications in
any kind of application environment and scenario; and FMOODS (the 11th For-
mal Methods for Open Object-Based Distributed Systems) jointed forces with
FORTE (the 29th Formal Techniques for Networked and Distributed Systems)
creating a forum for fundamental research on theory and applications of dis-
tributed systems.

In an effort for integration, each of the three days of the event started with
an invited talk suggested by one of the conferences, in a plenary session, and,
furthermore, one of the technical sessions was composed of a paper from each
conference. The common program also included the first tutorial series on Global
Computing, a joint initiative of the EU projects Mobius (Mobility, Ubiquity
and Security) and Sensoria (Software Engineering for Service-Oriented Overlay
Computers), which contributed to a very interesting program. I would like to
thank all the invited speakers for accepting to give talks at the event, and all
the authors for submitting papers.

As satellite events, there were two workshops, the Second Workshop on
Context-aware Adaptation Mechanisms for Pervasive and Ubiquitous Services
(CAMPUS 2009), focusing on approaches in the domain of context-aware adap-
tation mechanisms supporting the dynamic evolution of the execution context,
and the Third Workshop on Middleware-Application Interaction (MAI 2009),
focusing on middleware support for multiple cross-cutting features such as se-
curity, fault tolerance, and distributed resource management. The 10th Interna-
tional Conference on Feature Interactions in Telecommunications and Software
Systems (ICFI) and meetings of the EU COST action on Formal Verification
of Object-Oriented Software and the Sensoria project were co-located with Dis-
CoTec.

I hope this rich program offered every participant interesting and stimulat-
ing events. It was only possible thanks to the dedicated work of the members
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of the Organizing Committee — Ana Matos, Carla Ferreira, Francisco Martins,
João Seco and Maxime Gamboni — and to the sponsorship of the Center of
Informatics and Information Technology (CITI), the Portuguese research foun-
dation Fundação para a Ciência e a Tecnologia (FCT), the Instituto de Telecomu-
nicações (IT), and the Large-Scale Informatics Systems Laboratory (LaSIGE).

April 2009 António Ravara



Preface

This volume contains the proceedings of the IFIP International Conference on
Formal Techniques for Distributed Systems. The conference is organized as the
joint activity of two conferences: FMOODS (Formal Methods for Open Object-
Based Distributed Systems) and FORTE (Formal Techniques for Networked and
Distributed Systems).

The goal of the conference on Formal Techniques for Distributed Systems
– FMOODS/FORTE – is to provide a forum for fundamental research on the-
ory and applications of distributed computing models and formal specification,
testing and verification methods. The application domains for these techniques
include a variety of application-level distributed systems, telecommunication ser-
vices, Internet, embedded and real-time systems, as well as networking and com-
munication security and reliability.

The proceedings contain 12 regular and 6 short papers. They were selected by
the Program Committee (PC) among 42 submissions. Each paper was assigned
to at least three PC members for a detailed review. Additional expert reviews
were solicited if the reviews of a paper had quite diversified assessments or the
reviewers indicated low confidence. The final decision of acceptance was based on
an online discussion of the PC. The selected papers constitute a strong program
of stimulating and timely topics in the areas of formal verification, algorithms
and implementations, modeling and testing, process algebra and calculus, and
analysis of distributed systems.

In addition to the selected contributions, the proceedings feature the article
“The Orc Programming Language” by Jayadev Misra of the University of Texas
at Austin, USA, who was the invited speaker of FMOODS/FORTE this year. He
is an international expert in applying formal methods to distributed systems, in
particular in the area of specifying and designing synchronous and asynchronous
systems.

We are deeply indebted to the PC members and external reviewers for their
hard and conscientious work in preparing 159 reviews. We thank António Ravara,
the General Chair, for his support, and the Steering Committees of FMOODS
and FORTE for their guidance. Our gratitude goes to the authors for their
support of the conference by submitting their high-quality research works. We
thank the providers of the conference tool EasyChair that was a great help in
organizing the submission and reviewing process.

June 2009 David Lee
Antónia Lopes

Arnd Poetzsch-Heffter
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The Orc Programming Language

David Kitchin, Adrian Quark, William Cook, and Jayadev Misra

The University of Texas, Austin

Abstract. Orc was originally presented as a process calculus. It has
now evolved into a full programming language, which we describe in this
paper. The language has the structure and feel of a functional program-
ming language, yet it handles many non-functional aspects effectively,
including spawning of concurrent threads, time-outs and mutable state.
We first describe the original concurrency combinators of the process cal-
culus. Next we describe a small functional programming language that
forms the core language. Then we show how the concurrency combi-
nators of the process calculus and the functional core language are in-
tegrated seamlessly. The resulting language and its supporting libraries
have proven very effective in describing typical concurrent computations;
we demonstrate how several practical concurrent programming problems
are easily solved in Orc.

1 Introduction

Concurrency has become an urgent practical problem with the advent of multi-
core and multi-CPU systems. Unfortunately, concurrency is difficult for pro-
grammers, who are expected to define and manage threads and locks explicitly.
These basic concurrency constructs do not serve well to express the high-level
structure of control flow in concurrent programs, especially when handling fail-
ure, time-outs, and process termination. It is also important to easily compose
processes at different granularities, from small processes to complete workflows,
and to seamlessly integrate asynchronous human interactions within a process.

The Orc process calculus [8] was designed to express orchestrations and wide-
area computations in a simple and structured manner. Its intent was to overcome
some of the problems listed above. It is inherently concurrent and implicitly
distributed. It has a clearly specified operational semantics. Human actors and
computational processes of varying granularity are treated uniformly.

Orc was originally conceived as a formal model rather than a concrete tool.
We have now implemented Orc as a complete programming language and be-
gun writing substantial applications in it [11]. This paper describes the language
and some of the motivating philosophy in its design. The language includes the
three original concurrency combinators of Orc and a fourth one, introduced to
detect terminations of computations. These combinators are seamlessly inte-
grated with a core functional language. The complete language, called just Orc,
has the structure and feel of a functional programming language; yet it han-
dles many non-functional aspects effectively, including spawning of concurrent
threads, time-outs and mutable state.

D. Lee et al. (Eds.): FMOODS/FORTE 2009, LNCS 5522, pp. 1–25, 2009.
c© IFIP International Federation for Information Processing 2009



2 D. Kitchin et al.

The paper is structured as follows. In Section 2, we review the Orc concur-
rency calculus. In Section 3, we present the functional core of Orc. Section 4
integrates the functional core with the concurrency calculus, resulting in the full
Orc programming language, which is subsequently enhanced with some helpful
syntactic sugar, a library of useful services and functions, and the capability to
interact with other languages such as Java. Section 5 presents a series of examples
demonstrating solutions to common concurrent programming problems using the
Orc language. We consider Orc’s relationship to similar concurrent languages in
Section 6, and conclude with some remarks on future work in Section 7.

We encourage the reader to visit our website [11] for more information. It
hosts a comprehensive user guide, a community wiki, and a web-based interface
for experimenting with Orc.

2 The Orc Concurrency Calculus

The Orc calculus is based on the execution of expressions. Expressions are built
up recursively using Orc’s concurrent combinators. When executed, an Orc ex-
pression calls services and may publish values. Different executions of the same
expression may have completely different behaviors; they may call different ser-
vices, receive different responses from the same service, and publish different
values.

Orc expressions use sites to refer to external services. A site may be imple-
mented on the client’s machine or a remote machine. A site may provide any
service; it could run sequential code, transform data, communicate with a web
service, or be a proxy for interaction with a human user.

We present the calculus informally in this paper. The formal operational and
denotational semantics of the calculus are given in [4].

2.1 Site Calls

The simplest Orc expression is a site call M(p), where M is a site name and p
is a list of parameters, which are values or variables. The execution of a site call
invokes the service associated with M , sending it the parameters p. If the site
responds, the call publishes that response.

Here are some examples of site calls.

add(3,4) Add the numbers 3 and 4.
CNN(d) Get the CNN news headlines for date d.
Prompt("Name:") Prompt the user to enter a name.
swap(l0,l1) Swap the values stored at locations l0 and l1.
Weather("Austin, TX") Find the current weather in Austin.
random(10) Get a random integer in the range 0..9.
invertMatrix(m) Find the inverse of matrix m.

A site may give at most one response to a call. A site call may explicitly
report that it will never respond, in which case we say that the call has halted.
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For example, the call might represent an invalid operation (invertMatrix on
a non-invertible matrix), it may have encountered a system error (trying to
swap with a protected memory location), or it may simply have no available
response (calling CNN on a future date). Some site calls may neither respond nor
halt. For example a call to Prompt will wait forever if the user never inputs a
response.

Though the Orc calculus itself contains no sites, there are a few fundamental
sites which are so essential to writing useful computations that we always assume
they are available. The site let is the identity site; when passed one argument,
it publishes that argument, and when passed multiple arguments it publishes
them as a tuple. The site if responds with a signal (a value which carries no
information) if its argument is true, and otherwise halts.

2.2 Combinators

Orc has four combinators to compose expressions: the parallel combinator |,
the sequential combinator >x>, the pruning combinator1 <x<, and the otherwise
combinator2 ;.

When composing expressions, the >x> combinator has the highest precedence,
followed by |, then <x<, and finally ; with the lowest precedence.

Parallel Combinator. In F | G, expressions F and G execute independently.
The sites called by F and G are the ones called by F | G and any value pub-
lished by either F or G is published by F | G. There is no direct communication
or interaction between these two computations.

For example, evaluation of CNN(d) | BBC(d) initiates two independent com-
putations; up to two values will be published depending on the number of re-
sponses received.

The parallel combinator is commutative and associative.

Sequential Combinator. In F >x> G, expression F is evaluated. Each value
published by F initiates a separate execution of G wherein x is bound to that
published value. Execution of F continues in parallel with these executions of
G. If F publishes no values, no executions of G occur. The values published by
the executions of G are the values published by F >x> G. The values published
by F are consumed.

As an example, the following expression calls sites CNN and BBC in parallel to
get the news for date d. Responses from either of these calls are bound to x and
then site email is called to send the information to address a. Thus, email may
be called 0, 1 or 2 times, depending on the number of responses received.

( CNN(d) | BBC(d) ) >x> email(a, x)

1 In previous publications, F <x< G was written as F where x ∈ G.
2 The ; combinator is a new addition to Orc, inspired by practical experience writing

Orc programs. Its formal semantics will appear in a forthcoming technical report.
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The sequential combinator is left associative, i.e. F >x> G >y> H is
F >x> (G >y> H). When x is not used in G, one may use the short-hand
F >> G for F >x> G.

Pruning Combinator. In F <x< G, both F and G execute in parallel. Execu-
tion of parts of F which do not depend on x can proceed, but site calls in F for
which x is a parameter are suspended until x has a value. If G publishes a value,
then x is assigned that value, G’s execution is terminated and the suspended
parts of F can proceed. This is the only mechanism in Orc to block or terminate
parts of a computation.

In contrast to sequential composition, the following expression calls email at
most once.

email(a, x) <x< ( CNN(d) | BBC(d) )

The pruning combinator is right associative, i.e. F <x< G <y< H is
(F <x< G) <y< H. When x is not used in F , one may use the short-hand
F << G for F <x< G.

Otherwise Combinator. The execution of F ; G first executes F . If F pub-
lishes no values and then halts, then G executes. We say that F halts if all of
the following conditions hold:

1. All site calls in the execution of F have either responded or halted.
2. F will never call any more sites.
3. F will never publish any more values.

The following expression calls CNN to get the news for date d. If CNN(d) re-
sponds, email is called using that response, and the BBC is never called. However,
the site CNN may halt, as described in Section 2.1, if there is no news available
for date d. In this case BBC(d) is executed, and if it responds, email is called.

( CNN(d) ; BBC(d) ) >x> email(a, x)

The otherwise combinator is associative, i.e. (F ; G) ; H is the same as
F ; (G ; H).

signal and stop. For convenience, we allow two additional expressions: signal
and stop. The expression signal just publishes a signal when executed; it is
equivalent to if(true). The expression stop halts when executed; it is equiva-
lent to if(false).

2.3 Definitions

An Orc expression may be preceded by a sequence of definitions of the form:

def E(x) = F
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This defines a function named E whose formal parameter list is x and body
is expression F . A call E(p) is evaluated by replacing the formal parameters
x by the actual parameters p in the body F . Unlike a site call, a function call
does not suspend if one of its arguments is a variable with no value. A function
call may publish more than one value; it publishes every value published by the
execution of F . Definitions may be recursive.

2.4 Time

Orc is designed to communicate with the external world, and one of the most
important characteristics of the external world is the passage of time. Orc implic-
itly accounts for the passage of time by interacting with external services that
may take time to respond. However, Orc can also explicitly wait for a specific
amount of time, using the special site Rtimer.

The call Rtimer(t), where t is an integer, responds with a signal exactly t
milliseconds later3.

The following example defines a metronome, which publishes a signal once
every t milliseconds, indefinitely.

def metronome(t) = signal | Rtimer(t) >> metronome(t)

We can also use Rtimer together with the <x< combinator to enforce a time-
out. For example, we can query BBC for a headline, but allow a default response
if BBC does not respond within 5 seconds.

email(a, x) <x< (BBC(d) | Rtimer(5000) >> "BBC timed out.")

3 Functional Core Language

In the preceding section, we introduced an abstract language intended to high-
light several issues pertaining to concurrency. However, concurrent programs
contain large amounts of sequential code, with attendant data and control struc-
tures. We enhance Orc by adding a functional core language to it. In this section
we describe Cor, the functional core. In Section 4 we will show how any Cor
expression can be written as an equivalent Orc expression; this will allow us to
integrate Cor into Orc.

A Cor program is an expression. Cor expressions are built up recursively from
smaller expressions. Cor evaluates an expression to reduce it to some simple value
which cannot be evaluated further, for example a list of numbers or a Boolean
truth value. This value is called the result of the expression. Some expressions
do not have a result, because they represent an invalid computation (such as
division by zero) or an infinite computation. Such expressions are called silent.

Values and Operators. Cor has three types of constants: numbers
(5, -1, 2.71828, · · · ), strings ("orc", "ceci n’est pas une |", · · · ), and

3 An implementation can only approximate this guarantee.
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booleans (true and false). It provides the usual arithmetic (+ - * / · · · ),
logical (&& || · · · ), and comparative (= < > · · · ) operators. They are written
infix with Java-like operator precedence. Parentheses can be used to override
this precedence.

(98+2)*17 evaluates to 1700.
4 = 20 / 5 evaluates to true.
"leap" + "frog" evaluates to "leapfrog".

Conditionals. Cor has conditional expressions: if E then F else G. If E
evaluates to true, then F is evaluated. If E evaluates to false, then G is
evaluated.

if true then 4 else 5 evaluates to 4.
if 0 < 5 then 0/5 else 5/0 evaluates to 0.
if false || false then 4+5 else 9/0 is silent.

Variables. We introduce and bind variables using a val declaration, as follows.
Below, x and y are bound to 3 and 6, respectively.

val x = 1 + 2
val y = x + x

Variables cannot be reassigned because Cor is a pure functional language and
has no mutable state. If the same variable is bound again, subsequent refer-
ences to that variable will use the new binding, but previous references remain
unchanged. Declarations obey the rules of lexical scope.

What if a variable is bound to a silent expression? Consider:

val x = 1/0
val y = 4+5
if false then x else y

Any expression that evaluates x will be silent. However, the evaluation of
val y = 4+5 and if false then x else y proceeds as normal.

Data Structures. Cor supports two basic data structures: tuples ((3, 7),
("tag", true, false), · · · ) and finite lists ([4,4,1], ["example"], [], · · · ).
A tuple or list containing expressions to be evaluated is itself an expression; each
of the expressions is evaluated, and the result is a tuple or list of those results.

[1,2+3] evaluates to [1,5].
(3+4, if true then "yes" else "no") evaluates to (7, "yes").

Tuples and lists can contain any value, including other tuples or lists.
The prepend (cons) operation on lists is written x:xs, where xs is a list and

x is some element to be prepended to that list.
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(1+3):[2+5,6] evaluates to [4,7,6].
2:2:5:[] evaluates to [2,2,5].

val t = [3,5]

1:t evaluates to [1,3,5].

2:3 is silent, because 3 is not a list.

Patterns. We can bind parts of data structures to variables using patterns. We
write _ for the wildcard pattern.

val (x,y) = (2+3,2*3)

binds x to 5 and y to 6.

val t = ["two", "three"]

val [a,_,c] = "one":t

binds t to ["two","three"], a to "one", and c to "three".

val ((a,b),c) = ((1, true), (2, false))

binds a to 1, b to true, and c to (2,false).

Functions. Functions are defined using the keyword def, in the following way.

def add(x,y) = x+y

The expression to the right of the = is called the body of the function.
The syntax for function calls is typical for functional programming. However,

the interpretation of a function call is more elaborate, in anticipation of the
concurrency combinators to be added. A call, such as add(1+2,3+4) is converted
to a sequence of val declarations, one per formal parameter, followed by a goal
expression, which is just the body of the function:

val x = 1+2
val y = 3+4
x+y

Notice that the evaluation strategy of functions allows a call to proceed even
if some of the actual parameters are silent expressions, so long as the values of
those actual parameters are not used in the evaluation of the body.

Functions may be defined recursively, as in:

def sumto(n) = if n < 1 then 0 else n + sumto(n-1)

Mutual recursion is also supported. There is no special keyword for mutual re-
cursion; any contiguous sequence of function definitions is allowed to be mutually
recursive.

Functions are actually values, just like any other. Defining a function creates
a special value called a closure; the name of the function is a variable and its
bound value is the closure. Since a closure is a value, it can be passed as an
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argument to another function, thus allowing us to define a higher-order function.
Cor functions obey lexical closure.

def onetwosum(f) = f(1) + f(2)
def triple(x) = x * 3
onetwosum(triple)

This is the same as triple(1) + triple(2), i.e. 1 * 3 + 2 * 3.
We may create a closure without giving it a name, using the keyword

lambda. For example, onetwosum( lambda(x) = x * 3 ) is equivalent to
onetwosum(triple) as defined above.

Functions can be defined as a series of clauses, each of which has a different
list of patterns for its formal parameters. When such a function is called, the
function body used for the call is that of the first clause whose formal parameter
patterns match the actual parameters.

def sum([]) = 0
def sum(h:t) = h + sum(t)

def fib(0) = 0
def fib(1) = 1
def fib(n) =

if (n < 0) then fib(0)
else fib(n-1) + fib(n-2)

4 The Orc Programming Language

The full Orc programming language combines the concurrency calculus with the
functional core language, and adds to it a few notational conveniences and the
support of a large library of sites and predefined functions. The full language
has many features which we do not discuss here due to space constraints; see
the Orc User Guide [5] for details.

4.1 Translating Cor to Orc

Every Cor expression can be translated to an equivalent expression in the Orc
calculus, using a small set of primitive sites to perform tasks such as arithmetic
and list manipulation.

Values and Operators. The arithmetic, logical, and comparison operators
translate directly to site calls; for example, 2+3 translates to add(2,3), where
add is simply a site which performs addition.

If a value or variable is mentioned alone, such as 3 or x, it becomes a call to
the identity site let with that argument.

Cor expressions may be recursively nested. However, site calls in the Orc cal-
culus may only have values or variables as arguments. For example, 2+(3+4)
cannot translate directly to add(2, add(3,4)), since the call add(3,4) cannot
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be an argument. Instead, we translate 2+(3+4) to add(2,z) <z< add(3,4),
where z is a fresh variable name. This translation can be applied to any such
nested expression.

Conditionals. The conditional expression if E then F else G translates
to:

( if(b) >> F | not(b) >c> if(c) >> G ) <b< E

Variables. The declaration val x = G, followed by expression F , translates
to:

F <x< G

Data Structures. Data structures are created by site calls. The site let creates
tuples directly. The site nil returns the empty list when called. The site cons

implements the cons operator and is also used to construct list expressions. For
example, [1,2] translates to cons(1,t) <s< cons(2,t) <t< nil().

Patterns. Patterns can be translated into a set of calls to pattern deconstruc-
tion sites followed by a set of variable bindings to match up each of the pieces
with the appropriate variable names. For example, the site trycons takes one
argument; if that argument is a nonempty list, then it returns a tuple of the
list’s head and tail, otherwise it remains silent.

Functions. Cor function definitions translate to Orc definitions, though we
must extend the calculus slightly to permit such definitions to occur within the
scope of normal expressions and create closures.

The expression lambda(...) = E translates to the following Orc expression,
where f is a fresh variable name:

def f(...) = E
let(f)

4.2 Integrating Cor and Orc

As we have seen, any Cor expression can be translated into an equivalent Orc
expression. This allows us to integrate the concurrency combinators with Cor.

Mingling Cor and Orc expressions. The combined language allows any Cor
or Orc expression to appear as a subexpression of any other Cor or Orc expres-
sion. Sometimes, an Orc expression which publishes multiple values will appear
in the context of a Cor expression which expects only one value, for example
2 + (3 | 4). In such a case, the Orc expression executes until it publishes a
value, and then is terminated. Therefore 2 + (3 | 4) is to be understood as
(2 + x) <x< (3 | 4). While this may be an unexpected behavior, it is quite
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useful once it becomes familiar. In fact, it is used so often in Orc programs that
the pruning combinator itself is rarely written explicitly.

Patterns in Combinators. The combined language also allows patterns to
replace variables in the >x> and <x< combinators. If a publication does not
match the pattern of a >x> combinator, the publication is ignored, and no new
instance of the right hand expression is executed. For the <x< combinator, the
publication is ignored, and the right hand expression continues to run.

(3,4) >(x,y)> x+y publishes 7.
x <(0,x)< ((1,0) | (0,1)) publishes 1.

Functions. A function call in Orc, as in Cor, binds the values of its actual
parameters to its formal parameters, and then executes the function body with
those bindings. Whenever the function body publishes a value, the function call
publishes that value. Thus, unlike a site call, or a pure functional Cor call, an
Orc function call may publish many values.

In the context of Orc, function calls are not strict. When a function call
executes, it begins to execute the function body immediately, and also executes
the argument expressions in parallel. When an argument expression publishes
a value, it is terminated, and the corresponding formal parameter is bound to
that value in the execution of the function body. Any part of the function body
which uses a formal parameter that has not yet been bound suspends until that
parameter is bound to a value.

An Example. We show an Orc program that does not use any of the concur-
rency combinators explicitly. In fact, the program is almost entirely functional,
with the sole exception of the site call random(6), which returns a random
integer between 0 and 5. Each nested expression will translate into a use of
the pruning combinator, making this program implicitly concurrent without any
programmer intervention.

This program runs a series of experiments. Each experiment consists of rolling
a pair of dice. An experiment succeeds if the total shown by the two dice is c.
The function exp(n,c) returns the number of successes in n experiments.

def throw() = random(6) + 1

def exp(0,_) = 0
def exp(n,c) =

(if throw() + throw() = c then 1 else 0)
+ exp(n-1,c)

Here is the translation of this program into the Orc calculus. Site add returns
the sum of its arguments, not returns the negation of its boolean argument, and
equals returns true iff its two arguments are equal.
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def throw() = add(x,1) <x< random(6)

def exp(n,c) =
( if(b) >> let(0)
| not(b) >nb> if(nb) >>

( add(x,y)
<x< ( ( if(bb) >> 1 | not(bb) >nbb> if(nbb) >> 0 )

<bb< equals(p,c)
<p< add(q,r)

<q< throw()
<r< throw() )

<y< ( exp(m,c) <m< sub(n,1) ) )
) <b< equals(n,0)

4.3 The . Notation

We will see many sites which represent objects with multiple behaviors. It
is often convenient to treat such sites as if they had methods, in an object-
oriented style. We access methods on sites using a special form of site call, as in
c.put(4).

This call form, like every other new syntactic form introduced so far, can be
encoded in the Orc calculus. The site c is sent a special value called a message,
in this case the ’put’ message. It responds to that message with another site
which will execute the desired method when called. So c.put(4) translates to
c(’put’) >x> x(4).

4.4 Site Library

The Orc programming language has access to a library of useful sites. We intro-
duce a few essential ones here.

Channels. Orc has no communication primitives like π-calculus channels [7]
or Erlang mailboxes [1]. Instead, it makes use of sites to create channels of
communication.

The most frequently used of these sites is Buffer. When called, it publishes a
new asynchronous FIFO channel. That channel is a site with two methods: get
and put. The call c.get() takes the first value from channel c and publishes it,
or blocks waiting for a value if none is available. The call c.put(v) puts v as
the last item of c and publishes a signal.

A channel may be closed to indicate that it will not be sent any more values.
If the channel c is closed, c.put(v) always halts (without modifying the state
of the channel), and c.get() halts once c becomes empty. The channel c may
be closed by calling either c.close(), which returns a signal once c becomes
empty, or c.closenb(), which returns a signal immediately.
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References. Unlike imperative programming languages, Orc does not have mu-
table variables. Mutable state is provided by sites instead. The Ref site is used
to create new mutable references, which are used in a style similar to Standard
ML’s ref [9].

A call to Ref may include an argument specifying the initial contents of
the reference; if none is given, then the reference’s value is undefined. Given a
reference r, r.write(v) overwrites the current value stored in r, changing it
to v, and r.read() publishes the current value stored in r. If r is undefined,
r.read() blocks until some write occurs.

Semaphores. Unlike other concurrent languages, Orc does not have any locking
mechanisms built into the language. Instead, it uses the Semaphore site to create
semaphores which enable synchronization and mutual exclusion. Semaphore(k)
creates a semaphore with the initial value k (i.e. it may be acquired by up
to k parties simultaneously). Given a semaphore s, s.acquire() attempts to
acquire s, blocking if it cannot be acquired yet because its value is zero. The
call s.release() releases s, increasing is value by one.

4.5 Function Library

The Orc programming language also includes a library of predefined functions.
These are functions written in Orc, using def. We introduce a few important
ones here.

each. One of the most common uses for a list is to send each of its elements
through a sequential combinator. Since the list itself is a single value, we want to
walk through the list and publish each one of its elements in parallel as a value.
The library function each does exactly that.

Suppose we want to send the message invite to each email address in the
list inviteList:

each(inviteList) >address> email(address, invite)

repeat. A site in Orc responds with at most one value. If we wish to model a
service that outputs a stream of values, we can either encode the stream as a
single value, or we can call the site repeatedly to receive successive values in the
stream. The function repeat is very useful for the latter approach: repeat(M)
calls site M, waits for it to respond, publishes the response, and then repeats the
process, until the call to M halts. For example, repeat(c.get) will take and
publish values from the channel c whenever they are available.

List Functions. Orc adopts many of the list idioms of functional programming.
The Orc library contains definitions for most of the standard list functions,
such as map and fold. Many of the list functions internally take advantage
of concurrency to make use of any available parallelism; for example, the map

function uses a fork-join to dispatch all of the mapped calls concurrently and
assemble the result list from their responses.
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4.6 Interacting with Other Languages

The current Orc implementation allows Java classes to be used as sites. A special
declaration makes a Java class constructor available to Orc as a site with the
same name. Calling that constructor site creates an instance of the Java object.
That object’s methods and fields can then be accessed using the dot notation
described earlier. We anticipate that this mechanism may be generalized to other
languages.

4.7 Complete Syntax

The complete abstract syntax of the Orc language used for the remainder of this
paper is given below.

Constant C ::= boolean, number, or string
Variable X ::= variable name
Message m ::= message name
Pattern P ::= C | X | (P) | [P] | _

Declaration D ::= val P = E

| def X(P) = E

Expression E ::= C | X | (E) | [E] | signal

| E op E | X(E) | X.m(E)

| if E then E else E

| lambda(P) = E

| D E
| E | E

| E >P> E

| E <P< E

| E ; E

| stop

5 Programming Idioms

In this section we give Orc implementations of some standard idioms from con-
current and functional programming. Despite the austerity of Orc’s four combi-
nators, we are able to encode a variety of idioms straightforwardly.

5.1 Fork-Join

One of the most common concurrent idioms is a fork-join: evaluate two expres-
sions F and G concurrently and wait for a result from both before proceeding.
This is easy to express in Orc:

(F, G)

Recall that this is equivalent to:

( (x,y) <x< F ) <y< G
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This implementation takes advantage of the fact that a tuple is constructed
by a site call, which must wait for all of its arguments to become available. In
fact, any operator or site call may serve to join forked expressions. For example,
if F and G produce numbers and we wish to fork-join and add their results, we
write simply F + G.

Example: Simple Parallel Auction. Orc programs often use fork-join with
recursion to dispatch many tasks in parallel and wait for all of them to complete.
Suppose we have a list of bidders in a sealed-bid, single-round auction. Calling
b.ask() requests a bid from the bidder b. We want to ask for one bid from
each bidder and then return the highest bid. The function auction performs
this task (max finds the maximum of its arguments):

def auction([]) = 0
def auction(b:bs) = max(b.ask(), auction(bs))

Note that all bidders are called simultaneously. Also note that if some bidder
fails to return a bid, then the auction will never complete. Section 5.5 presents
a different solution that addresses the issue of non-termination.

Example: Barrier Synchronization. Consider an expression of the following
form, where F and G are expressions and M and N are sites:

M() >x> F | N() >y> G

Suppose we would like to synchronize F and G, so that both start executing
at the same time, after both M() and N() respond. This is easily done using the
fork-join idiom. In the following, we assume that x does not occur free in G, nor
y in F .

(M(), N()) >(x,y)> ( F | G )

5.2 Sequential Fork-Join

Previous sections illustrate how Orc can use the fork-join idiom to process a fixed
set of expressions or a list of values. Suppose that instead we wish to process
all the publications of an expression F , and once this processing is complete,
execute some expression G. For example, F publishes the contents of a text file,
one line at a time, and we wish to print each line to the console using the site
println, then publish a signal after all lines have been printed.

Sequential composition alone is not sufficient, because we have no way to
detect when all of the lines have been processed. A recursive fork-join solution
would require that the lines be stored in a traversable data structure like a
list, rather than streamed as publications from F . A better solution uses the ;

combinator to detect when processing is complete:

F >x> println(x) >> stop ; signal
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Since ; only evaluates its right side if the left side does not publish, we suppress
the publications on the left side using stop. Here, we assume that we can detect
when F halts. If, for example, F is publishing the lines of the file as it receives
them over a socket, and the sending party never closes the socket, then F never
halts and no signal is published.

5.3 Priority Poll

The otherwise combinator is also useful for trying alternatives in sequence. Con-
sider an expression of the form F0 ; F1 ; F2 ; · · · . If Fi does not publish and
halts, then Fi+1 is executed. We can think of the Fi’s as a series of alternatives
that are explored until a publication occurs.

Suppose that we would like to poll a list of buffers for available data. The
list of buffers is ordered by priority. The first buffer in the list has the highest
priority, so it is polled first. If it has no data, then the next buffer is polled, and
so on.

Here is a function which polls a prioritized list of buffers in this way. It pub-
lishes the first item that it finds, removing it from the originating buffer. If all
buffers are empty, the function halts. We use the getnb (”get non-blocking”)
method of the buffer, which retrieves the first available item if there is one, and
halts otherwise.

def priorityPoll([]) = stop
def priorityPoll(b:bs) = b.getnb() ; priorityPoll(bs)

5.4 Parallel Or

“Parallel or” is a classic idiom of parallel programming. The “parallel or” oper-
ation executes two expressions F and G in parallel, each of which may publish
a single boolean, and returns the disjunction of their publications as soon as
possible. If one of the expressions publishes true, then the disjunction is true,
so it is not necessary to wait for the other expression to publish a value. This
holds even if one of the expressions is silent.

The “parallel or” of expressions F and G may be expressed in Orc as follows:

let(
val a = F
val b = G
(a || b) | if(a) >> true | if(b) >> true

)

The expression (a || b) waits for both a and b to become available and then
publishes their disjunction. However if either a or b is true we can publish true

immediately regardless of whether the other variable is available. Therefore we
run if(a) >> true and if(b) >> true in parallel to wait for either variable
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to become true and immediately publish the result true. Since more than one
of these expressions may publish true, the surrounding let(. . .) is necessary to
select and publish only the first result.

5.5 Timeout

Timeout, the ability to execute an expression for at most a specified amount of
time, is an essential ingredient of fault-tolerant and distributed programming.
Orc accomplishes timeout using pruning and the Rtimer site. The following
program runs F for at most one second, publishing its result if available and the
value 0 otherwise.

let( F | Rtimer(1000) >> 0 )

Example: Auction with Timeout. The auction example in Section 5.1 may
never finish if one of the bidders does not respond. We can add a timeout so
that each bidder has at most 8 seconds to provide a bid:

def auction([]) = 0
def auction(b:bs) =

val bid = b.ask() | Rtimer(8000) >> 0
max(bid, auction(bs))

This version of the auction is guaranteed to complete within 8 seconds.

Detecting Timeout. Sometimes, rather than just yielding a default value,
we would like to determine whether an expression has timed out, and if so,
perform some other computation. To detect the timeout, we pair the result of
the original expression with true and the result of the timer with false. Thus,
if the expression does time out, then we can distinguish that case using the
boolean value.

Here, we run expression F with a time limit t. If it publishes within the time
limit, we bind its result to r and execute G. Otherwise, we execute H .

val (r, b) = (F, true) | (Rtimer(t), false)
if b then G else H

Priority. We can use a timer to give a window of priority to one computation
over another. In this example, we run expressions F and G concurrently. For
one second, F has priority; F ’s result is published immediately, but G’s result
is held until the time interval has elapsed. If neither F nor G publishes a result
within one second, then the first result from either is published.

val x = F
val y = G
let( x | Rtimer(1000) >> y )
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5.6 Metronome

A timer can be used to execute an expression repeatedly at regular intervals, for
example to poll a service. Recall the definition of metronome from Section 2.4:

def metronome(t) = signal | Rtimer(t) >> metronome(t)

The following example publishes “tick” once per second and “tock” once per
second after an initial half-second delay. The publications alternate: “tick tock
tick tock . . . ”. Note that this program is not defined recursively; the recursion
is entirely contained within metronome.

metronome(1000) >> "tick"
| Rtimer(500) >> metronome(1000) >> "tock"

5.7 Fold

We consider various concurrent implementations of the classic “list fold” function
from functional programming:

def fold(_, [x]) = x
def fold(f, x:xs) = f(x, fold(xs))

This is a seedless fold (sometimes called fold1) which requires that the list
be nonempty and uses its first element as a seed. This implementation is short-
circuiting — it may finish early if the reduction operator f does not use its
second argument — but it is not concurrent; no two calls to f can proceed in
parallel.

Associative Fold. We first consider the case when the reduction operator is
associative. We define afold(b,xs) where b is a binary associative function
and xs is a non-empty list. The implementation iteratively reduces xs to a
single value. Each step of the iteration applies the auxiliary function step, which
halves the size of xs by reducing disjoint pairs of adjacent items. Notice that
b(x,y):step(xs) is an implicit fork-join, as described in Section 5.1. Thus,
the call b(x,y) executes in parallel with the recursive call step(xs), and as a
result, all of the calls to b in each iteration occur in parallel.

def afold(b, [x]) = x
def afold(b, xs) =

def step([]) = []
def step([x]) = [x]
def step(x:y:xs) = b(x,y):step(xs)
afold(b, step(xs))

Associative, Commutative Fold. We can devise a better strategy when the
fold operator is both associative and commutative. We define cfold(b,xs),
where b is a binary associative and commutative function over two arguments
and xs is a non-empty list. The implementation initially copies all list items
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into a buffer in arbitrary order using the auxiliary function xfer. The auxiliary
function combine repeatedly pulls pairs of items from the buffer, reduces them,
and places the result back in the buffer. Each pair of items is reduced in parallel
as they become available. The last item in the buffer is the result of the overall
fold.

def cfold(b, xs) =
val c = Buffer()

def xfer([]) = stop
def xfer(x:xs) = c.put(x) >> stop | xfer(xs)

def combine(1) = c.get()
def combine(m) = c.get() >x> c.get() >y>

( c.put(b(x,y)) >> stop | combine(m-1))

xfer(xs) | combine(length(xs))

5.8 Routing

The Orc combinators restrict the passing of values among their component ex-
pressions. However, some programs will require greater flexibility. For example,
F <x< G provides F with the first publication of G, but what if F needs the
first n publications of G? In cases like this we use channels or other stateful
sites to redirect or store publications. We call this technique routing because it
involves routing values from one execution to another.

Generalizing Termination. The pruning combinator terminates an expres-
sion after it publishes its first value. We have already seen how to use pruning
just for its termination capability, without binding a variable, using the let site.
Now we use routing to terminate an expression under different conditions, not
just when it publishes a value; it may publish many values, or none, before being
terminated.

Our implementation strategy is to route the publications of the expression
through a channel so that we can put the expression inside a pruning combi-
nator and still see its publications without those publications terminating the
expression.

Enhanced Timeout. As a simple demonstration of this concept, we construct
a more powerful form of timeout: allow an expression to execute, publishing
arbitrarily many values (not just one), until a time limit is reached.

val c = Buffer()
repeat(c.get) <<

F >x> c.put(x) >> stop
| Rtimer(1000) >> c.closenb()

This program allows F to execute for one second and then terminates it. Each
value published by F is routed through channel c so that it does not terminate
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F . After one second, Rtimer(1000) responds, triggering the call c.closenb().
The call c.closenb() closes c and publishes a signal, terminating F . The library
function repeat is used to repeatedly take and publish values from c until it is
closed.

Interrupt. We can use routing to interrupt an expression based on a signal
from elsewhere in the program. We set up the expression like a timeout, but
instead of waiting for a timer, we wait for the semaphore done to be released.
Any call to done.release will terminate the expression (because it will cause
done.acquire() to publish), but otherwise F executes as normal and may
publish any number of values.

val c = Buffer()
val done = Semaphore(0)
repeat(c.get) <<

F >x> c.put(x) >> stop
| done.acquire() >> c.closenb()

Publication Limit. We can use the interrupt idiom to limit an expression to
n publications, rather than just one. Here is an expression that executes F until
it publishes 5 values, and then terminates it.

val c = Buffer()
val done = Semaphore(0)
def allow(0) = done.release() >> stop
def allow(n) = c.get() >x> ( x | allow(n-1) )
allow(5) <<

F >x> c.put(x) >> stop
| done.acquire() >> c.closenb()

We use the auxiliary function allow to get only the first 5 publications from
the channel c. When no more publications are allowed, allow uses the interrupt
idiom to halt F and close c.

Non-Terminating Pruning. We can use routing to create a modified version
of the pruning combinator. As in F <x< G, we’ll run F and G in parallel and
make the first value published by G available to F . However instead of termi-
nating G after it publishes a value, we will continue running it, ignoring its
remaining publications.

val r = Ref()
(F <x< r.read()) | (G >x> r.write(x))

Publication-Agnostic Otherwise. We can also use routing to create a mod-
ified version of the otherwise combinator. We’ll run F until it halts, and then
run G, regardless of whether F published any values or not.

val c = Buffer()
repeat(c.get) | (F >x> c.put(x) >> stop

; c.close() >> G)
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We use c.close() instead of the more common c.closenb() to ensure that
G does not execute until all the publications of F have been routed. Recall that
c.close() does not return until c is empty.

5.9 Larger Examples

In the previous sections we demonstrated how various concurrent programming
idioms are expressed simply in Orc. Now we apply these idioms to solve non-
trivial problems. The following examples illustrate how the different aspects of
Orc — including the functional core, concurrency, time, synchronization and
mutable state — combine to produce concise and efficient programs.

Dining Philosophers. The dining philosophers problem is a well known and
intensely studied problem in concurrent programming. Five philosophers sit
around a circular table. Each philosopher has two forks that she shares with
her neighbors (giving five forks in total). Philosophers think until they be-
come hungry. A hungry philosopher picks up both forks, one at a time, eats,
puts down both forks, and then resumes thinking. Without further refinement,
this scenario allows deadlock; if all philosophers become hungry and pick up
their left-hand forks simultaneously, no philosopher will be able to pick up
her right-hand fork to eat. Lehmann and Rabin’s solution [6], which we im-
plement, requires that each philosopher pick up her forks in a random order. If
the second fork is not immediately available, the philosopher must set down
both forks and try again. While livelock is still possible if all philosophers
take forks in the same order, randomization makes this possibility vanishingly
unlikely.

The following program gives the Orc implementation of dining philosophers.
The phil function simulates a single philosopher. It takes as arguments two
binary semaphores representing the philosopher’s forks, and calls the thinking,
hungry, and eating functions in a continuous loop. A thinking philosopher
waits for a random amount of time, with a 10% chance of thinking forever. A
hungry philosopher uses the take function to acquire two forks. An eating

philosopher waits for a random time interval and then uses the drop function to
relinquish ownership of her forks.

Calling take attempts to acquire a pair of forks (a,b) in two steps: wait for
fork a to become available, then immediately attempt to acquire fork b. The
call b.acquirenb() either acquires b and responds immediately, or halts if b is
not available. If b is acquired, signal success; otherwise, release a, and then try
again, randomly changing the order in which the forks are acquired using the
auxiliary function shuffle.

The function philosophers recursively creates a chain of n philosophers,
bounded by fork a on the left and b on the right. The goal expression of the
program calls philosophers to create a chain of five philosophers bounded on
the left and right by the same fork; hence, a ring.
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def shuffle(a,b) = if (random(2) = 1) then (a,b) else (b,a)

def take((a,b)) =
a.acquire() >> b.acquirenb() ;
a.release() >> take(shuffle(a,b))

def drop(a,b) = (a.release(), b.release()) >> signal

def phil(a,b) =
def thinking() =
if (random(10) < 9)

then Rtimer(random(1000))
else stop

def hungry() = take((a,b))
def eating() =
Rtimer(random(1000)) >>
drop(a,b)

thinking() >> hungry() >> eating() >> phil(a,b)

def philosophers(1,a,b) = phil(a,b)
def philosophers(n,a,b) =

val c = Semaphore(1)
philosophers(n-1,a,c) | phil(c,b)

val fork = Semaphore(1)
philosophers(5,fork,fork)

This Orc solution has several nice properties. The overall structure of the
program is functional, with each behavior encapsulated in its own function,
making the program easy to understand and modify. Mutable state is isolated
to the “fork” semaphores and associated take and get functions, simplify-
ing the implementation of the philosophers. The program never manipulates
threads explicitly, but instead expresses relationships between activities using
Orc’s combinators.

Quicksort. The original quicksort algorithm [3] was designed for efficient exe-
cution on a uniprocessor. Encoding it as a functional program typically ignores
its efficient rearrangement of the elements of an array. Further, no known imple-
mentation highlights its concurrent aspects. The following program attempts to
overcome these two limitations. The program is mostly functional in its struc-
ture, though it manipulates the array elements in place. We encode parts of the
algorithm as concurrent activities where sequentiality is unneeded.

The following listing gives the implementation of the quicksort function
which sorts the array a in place. The auxiliary function sort sorts the subarray
given by indices s through r by calling part to partition the subarray and then
recursively sorting the partitions.
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The function part partitions the subarray given by indices s through t into
two partitions, one containing values ≤ p and the other containing values > p.
The last index of the lower partition is returned. The value at a(s) is assumed to
be ≤ p — this is satisfied by choosing p = a(s)? initially. To create the parti-
tions, part calls two auxiliary functions lr and rl concurrently. These functions
scan from the left and right of the subarray respectively, looking for out-of-place
elements. Once two such elements have been found, they are swapped using
the auxiliary function swap, and then the unscanned portion of the subarray is
partitioned further. Partitioning is complete when the entire subarray has been
scanned.

This program uses the syntactic sugar x? for x.read() and x := y for
x.write(y). Also note that the expression a(i) returns a reference to the ele-
ment of array a at index i, counting from 0.

def quicksort(a) =

def swap(x, y) = a(x)? >z> a(x) := a(y)? >> a(y) := z

def part(p, s, t) =
def lr(i) = if i < t && a(i)? <= p then lr(i+1) else i
def rl(i) = if a(i)? > p then rl(i-1) else i

(lr(s), rl(t)) >(s’, t’)>
( if (s’ + 1 < t’) >> swap(s’, t’) >> part(p, s’+1, t’-1)
| if (s’ + 1 = t’) >> swap(s’, t’) >> s’
| if (s’ + 1 > t’) >> t’
)

def sort(s, t) =
if s >= t then signal
else part(a(s)?, s+1, t) >m>

swap(m, s) >>
(sort(s, m-1), sort(m+1, t)) >>
signal

sort(0, a.length()-1)

Meeting Scheduler. Orc makes very few assumptions about the behaviors of
services it uses. Therefore it is straightforward to write programs which interact
with human agents and network services. This makes Orc especially suitable for
encoding workflows [2], the coordination of multiple activities involving multiple
participants. The following program illustrates a simple workflow for scheduling
a business meeting. Given a list of people and a date range, the program asks
each person when they are available for a meeting. It then combines all the
responses, selects a meeting time which is acceptable to everyone, and notifies
everyone of the selected time.
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val during = DateTimeRange(LocalDate(2009, 9, 10),
LocalDate(2009, 10, 17))

val invitees = ["dkitchin@cs.utexas.edu", "quark@cs.utexas.edu"]

def invite(invitee) =
Form() >f>
f.addPart(DateTimeRangesField("times",
"When are you available for a meeting?", during, 9, 17)) >>

f.addPart(Button("submit", "Submit")) >>
SendForm(f) >receiver>
SendMail(invitee, "Meeting Request", receiver.getURL()) >>
receiver.get() >response>
response.get("times")

def notify([]) =
each(invitees) >invitee>
SendMail(invitee, "Meeting Request Failed",

"No meeting time found.")
def notify(first:_) =

each(invitees) >invitee>
SendMail(invitee, "Meeting Request Succeeded",

first.getStart())

map(invite, invitees) >responses>
afold(lambda (a,b) = a.intersect(b), responses) >times>
notify(times)

This program begins with declarations of during (the date range for the
proposed meeting) and invitees (the list of people to invite represented by
email addresses).

The invite function obtains possible meeting times from a given invitee, as
follows. First it uses library sites (Form, DateTimeRangesField, Button, and
SendForm) to construct a web form which may be used to submit possible meet-
ing times. Then it emails the URL of this form to the invitee and blocks waiting
for a response. When the invitee receives the email, he or she will use a web
browser to visit the URL, complete the form, and submit it. The corresponding
execution of invite receives the response in the variable response and extracts
the chosen meeting times.

The notify function takes a list of possible meeting times, selects the first
meeting time in the list, and emails everyone with this time. If the list of possible
meeting times is empty, it emails everyone indicating that no meeting time was
found.

The goal expression of the program uses the library function map to apply
notify to each invitee and collect the responses in a list. It then uses the library
function afold to intersect all of the responses. The result is a set of meeting
times which are acceptable to everyone. Finally, notify is called to select one
of these times and notify everyone of the result.
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This program may be extended to add more sophisticated features, such as
a quorum (to select a meeting as soon as some subset of invitees responds) or
timeouts (to remind invitees if they don’t respond in a timely manner). These
modifications are local and do not affect the overall structure of the program.
For complete details, see examples on our website [11].

6 Related Work

Many attempts have been made to rethink the prevailing concurrency model of
threads with shared state and put forth programming languages based on novel
approaches.

Erlang is perhaps the most widely adopted of these languages [1]. It is founded
on an actor model of concurrency, wherein sequential processes communicate via
message-passing. While the Orc language is very different in design, Erlang has
often served as a basis for comparison.

Oz is another novel concurrent programming language [12]. Though it uses a
more conventional thread-based approach to concurrent computation, its model
of shared state is much more structured and safe than that of mainstream lan-
guages. Rather than reducing all programs to a small calculus, Oz instead starts
with a kernel calculus and incrementally expands it with new concepts that pro-
vide additional expressive capability, such as ports, objects, and computation
spaces. While Oz is more structured than a pure message-passing model and
its unification-based assignment operation is more expressive than Orc’s pattern
matching, evaluation of Oz programs requires access to a global unification store,
which Orc programs do not need. The site Cell in the Orc library, which creates
write-once mutable cells, was inspired by Oz’s single-assignment variables.

Pict is a concurrent functional language [10] which is based on the π-calculus,
in much the same way that the Orc language is based on the Orc calculus.
In fact, Pict was an inspiration for some of the design choices of the Orc lan-
guage. The primary difference between Pict and Orc is that Pict imposes a
functional, continuation-passing structure on an unstructured communication
calculus, whereas the Orc calculus is already structured, so a translation into
the calculus preserves much of the structure of the original program and may
thereby ease formal analysis.

7 Conclusion

We have presented Orc, developed from a simple concurrency calculus into a
complete programming language capable of addressing real-world problems while
maintaining its original formal simplicity.

Future Work. The language continues to be actively developed; current ar-
eas of development include a static type system with partial type inference, an
explicit exception handling mechanism, a module system for namespace manage-
ment and separate compilation, support for atomic sections using transactions,
and dynamic modification of programs.
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3 Università dell’Insubria - DSCPI, Como, Italy
paola.spoletini@uninsubria.it

Abstract. Service compositions leverage remote services to deliver
added-value distributed applications. Since services are administered and
run by independent parties, the governance of service compositions is
intrinsically decentralized and services may evolve independently over
time. In this context, pre-deployment verification can only provide lim-
ited guarantees, while continuous run-time verification is needed to probe
and guarantee the correctness of compositions at run time.

This paper addresses the issue of efficiency in the run-time verifica-
tion of service compositions described in BPEL. It considers an existing
monitoring approach based on ALBERT, which is a temporal logic lan-
guage suitable for asserting both functional and non-functional prop-
erties, and shows how to obtain the efficient run-time verification of
ALBERT formulae. The paper introduces an operational semantics for
ALBERT through an extension of alternating automata, and explains
how to optimize it to produce smarter, and thus more efficient, encod-
ings of defined formulae. The optimized operational semantics can then
be the basis for an efficient implementation of the run-time verification
framework.

1 Introduction

Services represent reusable software components that provide their functionality
to many clients through a standardized network and middleware infrastructure.
Clients may combine services in different ways, to create new composite applica-
tions that can be themselves published as a service. In the realm of Web services,
service compositions are usually described by means of the BPEL [1] language,
which supports the definition of workflow-like service compositions.

BPEL orchestrations usually involve multiple stakeholders, as service aggre-
gators rely on parts that are owned and managed by other organizations. The
overall quality of a BPEL process largely depends on the quality of the com-
posed services. Since these services are run and administered autonomously, in
a decentralized manner, providers are entitled to change them freely. For this
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c© IFIP International Federation for Information Processing 2009



Efficient Run-Time Verification of Web Service Compositions 27

reason, the actual partner services invoked by a composite service can evolve (or
even change) at run time. Pre-deployment verification is of limited usefulness;
run-time verification becomes mandatory to probe and check the quality and
correctness of service compositions while they execute.

Run-time verification may check different properties, ranging from quality of
service parameters (e.g., response time, throughput) to behavioral assertions.
These properties are often expressed by means of special-purpose languages.
In [2], we introduced ALBERT, an assertion language for the specification of
functional and non-functional temporal properties of BPEL processes. ALBERT
plays a key-role in SAVVY-WS [3], our proposal for an integrated design- and
run-time verification methodology.

This paper focuses on the efficient verification of ALBERT formulae at run
time. It starts by proposing an operational semantics for ALBERT based on the
correlation between temporal logic and a class of alternating automata, called
ASA (ALBERT’s Semantics Automata). Since this “plain” operational model
would lead to quite inefficient verifications, the paper also proposes a smart en-
coding of ALBERT formulae by means of an optimized semantics defined in
terms of an extension of ASA, called LASA (Limited ASA). This new oper-
ational semantics is equivalent to the previous one, but fosters more efficient
verifications. Experimental results corroborate this hypothesis and show how
the proposed optimization limits the number of threads needed for a complete
evaluation of a given formula.

The rest of the paper is organized as follows. Section 2 provides a brief in-
troduction to ALBERT. Section 3 presents the “plain” semantics ascribed to
ALBERT in terms of our extension of alternating automata. Section 4 explains
how to optimize the mapping of ALBERT formulae onto the formal model, and
Sect. 5 fosters this hypothesis by means of some experimental results. Finally,
Sect. 6 surveys related work, and Sect. 7 concludes the paper.

2 ALBERT in a Nutshell

The aim of this section is to accustom the reader with ALBERT, focusing on the
main aspects that are needed to understand the theoretical framework presented
in the paper.

ALBERT [2] is a temporal assertion language for stating functional and non-
functional properties of BPEL workflows. ALBERT formulae predicate over
internal and external variables. The former consist of data pertaining to the
internal state of the BPEL process in execution. The latter are data that are
useful for the specification, but are not part of the process’ business logic and
must be obtained externally (e.g., the values returned by some external services).

Given a finite set of variables V and a finite set of natural constants C, an
ALBERT formula φ is defined by the following syntax:

φ ::= χ | ¬φ | φ ∧ φ | ( op id in var ; φ ) |
Becomes(χ) | Until(φ,φ) | Between(φ,φ,K) |
Within(φ,K) | InFuture(φ,K)
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χ ::= ψ relop ψ | ¬χ | χ ∧ χ | onEvent(μ)
ψ ::= var | ψ arop ψ | const | past(ψ, onEvent(μ), n) |
count(χ, K) | fun(ψ, K) | elapsed(onEvent(μ))
op ::= forall | exists
relop ::= < | ≤ | = | ≥ | >
arop ::= + | − | × | ÷
fun ::= sum | avg | min | max

where var ∈ V , const ∈ C, n ∈ N, K ∈ R
+ and onEvent is an event predicate.

Becomes , Until , Between , Within and InFuture are temporal operators. count ,
elapsed , past , and all the functions derivable from the non-terminal fun are tem-
poral functions of the language. Parameter μ denotes an event: it may identify
the start or the end of an invoke, reply or receive activity, the reception of a
message by a pick or an event handler, or the execution of any other BPEL ac-
tivity. The above syntax only defines the language’s core constructs. The usual
logical derivations are used to define other connectives and temporal operators
(e.g., ∨, Always , Eventually).

The informal meaning of ALBERT formulae can be explained by referring to
sequences of states of the BPEL process, each of which represents a snapshot of
the variables of the process, taken at a certain time instant, when the process is
executing a certain set of activities.

Sequences of process states are strictly monotonic with respect to time. Be-
tween successive states there is always at least one time-consuming interaction
with the outside world or the execution of an internal BPEL activity (e.g., an
assign activity) or the occurrence of an event.

All ALBERT formulae represent invariant assertions over a BPEL process,
therefore they are understood to be in the scope of an implicit universal temporal
quantification, i.e., each formula is prefixed by an Always temporal operator. The
predicate onEvent can be used to express a formula that must hold when the
execution reaches a given point of the workflow. In the case where the parameter
μ denotes assign, pick, event handler, or the end of invoke, reply or receive
activities, onEvent is true in a state whose label identifies the corresponding
activity. In the case of the start of an invoke, reply or receive activity, it is true
in a state if the label of the next state in the sequence identifies the corresponding
activity. In the case of a while or a switch activity, it is true in the state where
the condition is evaluated.

Function past(ψ, onEvent(μ), n) returns the value of ψ in the nth past state
in which onEvent(μ) is true. Function count(χ, K), evaluated in a state whose
time-stamp is tj , computes the number of states in which χ is true, and whose
time-stamp is greater than or equal to tj − K. The non-terminal fun stands for
any function (e.g., average, sum, minimum, maximum . . . ) that can be applied
to sets of numerical values. The function, evaluated in a state whose time-stamp
is tj, is applied to all values of expression ψ in all states whose time-stamp is
greater than or equal to tj − K. Function elapsed (onEvent(μ)), evaluated in a
state whose time-stamp is tj, returns the difference between tj and the time-
stamp of the most recent past state in which onEvent(μ) is true. Since these
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functions compute their value from a trace storing a past history of states, their
value becomes part of the process state. Moreover, a change in the value of
function count and of the functions derivable from non-terminal fun may lead to
the generation of a new state.

Temporal predicate Becomes is evaluated on two adjacent elements of the
sequence of states. The formula is true if its argument is true in the current
state, and false in the previous. The temporal predicate Until(φ1, φ2) is true in
a given state if φ2 is true in the current state, or eventually in a future state, and
φ1 holds in all the states from the current (included) until that state (excluded).
The temporal predicate Between(φ1, φ2, K) is true in a given state if both φ1
and φ2 will be eventually true, with φ2 occurring exactly after K time instants
from the first time in which φ1 was true.The temporal predicate Within(φ, K)
is true in a given state if φ is true at most after K time instants. Predicate
InFuture(φ, K) is true in a given state if φ is true in exactly K time instants.

Finally, boolean, relational, and arithmetic operators have the conventional
meaning; the same is true for quantifiers.

3 ALBERT’s Operational Semantics

The sequence of process states is linear and analogous to the sequence of states
on which the operators of Linear Time Logic (LTL) — either in its classical
definition or in the one with both modalities — are evaluated. The only main
difference is that ALBERT operators also contain an explicit reference to time-
stamps. Therefore, ALBERT temporal predicates can be described in terms of
LTL operators. Furthermore, we consider sequences of infinite length since a pri-
ori we suppose that Web service compositions can be involved in long-running,
never-ending business transactions. Notice that this does not represent a limi-
tation if the system is stopped: in that case, the formulae are evaluated on an
infinite sequence comprised of a prefix, represented by the states collected until
that moment, and of a suffix of the form falseω.

Let sc be the current state in a sequence of states and si be a sequent state
that is at most K time instants after sc and such that the successor state si+1
comes more than K time instants after sc, i.e., with the reference to time-stamps,
ti−tc ≤ K and ti+1−tc > K. An ALBERT temporal predicate can be evaluated
in state sc according to the following equivalences with formulae of LTL with
both modalities1:

– Becomes(χ) ≡ Y(¬χ) ∧ χ
– Until(φ1, φ2) ≡ φ1Uφ2

– InFuture(φ, K) ≡ Xi(φ)
– Within(φ, K) ≡ φ ∨ X(φ) ∨ . . . ∨ Xi−1 ∨ Xi(φ)

The temporal predicate Between(φ1, φ2, K) is derived and can be expressed as
(¬φ1)U(φ1 ∧ InFuture(φ2, K)).

1 Y stands for “Yesterday”, U for “Until”, X for “neXt” and Xi for X nested i times.
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Since ALBERT can be described in terms of LTL operators, in which however
the number of nested Xs is not known a priori, we can exploit the well-known
correlation between temporal logic and Büchi alternating automata (BAA) [4],
as presented in [5], to give ALBERT an operational semantics that could be
implemented straightforwardly. BAA generalize the traditional concept of non-
determinism by supporting both existential and universal non-deterministic
branching.

Since ALBERT’s temporal model involves both a sequence of states and op-
erations on their time-stamps, in the rest of this section we first introduce AL-
BERT’s Semantics Automata (ASA), an extension of BAA that uses variables to
deal with time-stamps, and then we show how the classical correlation between
BAA and LTL can be reformulated for ASA and ALBERT.

3.1 ALBERT’s Semantics Automata

Informally speaking, a BAA is a finite state automaton that recognizes words of
infinite length and supports two branching modalities, universal and existential.
These modalities are formally expressed in the model through positive Boolean
combinations of formulae; given a set M of propositions, B+(M) denotes the set
of positive Boolean formulae over M built from elements in M using ∧ and ∨ but
not ¬, plus the formulae true and false. Universal branching in a BAA potentially
allows for reducing the dimension of the automaton in which parallelism is not
made explicit at design time.

Dealing with ALBERT formulae in a concise way requires that the BAA model
be enriched with a set of bounded time counters, and with the corresponding as-
signment and comparison operators, to take care of the explicit temporal aspects.
Formally, given a finite set CK = {v1, . . . , vn} of time counters ranging over the
non-negative rational numbers Q

+ and bounded in value by a positive integer
K, let ΨCK be the set of counter constraints of the form v � c where v ∈ CK ,
� ∈ {<,≤, =, �=, >,≥} and c ∈ Q

+. For the same set CK , let ΥCK be the set of
assignments over CK of the form v ← c, where v ∈ CK and c ∈ Q

+ and c ≤ K,
including also the empty assignment εΥ . ALBERT’s Semantics Automata are
defined as follows.

Definition 1. An ASA is a tuple (Σ, Q, CK , q0, δ, F ) where Σ is a finite alpha-
bet, Q is a set of states, CK is a finite set of time counters bounded in value by
a positive integer K, q0 ∈ Q is the initial state, δ : Q × ℘(Σ) × Q

+ × ΨCK →
B+(Q × ΥCK ) is the transition function and F ⊆ Q is a set of accepting states.

For the sake of readability, when indicating the elements in B+(Q×ΥCK ) we will
use the symbol / to separate the component in Q from the component in ΥCK .

An ASA accepts (or rejects) timed ω-words that are defined as sequences
w = w1w2 . . . = (a1, t1)(a2, t2) . . . of pairs from ℘(Σ) × Q

+. For each i > 1,
ti describes the amount of time passed between reading ai−1 and ai and t1
represents the amount of time passed from the initial time (0) to the instant
when a1 was read. We also define the functions D(wi) and t(wi) that project,
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respectively, the data and the time component of the ith symbol of a word w. Due
to universal branching, BAA’s (and consequently ASA’s) runs are not sequences,
but trees. Indeed, every time a universal branch is taken, the automaton goes in
all the states expressed by the ∧ combination of formulae; hence, more than one
state can be reached at the same time, as in a tree structure. This can be seen
as the process of creating a duplicate of the automaton, at a certain level of the
tree, for each state reached when performing the universal branch. A run of an
ASA is accepting if every path starting from the root of the tree (corresponding
to the run) hits accepting states infinitely often.

3.2 From ALBERT to ASA

Our proposal is to use an ASA for the run-time verification of an ALBERT for-
mula, by defining the semantics of ALBERT formulae in terms of the operational
model represented by the class of ASA. The implementation of the run-time
checker becomes straightforward, as it follows the definition of the operational
model. Indeed, while the truth value of a formula depends on the word on which
it is evaluated, the equivalent corresponding automaton accepts the same word
if and only if the formula is true on the word. Moreover, as ALBERT formulae
represent invariant assertions over a BPEL process, the automaton equivalent to
the formula to be verified, is supposed to run until the BPEL process for which
ALBERT formulae are defined, is executed.

The basic idea is that an ASA equivalent to an ALBERT formula can be built
from the latter (in the same way as a BAA can be derived from an LTL formula)
by constructing a state for each temporal sub-formula in the formula, and by
defining the transition relation between pairs of states 〈qj , qk〉 only if the truth
value of the formula represented by state qj depends on the truth value of the
formula represented by state qk. Moreover, the boolean connectors ∧ and ∨ are
implicitly represented by means of universal and existential branching.

In the following definition of the semantics, we do not consider ALBERT
functions, but we treat them as part of the process state, as described in Sect. 2.

Standard Semantics. Let φ be an ALBERT formula, X the finite set of atomic
propositions that occur in φ, and Sf (φ) the set of sub-formulae of φ. In order to
define the semantics, we introduce some further definitions. Given an ALBERT
formula φ, Dual(φ) is a formula obtained by interchanging in φ true and false ,
∧ and ∨, and complementing all the sub-formulae of φ. Moreover, let HD : N →
℘(X) and Ht : N → Q

+ be, respectively the data2 and the time history functions,
which return, for a given n, respectively, the subset of atomic propositions that
held in, and the time-stamp of, the nth-last data collection performed by the run-
time checker. The ASA for φ is a tuple (Σ, Q, CK , q0, δ, F ) where Σ = X , CK

is a finite set of time bounded counters such that |CK | ≤ |Sf (φ)|, Q = {γ | γ ∈
Sf (φ) or ¬γ ∈ Sf (φ)}, K is the greatest bounded temporal distance occurring
in the temporal predicates of φ, q0 = φ, and F = {γ | γ ∈ Q and γ has the form
¬Until(φ1, φ2)}. The transition function δ is defined as follows, where χ, φ1, φ2

2 Notice that ∀σ, D(σ) = HD(0).
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are ALBERT (sub)formulae, σ is an input symbol, which is actually a pair from
℘(X)×Q

+, vΨ ∈ ΨCK is a generic constraint on a counter v ∈ CK and vΥ ∈ ΥCK

is a generic assignment to a counter v ∈ CK :

– δ(χ, σ, vΨ ) = true/v ← 0 if χ �= onEvent(μ) where μ is a start event and
χ ∈ D(σ);

– δ(χ, σ, vΨ ) = false/v ← 0 if χ �= onEvent(μ) where μ is a start event and
χ /∈ D(σ);

– δ(φ1 ∧ φ2, σ, vΨ ) = δ(φ1, σ, vΨ ) ∧ δ(φ2, σ, vΨ );
– δ(¬φ, σ, vΨ ) = δ(Dual(φ), σ, vΨ );
– δ(Becomes(χ), σ, vΨ ) = true/v ← 0 if χ �= onEvent(μ) where μ is a start

event, χ ∈ D(σ), and χ /∈ HD(1);
– δ(Becomes(χ), σ, vΨ ) = false/v ← 0 if χ �= onEvent(μ) where μ is a start

event and χ /∈ D(σ) or χ ∈ HD(1);
– δ(InFuture(φ, K), σ, vInFuture(φ,K) = J) = InFuture(φ, K)/vInFuture(φ,K) ←

(J + t(σ)) if J < K;
– δ(InFuture(φ, K), σ, vInFuture(φ,K) = J) = φ/vInFuture(φ,K) ← 0 if J = K;
– δ(InFuture(φ, K), σ, vInFuture(φ,K) = J) = Previous(φ, vInFuture(φ,K) = J)/

vInFuture(φ,K) ← 0 if J > K, where Previous(φ, vΨ ) is equal to the Q com-
ponent returned by δ(φ, (HD(1), Ht(1)), vΨ );

– δ(Until(φ1, φ2), σ, vΨ ) = δ(φ2, σ, vΨ ) ∨ (δ(φ1, σ, vΨ ) ∧ Until(φ1, φ2)/εΥ );
– δ(Within(φ, K), σ, vWithin(φ,K) = J) = false/vWithin(φ,K) ← 0 if J > K;
– δ(Within(φ, K), σ, vWithin(φ,K) =J) =δ(φ, vWithin(φ,K) =J)∨Within(φ, K)/

vWithin(φ,K) ← (J + t(σ)) if J ≤ K.

For the sake of conciseness, in the above definition we omitted the semantics
of: (a) the temporal operator Between(φ1, φ2, K), since it is equivalent to the
formula Until(¬φ1, φ1 ∧ InFuture(φ2, K)); (b) (sub)formulae of the form χ =
onEvent(μ), where μ is a start event, since its semantics is equivalent to the one
of the formula InFuture(χ, 1).

Figure 1 illustrates the ASA for the invariant f ≡ A =⇒ Between(B, C, 10),
which is equivalent, as a result of the logic equivalences mentioned above, to the
formula ¬A ∨ Until(¬B, B ∧ InFuture(C, 10)). This ASA can be systematically
derived from the definition of the operational semantics. The number of states in
the resulting ASA is equal to the number of temporal operators plus two states
for representing acceptance and rejection. In this case we have five states: one
for the formula itself (since it is an invariant, the formula is implicitly contained
within an Always), two for the Until and InFuture operators, one for acceptance,
and one for rejection. The transition relation of the state containing the complete
formula states that the automaton must stay in an acceptance state as long as
¬A is true, i.e., an A is not received. On the other hand, as soon as A is received,
the automaton must both stay in the same state to continue to check for A (due
to the implicit Always), and move to another state to check Between(B, C, 10)
— transformed to Until(¬B, B ∧ InFuture(C, 10)) — by creating a new copy of
the automaton (the conjunction of the two copies is represented by a �). This
copy remains in that state until a B is received. When this occurs, it moves to
yet another state that checks the value of C while keeping an eye on the time
counter vInFuture(C,10).
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Always(f)

¬A ∈ D(σ)

Until(¬B, B ∧ InFuture(C, 10))

¬B ∈ D(σ)

InFuture(C, 10) vInFuture(C,10) < 10;

vInFuture(C,10) ← vInFuture(C,10) + t(σ)

trueε false

A ∈ D(σ)

B

vInFuture(C,10) > 10
∧C ∈ HD(1)

∨
vInFuture(C,10) = 10

∧C ∈ D(σ)

vInFuture(C,10) > 10
∧¬C ∈ HD(1)

∨
vInFuture(C,10) = 10

∧¬C ∈ D(σ)

Fig. 1. ASA equivalent to the ALBERT invariant f ≡ A =⇒ Between(B,C, 10)

4 Towards an Efficient Implementation

The advantage of using alternating automata is that through universal branch-
ing we do not need to explicitly represent parallelism. The representation is
exponentially more concise than standard Büchi automata. Universal branch-
ing, however, leads to the activation of multiple copies of the automaton. A
direct implementation would spawn a new thread for each duplicated copy —
an obvious efficiency bottleneck of the approach. For example, the evaluation
of the ALBERT formula in Fig. 1, shows that when the automaton is in the
initial state, it duplicates whenever an A is received. This is a problem because,
if the automaton continues to duplicate (i.e., A is true in each state) without
ever receiving B, the number of copies that are created can be unbounded.

This highlights the need to optimize the approach by fine-tuning the theoret-
ical foundation with respect to implementation needs. An unbounded number
of automaton duplications is unacceptable, and even a bounded but continuous
duplication can be quite inefficient. This is why we propose to limit the number
of duplications, while preserving the correspondence between the automaton and
the ALBERT formula.

In the following, we informally describe how our optimization works, on a
per-operator case. Since our ASA run on infinite words, when we use the verb
“terminate”, we refer to the situation in which (a copy of) an automaton reaches
the true state, reports that the ALBERT property has not been violated, and
remains in that state. Moreover, we assume that our run-time verification frame-
work supports two modes of operation, which differ from each other in the way
the system behaves when a violation of a property is detected. In standard mode
the system logs the violation and continues the execution of the process; in
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(1) (2) (3)

ti tj

Fig. 2. Time line with overlapping regions of different activations of a Within operator

critical mode the framework stops the process execution, so that the cause of
the violation can be dealt with immediately.

The evaluation of formulae of the form Until(φ1, φ2) could lead to an un-
bounded number of duplications. Indeed, every time the corresponding automa-
ton is activated, it checks if φ2 holds. If it does, the automaton terminates in
the true state. If both φ1 and φ2 do not hold, it terminates in the false state.
Finally, if φ2 does not hold but φ1 does, it continuously checks φ1, waiting to
terminate when φ2 becomes true or φ1 becomes false. If the same formula has
to be checked again, a new copy of the automaton would be required. If a pre-
existing copy is still active, it will be checking φ1, which is the exact behavior
required of the new copy. Therefore, only one copy of the automaton is needed
to evaluate the formula. This avoids a potentially infinite number of duplicates,
which could occur when φ1 is always true and φ2 never becomes true. Since the
Between can be seen as an Until , it benefits from the above considerations too.

As for the evaluation of formulae of the form Within(φ, K), the duplication is
bounded by the number of states that occur, in the sequence of process states, in
an interval of K time instances. This is true if the run-time verification framework
operates in standard mode. However, if the operation mode is critical, e.g., if the
discovery of a violation leads to a complete halt in the verification activities,
we can use just one duplicate. Consider, for example, the time-line sketched in
Fig. 2, where two copies of the automaton corresponding to the sub-formula
Within(φ, K) are activated, one at time instant ti and the other at instant tj ,
with ti < tj < ti + K. If φ evaluates to true in region (1), the first duplicate
terminates in the true state, meaning the second duplicate activated in tj is
actually the only copy running. If φ evaluates to true in region (2), it will make
both copies terminate in the true state, meaning the second duplicate is actually
not needed. Finally, if φ is true for the first time in region (3), it implicitly induces
a violation of the property, which is detected by the first copy of the automaton.
When the automaton notifies the violation, if the framework is operating in
critical mode, the verification activities are stopped, meaning, once again, that
the second copy of the automaton is not needed.

4.1 A Formal Model for an Efficient Implementation

We can now formalize the above intuitions by defining a variation of ASA for
which an efficient implementation can be derived, and showing its equivalence
to the original ASA, in terms of which the standard semantics was defined.
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We first need to modify the ASA in a way that leads to a limited number of
duplications. The model is abbreviated as LASA, which stands for Limited ASA.

Given a set B = {f1, . . . , fn} of boolean variables, ΨDup
B is the set of con-

straints over B, of the form fi = 0 or fi = 1 with fi ∈ B, including the no
constraint εΨDup , and ΥAs

B is the set of assignments over B of the form fi ← 0 or
fi ← 1 with fi ∈ B.

Definition 2. A LASA is a tuple (Σ, Q, CK , q0, δ
′, B, F ) where Σ, Q, CK , q0,

F are defined as in an ASA, B is a set of boolean variables and the transition
function δ′ is defined as δ′ : Q × ℘(Σ) × Q

+ × ΨCK × ΨDup
B × ΥAs

B → B+(Q ×
ΥCK ×ΥAs

B ). The acceptance condition of a LASA is defined similarly to the one
of an ASA.

When a LASA is used to model an ALBERT formula φ, |B| ≤ |Sf (φ)|. The vari-
ables in B allow us to keep track of duplications. Non-universal transitions are
not involved in duplications and therefore are not needed. If a flag fi is set to 0,
there are currently no active duplicates for the state reached by the transition.
We use assignments in ΥAs

B to change the values of flags when a duplicate is cre-
ated, to disable the transition. The value of a flag can be changed back to 0 when
the corresponding duplicate terminates. Notice that variables in B are initially
set to 0 and changed according to the ΥAs

B component in the transition function.

Optimized Semantics 1 (standard mode). Let φ be an ALBERT formula,
and let B = {f1, . . . , fn} be the set containing a boolean variable for each element
in Sf (φ). The transition function δ′ of the LASA for φ is defined as follows, by
redefining3 the original δ of an ASA, where fΥ ∈ ΥAs

B is a generic assignment on
a variable fi ∈ B:

– δ′(Until(φ1, φ2), σ, vΨ , fUntil(φ1,φ2) = 0, fΥ ) =
δ′(φ2, σ, vΨ , εΨDup , fUntil(φ1,φ2) ← 0)∨(δ′(φ1, σ, vΨ , εΨDup , fΥ )∧Until(φ1, φ2)/
εΥ /fUntil(φ1,φ2) ← 1).

Informally speaking, the new transition function inhibits duplicates of the LASA
every time a duplicate for that instance of the operator is already running. The
automaton defined according to this semantics allows for a bounded number of
duplicates, and can be proved (see below) to be equivalent to the one defined
according to the standard semantics, i.e., they recognize the same language.

The optimizations included in the definition of Optimized Semantics 1 are
valid under the assumption that the run-time verification framework is running
in standard mode. A further optimization can be performed on the encoding
of Within formulae, if the run-time verification framework operates in critical
mode and thus the discovery of a violation of a specification leads to a complete
halt in the verification activities. The following definition details these changes.

3 Due to lack of space, in the following we will only describe the elements of the
definition that change in the proposed semantics. All the other cases remain as in the
definition of the standard semantics, with ΨDup

B and ΥAs
B empty, and the occurrences

of δ changed into δ′.
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Table 1. Comparison of the number of duplications of an alternating automaton, for
the standard operational semantics and the proposed optimized semantics

Operator # of duplicationsa

Standard
Semantics

Optimized
Semantics 1

Optimized
Semantics 2

Until(φ1, φ2) potentially infinite 1 1
Within(φ, K) NK NK 1

a NK represents the number of states in the sequence of process states that may occur
in an interval of K time instances.

Optimized Semantics 2 (critical mode). Let φ be an ALBERT formula,
and let B = {f1, . . . , fn} the set containing a boolean variable for each element
in Sf (φ). The transition function δ′′ of the LASA for φ is redefined4 as follows,
where fΨDup ∈ ΨDup

B is a generic constraint on a variable fi ∈ B:

– δ′′(Within(φ, K), σ, vWithin(φ,K) = J, fΨDup , fΥ ) =
false/vWithin(φ,K) ← 0/fWithin(φ, K) ← 0 if J > K;

– δ′′(Within(φ, K), σ, vWithin(φ,K) = J, fWithin(φ,K) = 0, fΥ ) =
δ′′(φ, σ, vWithin (φ,K) = J, εΨDup , fWithin(φ,K) ← 0) ∨ Within(φ, K)/
vWithin(φ,K) ← (J + t(σ))/fWithin(φ, K) ← 1 if J ≤ K.

Theorem 1. Given an ALBERT formula φ, the ASA for φ obtained according
to the definition of the standard semantics is always equivalent to the LASA
defined according to Operational Semantics 1, and is equivalent to the LASA
defined according to Optimized Semantics 2 only in critical mode.

Proof. See [6].

Table 1 summarizes the gain, in terms of number of duplications, we can achieve
for the Until and the Within temporal operators (and the ones derivable from
them), by encoding ALBERT formulae in terms of LASA, as defined according
to the two proposed optimized semantics.

5 Experimental Evaluation

We implemented the proposed encoding of ALBERT formulae within Dynamo,
our run-time verification framework, by extending the existing component that
is in charge of evaluating ALBERT formulae; more details about the architecture
of the framework can be found in [2].

Our experiments were performed on a computer running Mac OS X 10.5.6
with a 2.16GHz Intel Core 2 Duo processor and 2GiB of memory. The current
4 Due to lack of space, in the following we will only describe the elements of the defi-

nition that change in the new semantics. All the other cases remain as in Optimized
Semantics 1.
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Fig. 3. The While sample BPEL process

version of Dynamo is based on ActiveBPEL Community Edition 4.1; it was
deployed on Apache Tomcat 5.5.27. Profiling data have been acquired by means
of the profiler integrated in the NetBeans IDE.

For sake of simplicity and repeatability we chose to test our system with the
While sample process, bundled with the ActiveBPEL distribution and shown in
Fig. 3. This process uses an index variable to iterate over a list of order items and
calculate the total cost of the order. The iteration is realized by means of while
activity, and thus the name of the example. We made two simple modifications
to the process: 1) Extending the number of iterations to 100, to increase the
amount of time taken by the execution of the while activity. This can be seen
as a simple way to simulate, using a simple toy example, the long asynchronous
interactions that typically occur between a process and its partner services in the
real-world. 2) Inserting copies of the index variable, to allow for writing several
formulae of the same type, as explained below.

We chose to consider only properties containing Until formulae, to represent
the worst-case execution scenario, where the number of duplications of the cor-
responding alternating automaton (and thus the number of threads required to
evaluate the properties) is potentially infinite. The properties have the form

n∧

i=1

Until($detailIndexi ≥ 1, onEvent(start ReturnTotal))

where n, ranging from 1 to 10, represents the number of Until formulae to be
evaluated at each run of the process, and the variables of the form $detailIndexi

are used by the process to implement the iteration. They are set to 1 when the
process starts and are incremented once per iteration, meaning that the first
sub-formula of the Until operator of the formula is always true. The second
sub-formula, on the other hand, becomes true when the process executes the
ReturnTotal reply activity.

The process has been executed on two different implementations: a non-
optimized one based on the standard semantics defined in Sect. 3.2, and an
optimized one, based on the definition of Optimized Semantics 2. On each imple-
mentation, we executed 11 experiments, one for each different size of the property
(i.e., number of Until operators) plus one corresponding to the base case, with no
properties to verify. For each experiment, the application container was restarted.
Due to the complexity of the middleware infrastructure, measurements are not ex-
actly reproducible; this is a well-known phenomenon, for example in Java-based



38 L. Baresi et al.

Table 2. Number of thread activations and time for the evaluation of the sample
formulae

size of the
property

non-optimized optimized

# threads time (ms) # threads time (ms)

0 49 155 48 160
1 324 8208 132 458
2 648 19061 217 711
3 1064 31628 358 748
4 1640 48550 371 952
5 N/A N/A 579 1044
6 N/A N/A 670 1358
7 N/A N/A 794 1940
8 N/A N/A 876 1879
9 N/A N/A 1007 2254
10 N/A N/A 1070 2180

environments, where measurement variances due to application-inherent non-
determinism are often amplified by differences in thread scheduling, dynamic
just-in-time compilation, or garbage collection [7]. In order to compensate for the
measurement variances, we repeated each experiment 10 times (under the same
settings) and reported the geometric mean of the 10 trials.

Table 2 shows the number of thread activations and the time required for
the evaluation of the properties, each one with a different, increasing number of
Until operators. In the non-optimized implementation, the number of threads
continuously grows until the system runs out of memory and experiences failures
(reported as Java exceptions) in the attempt to create new threads, thus mak-
ing the number of threads and the evaluation time become irrelevant (and thus
marked as N/A in the table). On the other hand, the optimized version behaves
much better and terminates as expected. Notice that the optimized version still
has some spurious threads that make the total number of threads greater than
the value estimated by the theoretical model. These threads derive from imple-
mentation constraints that do not interfere with the proposed optimizations and
that we plan to address in future versions of our prototype.

These results prove that the optimized implementation, which is based on the
optimized semantics, is better than the non-optimized implementation, which is
based on the standard semantics, since it allowed us to check for properties that
we could not have checked using the other version.

6 Related Work

The approach most similar to ours is the one described in [8], which deals with
the on-line monitoring of Service Level Agreements. The main difference lies in
the kind of observable properties that are supported by the two frameworks,
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which impacts both on the underlying theoretical model and on the correspond-
ing implementation. [8] supports only the specification of latency, reliability and
throughput requirements, which are a subset of the properties that can be ex-
pressed with ALBERT. A consequence of this limitation is that they can lay the
approach on the top of a simpler theoretical model (timed automata).

[9] proposes a complementary approach to the previous one, as it focuses
on the run-time monitoring of safety and liveness properties of Web service in-
teractions, and does not consider timeliness constraints. Properties are specified
by means of UML 2.0 Sequence Diagrams (SD) that are then translated into
non-deterministic finite automata, whose size is polynomial in the number of
events and the number of processes described by an SD. This is comparable to
the spatial complexity of our approach, as the size of an LASA is polynomial in
the number of temporal operators of the corresponding formula.

In [2] we provided a detailed comparison of various approaches for the run-
time verification of Web service compositions. None of them describes a formal
model to reason about the efficiency of the proposed approach.

To the best of our knowledge, alternating automata (and their variations)
have not been used before for the run-time verification of service interactions,
i.e., in the context of multi-parties, distributed applications. However, they have
been proposed for the run-time verification of stand-alone applications. For ex-
ample, [10] uses Metric Temporal Logic (MTL), which shares many constructs
with ALBERT, and represents a formula in terms of an evolving computation
tree equivalent to the original alternating automaton corresponding to the for-
mula. The proposed optimization, which identifies and eliminates redundant
sub-structures of a computation tree, is somehow equivalent to our proposal of
reducing the duplications of an automaton. [11] presents three algorithms, based
on alternating automata, to check both Past and Future Time Linear Tempo-
ral Logic (LTL). The only algorithm suitable to work on-line, however, has an
exponential space complexity in the size of the input formula.

All the approaches mentioned above work with infinite program traces. How-
ever, in some cases the execution traces may be finite and therefore special-
purpose algorithm can be used. [12] proposes an approach for automata-based
run-time verification, where the standard algorithm to convert (Future Time)
LTL formulae to Büchi automata is modified to generate finite-state automata
that check finite program traces. [13] uses non-deterministic Büchi automata to
verify formulae written in TLTL, the timed version of LTL: in this case, the size
of the automaton is exponential in the length of the corresponding formula as
well as its largest constant.

7 Conclusions

The work presented in this paper demonstrates that ALBERT formulae can be
represented by concise alternating automata with a bounded number of dupli-
cates. This is achieved by introducing an extension of alternating automata and
by providing the definition of an operational semantics of ALBERT formulae in
terms of this model.
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Presented results not only have mere theoretical consequences, but also are
the basis for a concrete and efficient implementation of our run-time verification
framework. Our future work will focus on the refinement of the current proto-
type implementation and on a thorough quantitative analysis of the run-time
verification framework.
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Abstract. We propose a verification method for parameterized sys-
tems with global conditions. The method is based on context-sensitive
constraints, a symbolic representation of infinite sets of configurations
defined on top of words over a finite alphabet. We first define context-
sensitive constraints for an exact symbolic backward analysis of para-
meterized systems with global conditions. Since the model is Turing
complete, such an analysis is not guaranteed to terminate. To turn the
method into a verification algorithm, we introduce context-sensitive con-
straints that over-approximate the set of backward reachable states and
show how to symbolically test entailment and compute predecessors. We
apply the resulting algorithm to automatically verify parameterized mod-
els for which the exact analysis and other existing verification methods
either diverge or return false positives.

1 Introduction

We consider verification of safety properties for parameterized systems with uni-
versal and existential global conditions. Typically, such a system consists of an
arbitrary number of processes organized in a linear array. Global conditions are
used as guards. An example of a universally quantified global condition is that
all processes to the left of a given process i should satisfy a property ϕ. Process
i can perform the transition only if all processes with indices j < i satisfy ϕ. In
an existential condition we require that some (rather than all) processes satisfy
ϕ. The task is to verify correctness regardless of the number of processes.

In [3] we have proposed a light-weight verification method for parameterized
systems based on monotonic abstraction with the aim of avoiding the use of
the full power of automata and regular languages (which require heavy manip-
ulations like the use of transducers [21,14,7,9]). The main idea of the method
in [3] is to consider a transition relation that is an over-approximation of the
one induced by the parameterized system. To do that, we modify the seman-
tics of universal quantifiers by eliminating the processes that violate the given
condition (downward closed semantics). The obtained approximate transition
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system is monotonic with respect to the subword relation (larger configurations
are able to simulate smaller ones). Since the approximate transition relation is
monotonic, it can be analyzed using a symbolic backward reachability algorithm
based on a generic method introduced in [2]. The algorithm operates on upward
closed sets of configurations (with respect to the subword relation) and uses sym-
bolic operations that are much simpler than transducers and regular languages.
The PFS tool [3] that implements this technique can thus be applied to verify
safety properties for configurations with any number of processes. Monotonic
abstraction has proven successful in verifying a wide range of parameterized,
distributed, and heap manipulating systems [3,5,4,6,1]. However, it may return
false positives due to a loss of precision in the representation of special witness
processes. We give an example of a system where such a situation occurs.

An example in which monotonic abstraction may return false positives is the
parameterized system where processes are represented in Fig. 1. Each process
has five local states q0, . . . , q4. All processes are initially in state q0. A process
in the critical section is at state q4. Note that the set of configurations violating
mutual exclusion contains exactly configurations with at least two occurrences
of symbol q4. Processes start crossing from q0 to q1, and then to state q2.

q0

q1 q2

q3q4

∀ {q0, q1, q4} ∀L {q0}
∃ {q2}

Fig. 1. State diagram of an individual
process

Once the first process has crossed to
state q2 it “closes the door” on the
processes which are still in q0. These
processes will no longer be able to leave
q0 until the door is opened again (when
no process is in state q2 or q3). Further-
more, a process is allowed to cross from
q3 to state q4 only if there is at least one
process still in state q2 (i.e., the door is
still closed on the processes in state q0).
This is to prevent a process first reaching
q4 and then a process to its left starting to move from q0 all the way to state
q4 (thus violating mutual exclusion). From the set of processes which have left
state q0 (and which are now in state q1 or q2) the leftmost process has the
highest priority. This is encoded by the global condition that a process may
move from q2 to q3 only subject to the global condition that all processes to
its left are in state q0 (this condition is encoded by the universal quantifier
∀L, where “L” stands for “Left”). A typical run of the system is of the form
q0q0q0q0 −→ q0q1q0q0 −→ q0q1q1q0 −→ q0q2q1q0 −→ q0q2q2q0 −→ q0q3q2q0 −→
q0q4q2q0 −→ q0q0q2q0. The protocol satisfies mutual exclusion. Consider now the
abstract transition system computed by applying monotonic abstraction. From
the next-to-last configuration, the left most process can move (in the abstract
system) to q1. More precisely, the run may continue as follows in the abstract
system. q0q4q2q0 −→ q1q4q0 −→ q2q4q0 −→ q3q4q0 −→ q4q4q0. Notice that
monotonic abstraction removes the guard (the process in state q2) since it does
not satisfy the global condition of the rule q0 → q1 : ∀ {q0, q1, q4}. With this
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abstraction the door is opened again. This allows processes in q0 to move again,
enabling one of them to reach q4. This gives a false positive.

This kind of false positives arise typically in systems where correctness de-
pends on the existence of a witness process. For this reason, it is relevant to
study new approximations that can be used for more precise analysis than that
provided by monotonic abstraction. The challenge here is to preserve the posi-
tive features of the latter approach such as the use of simple data structures and
of a generic verification algorithm based on well-quasi orderings.

New Contribution. We propose a new verification algorithm based on an ap-
proximated context sensitive analysis that improves the precision of monotonic
abstraction. The method is guaranteed to terminate, and is based on relatively
simple symbolic data structures. We build the verification method in two steps.

We first define a symbolic representation, namely context-sensitive constraints,
that are a natural generalization of the constraints used in the monotonic ab-
straction framework. In monotonic abstraction a word w of process states
(referred to as the basis) is used as a symbolic representation of its upward
closure computed with respect to word inclusion. This implies that any type
of processes is allowed in between two consecutive states of the basis w (these
allowed processes are referred to as context). Context-sensitive constraints gen-
eralize this idea by introducing constraints on the type of processes that are
allowed to occur in each context. For each pair of consecutive states in the ba-
sis, constraints are expressed by using a subset R of states: only processes with
states in R are allowed in this context. This kind of constraints can be used to
exactly represent (one-step) predecessor configurations of a parameterized sys-
tem with global conditions. An analysis based on this kind of constraints is not
guaranteed to terminate in general. Furthermore, when testing in practice, even
on simple examples the number of generated constraints often explodes after
a few steps. Therefore, approximations are necessary to ensure both theoreti-
cal (e.g. using wqo theory) and practical termination (e.g. using more compact
representations).

The approximated method we propose in this paper works on constraints of
a special form, called simple context-sensitive constraints. In a simple context-
sensitive constraint we use a single subset of states, called the padding set, to
over-approximate the constraints on processes in each context. For this new sym-
bolic representation, we have the following properties. The entailment ordering
turns out to be a well-quasi ordering. The computation of predecessors is guaran-
teed to terminate and to return a finite representation of an over-approximation
of the exact set of predecessor configurations. Our abstract predecessor operator
incorporates accelerations in the computation of predecessors for ordered system
that are similar in spirit to widening operators used in the unordered case (as
those used in relation analysis for counter systems e.g. in [12,27,28]). Finally, the
constraint operations are much simpler and more efficient than those used in the
exact context-sensitive analysis. Since simple context-sensitive constraints can
represent upward closed sets of configuration computed with respect to word in-
clusion, the resulting over-approximation is guaranteed to be at least as precise
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as monotonic abstraction. However, in several practical examples it gives more
precise results (eliminates false positives).

As a first set of experiments, we have considered benchmark examples of
parameterized systems taken from [15,7,3,8]. The performance of the new veri-
fication algorithm is comparable with that of the PFS tool based on monotonic
abstraction [3]. We remark that in these examples exact analysis often diverges
or suffers from the symbolic state explosion problem. Furthermore, we also con-
sider several new case-studies that include both ordered systems like formu-
lations of Szymanski’s algorithm with non-atomic updates (semi-automatically
verified in [18,22,23]), and unordered concurrent systems like synchronization
skeletons [12,27,28] and reference counting schemes for virtual memory [16]. For
these examples monotonic abstraction often returns spurious error traces due
to a loss of precision in the representation of special processes (as in Szyman-
ski) or in the representation of counters. Our new verification algorithm elimi-
nates all the false positives and verifies the new case studies for any number of
processes/unbounded value of counters. We are not aware of other tools that can
automatically verify the same class of ordered/unordered parameterized models.

Plan of the paper. We describe our model of parameterized systems in the
next Section. Then, we introduce context-sensitive constraints in Section 3, and
simple-context sensitive constraints in Section 4. In Section 5, we discuss exper-
imental results. Finally, in Section 6 we discuss related and future work.

2 Model

For a set A, we use A∗ to denote the set of finite words over A, and use w1w2 to
denote the concatenation of two words w1 and w2 in A∗. For a natural number
n, we use n to denote the set {1, . . . , n}.

Formally, a parameterized system is a pair P = (Q, T ), where Q is a finite
set of local states, and T is a finite set of transitions. A transition is either local
or global. A local transition is of the form q → q′, where a process changes
state from q to q′ independently of the states of the other processes. A global
transition is of the form q → q′ : QP , where Q ∈ {∃L, ∃R, ∃LR, ∀L, ∀R, ∀LR} and
P ⊆ Q. Here, the process checks the states of the other processes. For instance,
the condition ∀LP means “all processes to the left are in states belonging to P”;
the condition ∀LRP means “all other processes (whether to the left or to the
right) are in states belonging to P”; and so on.

A parameterized system P = (Q, T ) induces an infinite-state transition system
(C,−→) where C = Q∗ is the set of configurations and −→ is a transition
relation on C. For a configuration c = q1q2 · · · qn, we define c• := {q1, . . . , qn}.
For configurations c = c1qc2, c′ = c1q

′c2, and a transition t ∈ T , we write c t−→ c′

to denote that one of the following conditions is satisfied:

– t is a local transition of the form q → q′.
– t is a global transition of the form q → q′ : QP , and one of the following

conditions is satisfied:
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• either QP = ∃LP and c1
• ∩ P �= ∅, QP = ∃RP and c2

• ∩ P �= ∅,
or QP = ∃LRP and (c2

• ∪ c2
•) ∩ P �= ∅.

• either QP = ∀LP and c1
• ⊆ P , QP = ∀RP and c2

• ⊆ P ,
or QP = ∀LRP and (c1

• ∪ c2
•) ⊆ P .

We use ∗−→ to denote the reflexive transitive closure of −→.
We define an ordering � on configurations as follows. Let c = q1 · · · qm and

c′ = q′1 · · · q′n be configurations. Then, c � c′ if c is a subword of c′, i.e., there is a
strictly increasing injection h from m to n such that qi = qh(i) for all i : 1 ≤ i ≤ n.

Given a parameterized system, we assume that, prior to starting the execu-
tion of the system, each process is in an (identical) initial state qinit . We use
Init to denote the set of initial configurations, i.e., configurations of the form
qinit · · · qinit (all processes are in their initial states). The set Init is infinite.

A set of configurations U ⊆ C is upward closed with respect to � if c ∈ U
and c � c′ implies c′ ∈ U . For a configuration c, we use ĉ to denote the upward
closure of c, i.e., the set {c′| c � c′}. For sets of configurations D, D′ ⊆ C we
use D −→ D′ to denote that there are c ∈ D and c′ ∈ D′ with c −→ c′. The
coverability problem for parameterized systems is defined as follows:

PAR-COV

Instance
– A parameterized system P = (Q, T ).
– A finite set CF of configurations.

Question Init ∗−→ ĈF ?

It can be shown, using standard techniques (see e.g. [26]), that checking safety
properties (expressed as regular languages) can be translated into instances of
the coverability problem. Typically, ĈF is used to characterize sets of bad con-
figurations which we do not want to occur during the execution of the system.
The system is safe iff ĈF is not reachable. Therefore, checking safety properties
amounts to solving PAR-COV (i.e., to the reachability of upward closed sets).
In Example 1 the set of bad configurations is q̂4q4.

3 Exact Context-Sensitive Symbolic Analysis

Assume a parameterized system P = (Q, T ), where Q is a finite set of states.
In order to finitely represent infinite sets of system configurations (e.g. config-
urations of arbitrary size) we use the context-sensitive constraints defined in
this section. For the sake of clarity, we first present a simplified version of our
constraints and then discuss extensions we use in our implementation. We work
with words in A

∗, where A = Q ∪ P(Q) and P(Q) denotes the set of subsets of
Q. We use p, q, . . . to denote states in Q, and P, R, . . . to denote sets of states
in P(Q). Furthermore, for w ∈ A

∗ we use w• to denote the union of all states
in Q occurring in w either as one of its letters or listed in one of its sets. As an
example, for R = {q1, q2} we have that (Rq3R)• = {q1, q2, q3}.
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Definition 1. A context-sensitive (CC-)constraint is a word in A
∗ of the form

R0q1R1 . . . qnRn, where qi ∈ Q for i : 1 ≤ i ≤ n and Ri ⊆ Q for i : 0 ≤ i ≤ n.
The configuration q1 . . . qn is called the basis and each set Ri is called a context.
The denotation of a context-sensitive constraint φ, written [[φ]], is the set of
configurations of the form c0q1c1 . . . qncn where ci ∈ R∗

i for i : 0 ≤ i ≤ n.

As an example, assume Q = {q1, q2, q3}, R0 = R1 = {q2, q3} and R2 = {q1, q3}.
The constraint φ defined as R0q1R1q2R2 denotes all configurations of the form
c0q1c1q2c2 such that sub-configurations c0 and c1 cannot contain processes q1
and sub-configuration c2 cannot contain occurrences of processes q2. Therefore,
configurations q3q1q3q2q1 and q3q1q3q3q2q1 belong to [[φ]], whereas q1q1q2 and
q1q3q2q2 do not belong to [[φ]]. Notice that CC’s of the form Qq1Q . . . qnQ denote
upward closed sets of states with respect to word inclusion (there are no con-
straints on the contexts). For instance, the set of bad states in Example 1 can
be characterized by the CC Qq4Qq4Q where Q = {q0, q1, q2, q3, q4}.

We now define the symbolic operations we use in our analysis, namely the
entailment and the predecessors computation on context-sensitive constraints.
These respectively correspond to the application, without any loss of precision,
of the inclusion and the predecessor operations on the associated denotations.

Entailment. For constraints φ = R0q1 . . . qnRn and φ′ = R′
0q

′
1 . . . q′mR′

m, we
define φ 
 φ′ iff there exists a monotonic injection h : n → m such that qi = q′h(i)
for i : 1 ≤ i ≤ n and the following conditions hold:

– (R′
0q

′
1 . . . q′h(1)−1R

′
h(1)−1)

• ⊆ R•
0

– (R′
h(i)q

′
h(i)+1 . . . q′h(i+1)−1R

′
h(i+1)−1)

• ⊆ R•
i for i : 1 ≤ i ≤ n − 1;

– (R′
h(n)q

′
h(n)+1 . . . q′mR′

m)• ⊆ R•
n.

We have that φ1 
 φ2 if and only if [[φ2]] ⊆ [[φ1]] (φ1 is weaker than φ2).

Computing Predecessors. Given a set S of CC’s, it is possible to define a
symbolic predecessor operator Pre that effectively computes, when applied to S,
a set S′ = Pre(S) of CC’s such that [[S′]] is the set of configurations from which
one can reach configurations in [[S]] using ∗−→ (i.e. predecessors).

We first introduce the symbolic predecessor computation for a ∀L-rule, and
then describe the case of the other transitions. Consider a transition t of the
form q → q′ : ∀L P with P ⊆ Q. Then, Pret(φ) is the set {φ′ | φ �t φ′}
where �t is the minimal relation that satisfies one of the following conditions.
Let φ = R0q1 . . . qnRn:

1. if there exists i s.t. qi = q′ with qj ∈ P for each j : 1 ≤ j < i, then
φ �t (R0 ∩ P )q1 . . . qi−1(Ri−1 ∩ P )qRiqi+1 . . . qnRn

2. if there exists i s.t. q′ ∈ Ri with qj ∈ P for each j : 1 ≤ j ≤ i, then
φ �t (R0 ∩ P )q1 . . . qi(Ri ∩ P )qRiqi+1 . . . qnRn

Notice that: in (1) the length of the new basis and the number of contexts are
the same as in φ, whereas in the new constraint produced in (2) we add a new
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process as well as a new context. The case of ∀R-rules is similar to that for
∀L-rules. The remaining cases are given below.

Forall. Let φ = R0q1 . . . qnRn. Consider a transition t of the form q → q′ : ∀LRP
with P ⊆ Q. Then, �t is the minimal relation that satisfies one of the following
conditions.
1. if there exists i s.t. qi = q′ with qj ∈ P for each j : (1 ≤ j �= i ≤ n), then

φ �t (R0 ∩ P )q1 . . . qi−1(Ri−1 ∩ P )q(Ri ∩ P )qi+1 . . . qn(Rn ∩ P ).
2. if there exists i s.t. q′ ∈ Ri with qj ∈ P for each j : 1 ≤ j ≤ n, then

φ �t (R0 ∩ P )q1 . . . qi(Ri ∩ P )q(Ri ∩ P )qi+1 . . . qn(Rn ∩ P ).

Local. Let t be a local rule q → q′, �t is the minimal relation that satisfies one
of the following conditions:
1. if there exists E1, E2 ∈ A

∗ s.t. φ = E1q
′E2, then φ �t E1qE2.

2. if there exists E1, E2 ∈ A
∗ and R ⊆ Q s.t. φ = E1RE2, q′ ∈ R, and q �∈ R,

then φ �t E1RqRE2.

Exist. Let t be the rule q → q′ : ∃LP , �t is the minimal relation that satisfies
one of the following conditions:
1. if there exists E1, E2, E3 ∈ A

∗ s.t. φ = E1pE2q
′E3, then φ �t E1pE2qE3.

2. if there exists E1, E2, E3 ∈ A
∗, R ⊆ Q s.t. p ∈ R, and φ = E1RE2q

′E3, then
φ �t E1RpRE2qE3.

3. if there exists E1, E2, E3 ∈ A
∗, R ⊆ Q s.t. p ∈ R, q′ ∈ R, q �∈ R and

φ = E1pE2RE3, then φ �t E1pE2RqRE3.
4. if there exists E1, E2, E3 ∈ A

∗, R, S ⊆ Q s.t. p ∈ S, q′ ∈ R, q �∈ R and
φ = E1SE2RE3, then φ �t E1SpSE2RqRE3.

5. if there exists E1, E2 ∈ A
∗, R ⊆ Q s.t. p, q′ ∈ R, q �∈ R and φ = E1RE2,

then φ �t E1RpRqRE3.

The rules for computing predecessors with respect to rules with ∃R, ∃LR can be
derived in a manner similar to the above described cases.

Symbolic Backward Reachability. Context expressions can be used for an
exact representation of predecessor configurations. Each application of Pre is ef-
fectively computable. Let Φ0 be a set of CC’s that represent an upward closed set
of configurations (unsafe states). Starting from Φ0, we compute the sequence of
sets of CC’s-constraints Φ0, . . . , Φi, . . . such that Φi+1 = Φi ∪

⋃
t∈T ,φ∈Φi

Pret(φ).
Each step of this sequence can be effectively computed. Furthermore, we can
apply the entailment 
 to discharge CC’s that do not add new information (i.e.
stronger than an already computed constraint). If we reach a fixpoint at step k,
then Φk gives us an exact representation of the predecessors of configurations
in [[Φ0]]. Thus, we can potentially use this fixpoint computation to solve PAR-

COV, i.e., to verify/falsify safety properties for configurations of arbitrary size.
However, since our model is Turing complete (e.g. we can encode two counter
machines using universally quantified conditions) the resulting CC’s-based sym-
bolic backward reachability analysis is not guaranteed to terminate. Therefore,
in order to obtain a terminating verification procedure, we need to introduce
some approximation. We discuss this point in the next section.
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4 Approximated Context-Sensitive Symbolic Algorithm

In this section, we present an approximated representation of context-sensitive
constraints that we use to turn the (possibly non-terminating) CC-based verifi-
cation procedure into an approximated verification algorithm. For this purpose,
we first define a special class of constraints.

Definition 2. A simple context-sensitive (SCC-)constraint is a word in A
∗ of

the form Rq1R . . . qnR in which {q1, . . . , qn} ⊆ R ⊆ Q.

Since the same constraint is uniformly applied to each context in the basis, we
can simplify the notation and represent an SCC as a pair (c, R), where c ∈ Q∗

and c• ⊆ R ⊆ Q. We refer to R as the padding set. As we discuss later in this
section, the requirement that the basis c in included is the padding set has two
consequences: it allows us to apply the theory of well-quasi ordering to ensure
termination of the backward analysis (see Lemma 1); it gives us a natural way
to define accelerations to speed up the symbolic computation of predecessors
(see Section 4.1). Notice that an SCC need not represent an upward closed set of
configurations. Indeed, the environment R may be a strict subset of the set of all
states. For instance, if Q = {a, b, c} then the denotation of the SCC (aa, {a, b})
contains strings like aa, aba, abab, . . . but it does not include any strings with c
even if they contain aa as a substring (i.e. aca, abac, . . . are not in its denotation).

A CC φ = R0q0 . . . qnRn can naturally be approximated by the following SCC:

φ# = (q0 . . . qn, φ•)

Indeed, it is immediate to check that [[φ]] ⊆ [[φ#]]. Let us now reconsider the
symbolic operations (discussed in Section 3 for CC’s) needed for implementing
an SCC-based symbolic backward analysis.

Entailment. The entailment relation for SCC’s can now be simplified as follows.
For φ = (c, R) and φ′ = (c′, R′), we have that φ 
 φ′ iff c � c′ and R ⊇ R′. We
recall that φ 
 φ′ implies [[φ′]] ⊆ [[φ]].

Furthermore, we can prove that 
 is a Well Quasi-Ordering (WQO) for SCC’s,
i.e., for any infinite sequence φ0, φ1, φ2, . . ., of constraints, there are i < j such
that φi 
 φj . Indeed, let φi be of the form (ci, Ri). Since Q is finite and Ri ⊆ Q
for all i, it follows that there is an infinite subsequence φi0 , φi1 , φi2 , . . . such that
Rij = Rik

for all j, k. By Higman’s lemma [20] (which implies that � is a WQO
on Q∗), there are j < k such that cij � cik

, and hence φij 
 φik
. This gives the

following lemma which we use later to prove termination of our algorithm.

Lemma 1. 
 is a WQO on the set of SCC’s.

We extend the relation 
 to sets of SCC’s such that Φ1 
 Φ2 if for each φ2 ∈ Φ2
there is a φ1 ∈ Φ1 with φ1 
 φ2. Notice that Φ1 
 Φ2 implies that [[Φ2]] ⊆ [[Φ1]].

As an example, consider the SCC φ = (pq, {p, q, r}). Examples of configu-
rations in [[φ]] are prq and rprprqr. The set of bad states in Example 1 can
be characterized by the SCC’s (q4q4, {q0, q1, q2, q3, q4}). Also, for the SCC φ =
(pq, {p, q, r, s}) and φ′ = (qpprqp, {p, q, r}), we have φ 
 φ′.
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4.1 Computing Predecessors

The abstract predecessor operator Pre# is obtained as the composition of Pre
and of the abstraction #, i.e., Pre#(φ) = (Pre(φ))#. However, it would be
inefficient to implement it in this way. Indeed, in general Pre requires the analysis
and generation of several cases (as for ∃L-rules). As we discuss in Section 5, the
large number of generated constraints makes the exact analysis unfeasible even
on simple examples. For this reason, we show next how to directly define Pre#

as an operator working on SCC’s-constraints.
First, we introduce some notations. For a basis c and a state q, we write c⊗ q

to denote the set {c1qc2 | c = c1c2}. The operation adds the singleton q in an
arbitrary position inside c. We define Pre# by means of a set of relations t

�

defined as follows. For a transition t, we define t
� to be the smallest relation on

constraints containing the following elements:

Local. If t is a local transition of the form q → q′ then

– (c1q
′c2, R) t

� (c1qc2, R ∪ {q}).
– (c, R) t

� (c1, R ∪ {q}) if q′ ∈ R and c1 ∈ (c ⊗ q)

In the first case, a process in the basis of the constraint performs a local transition
from q to q′. We add q to the padding set as required by the well-formedness of
SCC’s-constraints. From an operational perspective, augmenting the padding set
with q has an effect similar to widening operators used in relational analysis for
unordered parameterized systems (e.g. based on polyhedra in [15]). To illustrate
this, consider the rule p → q and the constraint (r, R) where R = {q, r}. The
exact predecessor computation would compute an infinite sequence of the form
RpRrR, RrRpR (one occurrence of p), RrRpRpR, RpRrRpR, RpRpRrR (two
occurrences of p), . . . . Our approximated operator computes the limit of the
sequence, i.e., (rp, R ∪ {p}), (pr, R ∪ {p}) (at least one occurrence of p). Thus,
our abstraction plays here the role of a widening step for ordered configurations.

Exists. if t is a global transition of the form q → q′ : ∃LP then

– (c1q
′c2, R) t

� (c1qc2, R ∪ {q}) if P ∩ c1
• �= ∅.

– (c1q
′c2, R) t

� (c3qc2, R ∪ {q}) if p ∈ P ∩ R, p �∈ c1
•, c3 ∈ (c1 ⊗ p).

– (c1pc2, R) t
� (c1pc3, R ∪ {q}) if p ∈ P , q′ ∈ R, q �∈ R, and c3 ∈ (c2 ⊗ q).

– (c1c2, R) t
� (c1pc3, R ∪ {q}) if p ∈ P , p �∈ c1

•, q′ ∈ R, q �∈ R, and c3 ∈
(c2 ⊗ q).

In the first case, a process in the basis of the constraint performs an existential
global transition from q to q′. The transition is performed if there is a witness
which is to the left of the process and which is inside the basis of the constraint.
The second case is similar to the first case, except that the witness is in the
padding set (and not in the left part of the basis). Therefore, we add the witness
explicitly in an arbitrary position to the left of the process. In the third case,
a number of processes (at least one process) in the padding set perform the



50 P.A. Abdulla, G. Delzanno, and A. Rezine

transition. There is a witness which enables the transition inside the basis. The
witness should be to the left of the process making the transition. In the fourth
case, both the witness and the process making the transition are in the padding
set. This case is similar to the third case, except that we need to add the process
making the transition explicitly in the basis. In a similar manner to the local
transition case, we add q to the padding to reflect the abstraction.

If t is a global transition of the form q → q′ : ∃RP or q → q′ : ∃LRP , then
analogous conditions to the previous case hold.

Forall. t is a global transition of the form q → q′ : ∀LRP , then

– (c1q
′c2, R) t

� (c1qc2, (R ∩ P ) ∪ {q}), if (c1c2)
• ⊆ P .

– (c1c2, R) t
� (c1qc2, (R ∩ P ) ∪ {q}), if q′ ∈ R, q �∈ R and (c1c2)

• ⊆ P .

In the first case, a process in the basis moves from q to q′. The remaining
processes in the basis must be in R. Furthermore, we restrict the padding set to
those processes within R. In the second case, a process of type q in the padding
set moves to q′. Notice that in both cases, the state q is added to the padding
to reflect the abstraction.

If t is a global transition of the form q → q′ : ∀LP , then

– (c1q
′c2, R) t

� (c1qc2, R ∪ {q}), if c1
• ⊆ P .

– (c1c2, R) t
� (c1qc2, R ∪ {q}), if q′ ∈ R and c1

• ⊆ P .

In the first case, a process in the basis moves from q to q′. The remaining
processes in the basis belong to R. In our constraints we use a single padding set
to define the constraints on processes to the left and to the right of the process
that makes the transition. Thus, to compute the precondition of the universal
condition on the padding set we have to apply an over-approximation and use R
as constraints on contexts (processes to the left should be restricted to R ∩ P ).
In the second case, a process q from the padding set moves to q′. Notice that in
both cases, the state q is added to the padding to reflect the abstraction. The
second case is similar to the first case, except that the process that performs the
transition is selected from the padding set.

If t is a global transition of the form q → q′ : ∀RP , then analogous conditions
to the previous case hold.

Now let �:=
⋃

t∈T
t

� and define for a constraint φ the set (φ �) := {φ′| φ � φ′}.
Lemma 2. For any constraint φ, we have Pre([[φ]]) ⊆ [[(φ �)]] = [[Pre#(φ)]].

Backward Reachability Algorithm. We use the relation � to define a
symbolic backward reachability algorithm for approximating solutions to PAR-

COV. We start with a finite set ΦF of SCC’s denoting ĈF (notice that we
can always define SCC’s that describe an upward-closed set). We generate a se-
quence Φ0 � Φ1 � Φ2 � · · · of finite sets of constraints such that Φ0 = ΦF , and
Φj+1 = Φj ∪ (Φj �). Since [[Φ0]] ⊆ [[Φ1]] ⊆ [[Φ2]] ⊆ · · · , the procedure terminates
when we reach a point j where Φj 
 Φj+1. Thus, termination of the algorithm
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is guaranteed by Lemma 1. Notice that the termination condition implies that
[[Φj ]] = (

⋃
0≤i≤j [[Φi]]). By Lemmas 2, Φj denotes an over-approximation of the

set of all predecessors of [[ΦF ]]. This means that if (Init
⋂

[[Φj ]]) = ∅, then there
exists no c ∈ [[ΦF ]] with Init ∗−→ c. Thus, the algorithm can be used as a semi-test
for checking PAR-COV.

Extensions. We discuss here possible extensions of the symbolic representation
and of the model. The basic form of SCC’s can be enriched in order to provide
a more compact representation of sets of configurations. More specifically, as
in [3], let us assume that individual processes have a state in Q and a set of
local Boolean variables in V . Let B be the set of Boolean formulas with pred-
icates in Q ∪ V . We can work on CC-constraints of the form R0b0R1 . . . bnRn

((b0, . . . , bn, R) for SCC-constraints) where bi is a formula in B and Ri (R) is a
subset of formulas in B. Now the basis describes a finite set of configurations with
n processes and each set Ri gives constraints either on the state or on the local
variables for processes occurring in the context. Furthermore, we can extend the
exact/approximated symbolic computation of predecessors to rules with other
synchronization mechanisms like broadcast communication and read/write op-
erations on globally shared variables either with range in a finite domain or in
the natural numbers. Operations on the latter type of shared variables can be
obtained by using synchronization with special processes with state zero/one:
increment is modelled via synchronization with a zero process that moves to
one, decrement via synchronization with a one process that moves to zero, and
zero test is modelled via a global condition “there are no processes with state
one”. The current value of the shared variable is the number of occurrence of
processes in state one. Thus, this kind of variables may range over an unbounded
set of natural numbers.

5 Experimental Results

We have implemented the verification procedures based on CC and SCC
(see Table 1) and compared them to PFS (monotonic abstraction). To this pur-
pose, we used examples of cache coherence protocols, mutual exclusion algo-
rithms, and counter based synchronization problems. In the following, we briefly
discuss some of the case studies.

The examples consist of the Illinois and the DEC Firefly cache coherence pro-
tocols from [15]; the Bakery and Burns mutual exclusion algorithms used in [3];
a compact model of Szymanski algorithm with atomicity conditions from [8,25],
a refinement of Szymanski algorithm from [23] (see Fig. 2), and the Gribomont-
Zenner mutex from [18]. Several synchronization and reference counting exam-
ples using unbounded integer counters are also considered. These include an
abstract model of the reference counting example for page allocation in [16],
and solutions to the readers/writers problem from [27] with priorities to read-
ers or writers. We remark that in all examples global conditions are evaluated
atomically. The results are summarized in Table 2. For each example, we give
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Table 1. Methods and tools listed in order of precision in the analysis

Tool Method Approximation Precision Termination

CC backward reach. none exact not guaranteed
SCC backward reach. abstraction of CC’s over-approx always guaranteed
PFS backward reach. monotonic abst. over-approx always guaranteed

var flag : array[N ] of [0 − 4]
flag := (0, . . . , 0);
process p[i] =
1 non critical;
2 f [i] := 1;
3 await ∀j 	= i.f [j] < 3;
4 f [i] := 3;
5 if ∃j 	= i.f [j] = 1

then
6 f [i] := 2;
7 await ∃ j 	= i.f [j] = 4;
8 f [i] := 4;
9 else f [i] := 4;
10 await ∀j < i.f [j] < 2;
11 critical section;
12 await ∀j > i.f [j] < 2 ∨ f [j] > 3;
13 f [i] := 0;

States : Q = {s0, s1, . . . , s11}
Transitions :
instruction : transition

1 : s0 → s1
2 : s1 → s2
3 : s2 → s3 : ∀LR{s0, s1, s2, s3, s7, s8}
4 : s3 → s4

5 then : s4 → s6 : ∃LR{s2, s3}
6 : s6 → s7
7 : s7 → s8 : ∃LR{s9, s10, s11}
8 : s8 → s9

5 else : s4 → s5 : ∀LR¬{s2, s3}
9 : s5 → s9

10 : s9 → s10 : ∀L{s0, s1, s2, s3}
11 : s10 → s11 : ∀R¬{s4, s5, s6, s7, s8}
12 : s11 → s0

Initial state : s0
Bad states : φ = (s10s10, Q∗)

Fig. 2. Algorithm of Szymanski [23] (left), and its parameterized model (right)

the number of iterations performed by the reachability algorithm, the number
of constraints upon termination of the algorithm, and the time (in seconds or
minutes). We use in the appropriate fields to indicate that we had to stop the
analysis after several hours.

In the simplest examples like the Bakery algorithm, each of the three methods
(PFS,SCC,CC) automatically verifies mutual exclusion. However, exact analysis
may diverge even on simple examples. Such a case occurs when testing mutual
exclusion for the dirty cache line state in the DEC Firefly model of [15]. A similar
behavior was already observed with HyTech [19] (a tool manipulating polyhedra
that can be used for unordered models) in [15]. In more complicated examples
like the algorithms of Burns and Szymanski exact analysis does not terminate.

Monotonic abstraction proved to be precise for a wide range of parameterized
systems [3,5,4,6,1]. However, it returned false positives for some of the protocols
in Table 2. These are the fine grained formulations of Szymanski algorithm, the
reference counting model, and particular versions of readers/writers. The main
steps of the spurious error trace returned by PFS (monotonic abstraction) on
the algorithm of Fig. 2 are described below.

(s0, s0, s0)→∗ (s1, s1, s1)→∗ (s1, s1, s3)→ (s2, s1, s3)→ (s3, s1, s3)→ (s3, s1, s4)
→∗ (s5, s2, s4)→ (s9, s2, s4)→∗ (s9, s2, s7) −→0 (s3, s7)→∗ (s10, s10)
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Table 2. Experimental results

Model Method # iter # constr ex-time spurious trace verified
Bakery [3] PFS 2 2 0.01s

√

CC 4 3 0.01s
√

SCC 3 2 0.01s
√

Illinois [15] PFS 5 33 0.02s
√

CC 2 17 0.05s
√

SCC 7 53 0.18s
√

Burns [3] PFS 14 40 0.05s
√

CC
SCC 15 48 0.02s

√

DEC Firefly [15] PFS 3 11 0.01s
√

CC
SCC 5 10 0.03s

√

Compact Szymanski [8,25] PFS 10 17 0.1s
√

CC
SCC 24 162 3.35s

√

Refined Szymanski [23] PFS 24 658 1.5 s
√

CC
SCC 34 641 1m

√

Gribomont-Zenner [18] PFS 36 197 0.2 s
√

CC
SCC 56 863 5m

√

Ref. counting [16] PFS 7 15 0.02s
√

CC
SCC 7 8 0.01s

√

Readers/writers[27] PFS (10:5) (31:28) (0.05s:0.02s) ( :
√

) (
√

: )
(locks:no locks) CC

SCC (7:7) (12:8) (0.02s:0.01s) (
√

:
√

)
Readers/writers (locks:no locks) PFS (21:7) (125:67) (0.4s:0.6s) ( :

√
) (

√
: )

refined, priority to readers CC
SCC (25:12) (128:34) (1.7s:0.06s) (

√
:
√

)
Readers/writers (locks:no locks) PFS (22:9) (683:219) (9.4s:0.3s) ( :

√
) (

√
: )

refined, priority to writers CC
SCC (27:9) (646:19) (17.2s:0.03s) (

√
:
√

)
Light control [27] PFS 13 96 0.06s

√

CC
SCC 9 29 0.02s

√

The step indicated with −→0 corresponds to the deletion of a process violat-
ing the universal condition of the third instruction in Fig. 2(right). The spurious
error trace is due to the fact that the denotation of the constraints manipulated
by PFS contain every local state. When applied to this model, the approximated
SCC-based algorithm terminates without detecting error traces, i.e., mutual ex-
clusion is verified for the refined model for any number of processes. Notice that
the compact model studied in [8,25], can be verified using both PFS and SCC.

6 Conclusions and Related Work

We have presented a new algorithm for parameterized verification based on
special constraints, called SCC’s, that retain approximated context-sensitive in-
formation on the type of processes executing in parallel with a finite set of
completely specified individuals. We apply the new algorithm to several non-
trivial examples in which other types of analysis fail. Furthermore, the new al-
gorithm performs well on most of the examples that can be verified with existing
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parameterized verification techniques. In this paper, we consider protocols where
variable updates are non-atomic. On the other hand, we consider in [4] models
where global conditions are performed non-atomically. We plan to further inves-
tigate verification methods and efficient data structures for SCC’s-like context-
sensitive constraints that can help to lift the non-atomicity assumptions on both
variable updates and global conditions.

Related Work. The constraints used for the exact analysis are similar to the APC
regular expressions studied in [11]. The verification method proposed in [11] is
complementary to ours. Indeed, it is based on symbolic forward exploration with
accelerations and without guarantying termination; whereas we consider here an
over-approximation (based on simple context-sensitive constraints) that ensures
the termination of symbolic backward exploration.

Other parameterized verification methods based on reductions to finite-state
models have been applied to safety properties of mutual exclusion protocols
like Szymanski’s algorithm. Among these, we mention the invisible invariants
method [8,24] and the environment abstraction method [13,25]. In [25] envi-
ronment abstraction is applied to a formulation of Szymanski with the same
assumptions as the model in [8], called compact Szymanski in Table 2. This
model can be verified using monotonic abstraction as discussed in Section 5.
The refined model [23] we consider is different in that atomic instructions do not
contain both tests and assignments. This potentially introduces new race condi-
tions making verification a harder task. It is not clear whether the refined models
of Szymanski’s algorithm considered in the present paper can be automatically
verified using the methods suggested in [8,13].

The infinite-state reference counting example we consider in this paper is in-
spired by a finite-state abstraction studied in [16]: in contrast to the predicate-
abstraction approach used in [16], we model reference counting for a physical
page under observation via an unbounded integer shared variable, with incre-
ment, decrement, and zero-test.

Unordered models with counters can be modelled with systems working on
unbounded integer variables such as in ALV [27,28] (based on the Omega library)
and HyTech [19] (based on Halbwachs’s polyhedra library). In these approaches
extrapolation and widening operators are needed to enforce termination. This
is typical for polyhedra-based methods when applied to models like DEC firefly
and readers/writers. In contrast to methods like HyTech and ALV, the algorithm
presented in this paper incorporates accelerations that can be applied both to
ordered and unordered parameterized systems without losing termination.
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Abstract. We present a framework for verifying safety properties of parameter-
ized systems. Our framework is based on a combination of Abstract Interpreta-
tion and a backward-reachability algorithm. A parameterized system is a family
of systems in which n processes execute the same program concurrently. The
problem of parameterized verification is to decide whether for all values of n
the system with n processes is correct. Despite well-known difficulties in ana-
lyzing such systems, they are of significant interest as they can describe a wide
range of protocols from mutual-exclusion to transactional memory. We assume
that neither the number of processes nor their statespaces are bounded a priori.
Hence, each process may be infinte-state. Our key contribution is an abstract do-
main in which each element (a) represents the lower bound on the number of
processes at a control location and (b) employs a numeric abstract domain to
capture arithmetic relations between variables of the processes. We also provide
an extrapolation operator for the domain to guarantee sound termination of the
backward-reachability algorithm. Our abstract domain is generic enough to be
instantiated by different well-known numeric abstract domains such as octagons
and polyhedra. This makes the framework applicable to a wide range of parame-
terized systems.

1 Introduction

A parameterized system is a family of systems in which n processes execute the same
program concurrently. The problem of parameterized verification is to verify whether
for all values of n the system with n processes is correct. Such systems arise naturally
in many important applications ranging from communication protocols such as mutual-
exclusion and leader election, to distributed systems such as web-services, to cache
coherence, resource sharing, transactional memory, and others.

Parameterized system verification is highly undecidable. Apt and Kozen [3] showed
that even verification of parameterized systems of finite-state processes is undecidable.
This negative result has naturally directed the research in parameterized analysis to-
wards two directions: (i) studying decidability of restricted subclasses (e.g. [15,16,17]),
and (ii) developing generally applicable but semi-automated proof principles that uti-
lize induction (e.g. [10,20]). In all of the cases above, it is assumed that each process is
finite-state.

In this paper, we focus on the analysis of parameterized systems of infinite-state
processes. This is a common setting in practice. For example, even in Lamport’s bakery
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protocol [19] each process maintains an integer ticket, and, hence, has an infinite state-
space. In this paper, we are interested in a sound, automated, and terminating procedure
for verifying safety properties of such systems. Since this problem is undecidable, such
a procedure is necessarily incomplete.

Incomplete, but sound and terminating algorithms are commonly used for reasoning
about single-process infinite-state programs. They are typically developed in the frame-
work of Abstract Interpretation [13] (AI). In this paper, we apply such a technique
to parameterized systems. We present a framework that combines AI-style reasoning
with a backward-reachability algorithm. Our key contribution is an abstract domain in
which each element (a) represents the lower bound on the number of processes at a
control location and (b) employs a numeric abstract domain to capture arithmetic rela-
tions between variables of the processes. Our abstract domain is generic enough to be
instantiated by different well-known numeric abstract domains such as octagons [22]
and polyhedra [14].

We present an algorithm to over-approximate backward-reachability in a parameter-
ized system using our abstract domain. In its initial form, the algorithm is sound but
it is not guaranteed to terminate. We show that there are two reasons for divergence:
one comes from the fact that the numeric domain is infinite, and the other is due to the
existence of an unbounded number of processes in a parameterized system. We show
that it is possible to enforce sound termination of the algorithm by combining numeric
widening with a new approximation operator developed especially for our purpose. This
results in an algorithm that is incomplete but sound and terminating. That is, if the algo-
rithm does not find an error state, then the system is correct. However, if the algorithm
finds an error state, it is uncertain that the error actually is present in the system and
is not introduced by the over-approximation. We illustrate an implementation of our
algorithm on a variant of Lamport’s bakery mutual-exclusion protocol (Alg. 2 in [21]).

Related work. In recent years there has been substantial interest in verification of pa-
rameterized systems over a finite (or boolean) data domain. The proposed solutions
range from exact model-checking and reachability analysis for restricted classes of sys-
tems [15,16,17], to generally applicable, sound, but incomplete procedures, e.g., net-
work invariants [20,11], and regular model checking [5,6,18]. Only a handful deal with
both an infinite data domain and unbounded parameterization of processes [1,2,4,7,8].

Abdulla and Jonsson [2] consider the case of 1-clock timed systems. They show that
the verification of a class of safety properties is decidable under some restrictions on
the constraints used. Inspired by [2], Bozzano and Delzanno [8] present a safety verifi-
cation technique for parameterized systems with unbounded local data variables. Their
approach is based on assertions that combine multiset rewriting over first order for-
mulas and constraints. Decidability is achieved by restricting constraints to a constant-
free subclass of difference constraints (itself a subclass of linear arithmetic). In [1], the
method of [8] is extended to GAP constraints. GAP constraints are linear constraints of
the form: x = y, x ≤ y, or x + k < y, where x and y are variables and k is a positive
constant.

The method of [8] is generalized into an analysis framework in [4,7] by using a con-
strained (multiset) rewriting system on words over an infinite alphabet. In this frame-
work, each configuration is composed from a label over a finite set of symbols and a
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vector of data in a potentially infinite domain. The constraints are expressed in a logic
that is an extension of a monadic first order theory of the natural ordering on positive in-
tegers (corresponding to positions on the word). This logic is also parameterized with a
first order theory on the considered data domain such as Presburger arithmetics. In [4,7]
the authors present decidability results for satisfiability of a particular fragment of this
logic. They also prove that this fragment is closed under the computations of post- and
pre-images. This result together with the decidability of the satisfiability problem can
be used for deciding whether a given assertion is an inductive invariant of a system.

In this paper, we present an alternative framework to the multiset rewriting frame-
work of [4,7]. In our framework, we delegate the reasoning about constraints to Abstract
Interpretation. The advantage is two-fold. First, our technique can use any constraints
for which there are efficient abstract domains available. Second, the termination of the
analysis is guaranteed by combining the widening operator of the abstract domain with
a new approximation operator.

Many of the techniques above are based on counter abstraction (e.g. [12,23]). The
key idea of this abstraction is to keep track only of the upper bound on the number
of processes that satisfy a certain property. For example, the number of processes in
the critical section. To ensure that the abstract system is finite-state, the work of [23]
restricts the value of counters to either 0, 1 or infinity. In [12], counter abstraction and
predicate abstraction are combined together to achieve more flexibility. However, the
system model is more restrictive than ours. Our abstract domain PD can be seen as a
variant of counter abstraction that maintains the lower bound on the number of pro-
cesses satisfying a certain condition.

In contrast to symbolic methods for finite collections of processes with local integer
variables [9], our abstract domains are defined over an unbounded collection of variables.
The number of variables during the backward-search is not bounded a priori. This al-
lows us to reason about systems with global conditions over any number of processes.

Outline of the paper. The rest of the paper is organized as follows. Syntax and semantics
of parameterized systems are defined in Sec. 2. The abstract domain for parameterized
systems is introduced in Sec. 3, and is followed by the backward-reachability algorithm
in Sec. 4. We discuss techniques to ensure termination of our algorithm and illustrate
our algorithm on Lamport’s bakery protocol in Sec. 5, followed by concluding remarks
in Sec. 6.

2 Parameterized Systems

We describe the system model used in the rest of the paper.

Syntax. A parameterized system P is a triple (Q, V, T ), where Q is a finite set of
control locations, V is a finite set of variables, and T is a finite set of guarded commands
(or rules). Each τ ∈ T is of the form:

τ : q
g→ q′ (guarded command)

where q, q′ ∈ Q, and g is a guard. We allow for three types of guards: local, universal
global, and existential global that are defined below.
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τ1 : q1
g1→ q2, g1 : (self.x′ = self.x + 1) ∧ (self.y′ = self.y)

τ2 : q1
g2→ q3, g2 : ∀other �= self : (other.pc = q3) ∧ (self.x′ = self.x) ∧

(self.y′ = self.y − 2) ∧ (other.x > 0)

τ3 : q3
g3→ q1, g3 : ∃other �= self : (other.pc = q3) ∧ (self.x′ = self.x) ∧

(self.y′ = self.y) ∧ (other.y − other.x > 2) ∧
(other.x > 1)

Fig. 1. An example of a parameterized system P1 = ({q1, q2, q3}, {x, y}, {τ1, τ2, τ3})

We write V ′ for the set {x′ | x ∈ V }, and self.V and other.V for the set
{self.x | x ∈ V } and {other.x | x ∈ V }, respectively. A local guard is an expression
on self.(V ∪V ′) constraining current and next local states of a single process. The uni-
versal and existential global guards are, respectively, expressions of the following form:

∀other �= self : (other.pc = qo) ∧ θ ∃other �= self : (other.pc = qo) ∧ θ

where qo is a control location in Q, other.pc is a special variable, and θ is an expression
over self.(V ∪ V ′) ∪ other.V variables. Intuitively, commands with local guards ex-
press how a process behaves independently of other processes in the system, commands
with global guards allow a process to reference variables and control locations of the
other processes in either universal or existential form. These three types of guarded
commands are sufficient to express a wide variety of parameterized systems [1].

An example of a parameterized system where each process manipulates integer vari-
ables is shown in Fig. 1. It consists of three commands: τ1 with a local guard g1, τ2
with a universal guard g2, and τ3 with an existential guard g3. Informally, a process
executing τ1 changes its control location from q1 to q2, increments local variable x, and
does not change local variable y. Similarly, a process executing τ2 goes from q1 to q3
but only if all other currently executing processes are in q3 and the value of their copies
of the variable x are positive. Furthermore, execution of τ2 decrements the y variable
of the current process by 2. Finally, a process executing τ3 changes its control location
from q3 to q1 but only if there exists another process that is at q3 and whose variable x
is greater than 1 and the difference between variables y and x of that process is greater
than 2. During this transition, variables x and y of the executing process do not change.

We formalize the semantics of parameterized systems using transition systems.

Semantics. A process state is a pair (q, v), where q ∈ Q and v is a valuation assigning
values to variables in V . We often treat a process state u = (q, v) as a valuation of
variables V ∪ {pc} such that u(pc) = q, and u(y) = v(y) for all y ∈ V . An n-process
configuration is a tuple 〈u1, . . . , un〉, where each ui is a process state. We refer to the
first (left-most) process in a configuration as P1, to the second as P2, etc, and refer to
the number of the process as a process id (PID). So PID of P1 is 1, PID of P2 is 2, etc.
For two configurations c1 = 〈u1, . . . , un〉 and c2 = 〈w1, . . . , wm〉, we use c1 · c2 to
denote their concatenation 〈u1, . . . , un, w1, . . . , wm〉.
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For an expression θ, we write θ[x ← y] for the result of substituting y for x in θ.
A valuation σ is a model of an expression θ over V , written σ |= θ, if θ is satisfied
by σ, i.e., θ[x ← σ(x) | x ∈ X ] is valid. For example, let σ = {x �→ 5, y �→ 10},
then σ |= (x < y), and σ �|= (x + y = 10). For a triple of valuations σc, σn, and σo

over V , we write (σc, σn, σo) for a valuation σ over self.V ∪ self.V ′ ∪ other.V
defined as σ(self.y) � σc(y), σ(self.y′) � σn(y), and σ(other.y) � σo(y). We
write (σc, σn) for short when σo is irrelevant.

Let n be a natural number and P = (Q, V, T ) a parameterized system. An n-process
instance of P is a transition system Tn(P) = (Cn, Δn), where Cn is the set of all n-
process configurations, and Δn ⊆ Cn ×Cn is a transition relation. Intuitively, a pair of
configurations c and c′ are in Δn if c′ is reachable from c via an execution of a guarded
command by a single process. For each τ ∈ T of the form q

g→ q′, let Δτ
n be defined

such that (c, c′) ∈ Δτ
n iff c = c1 · 〈u〉 · c2, c′ = c1 · 〈u′〉 · c2, and the following holds:

– g is a local guard and (u, u′) |= g, or
– g is a universal global guard and ∀uo ∈ (c1 · c2) : (u, u′, uo) |= g, or
– g is an existential global guard and ∃uo ∈ (c1 · c2) : (u, u′, uo) |= g.

Then, Δn �
⋃

τ∈T Δτ
n.

For example, consider the parameterized system P1 given in Fig. 1. Let c1 =
〈(q1, (x �→ 4, y �→ 6))〉 and c2 = 〈(q2, (x �→ 5, y �→ 6))〉 be 1-process configura-
tions. Then, (c1, c2) ∈ Δτ1

1 . Let c3 = 〈(q3, (x �→ 4, y �→ 5)), (q3, (x �→ 2, y �→ 7))〉
and c4 = 〈(q1, (x �→ 4, y �→ 5)), (q3, (x �→ 2, y �→ 7))〉 be 2-process configurations.
Then, (c3, c4) ∈ Δτ3

2 .

In this paper, we work with a single transition system instead of many instances. We
use T (P) � (C, Δ), where C �

⋃
n∈� Cn, and Δ �

⋃
n∈�Δn. Note that T (P)

contains all n-instantiations of P as sub-systems.

Reachability Problem. The reachability problem of parameterized systems is: given
a set of initial states I ⊆ C, and a set of error states E ⊆ C, decide whether there
exist two configurations ci ∈ I and ce ∈ E such that there is a path from ci to ce in T .
This formulation is equivalent to a more common one of deciding whether there exists
an n ∈ �, such that an error configuration is reachable from an initial configuration in
Tn(P). It is well-known that the verification of any safety property can be reduced to a
reachability problem.

A backward-reachability-based algorithm is: given a set of error configurations E,
compute an over-approximation of the set of all configurations that can reach E, de-
noted by R, then, decide whether the intersection of I and R is empty. In the rest of the
paper, we only focus on computing R. All of the computation of our algorithm is done
using a specialized abstract domain that we describe in the next section.

3 Abstract Domains for Parameterized Systems

We give a brief overview of numeric abstract domains and introduce our new domains
for representing configurations of parameterized systems.

Abstract Domains. We provide a brief overview of the basics of Abstract Interpreta-
tion [13]. For the purpose of this paper, an abstract domain [13] A is a collection of



62 N. Ghafari, A. Gurfinkel, and R. Trefler

elements equipped with a concretization function γA that maps each element of A to a
set of concrete elements. We assume that A is equipped with two computable functions:
an abstract ordering 
A: A × A → {true, false}, and a join �A : A × A → A that
over-approximate subset ordering and union, respectively:

a �A b⇒ γA(a) ⊆ γA(b) a 
A b = c ⇒ (γA(a) ∪ γA(b)) ⊆ γ(c) (soundness)

A well-known class of numerical abstract domains captures arithmetic (typically lin-
ear) relations between variables in a concrete domain. We use octagon [22] as an exam-
ple of a numeric domain. For a set of variables V , elements of the octagon domain [22]
OCT(V ) are conjunctions of constraints of the form (±x ± y ≤ c), where x, y ∈ V
and c is a constant. The concretization γOCT maps a conjunction of constraints to a set
of valuations, e.g., γOCT(x ≤ 3) = {σ ∈ V → � | σ(x) ≤ 3}. Abstract ordering is
implemented with implication, e.g., (x ≤ 3) 
OCT (x ≤ 4) since x ≤ 3 ⇒ x ≤ 4.
Join of two octagons is the smallest octagon containing their union. For example, (x =
3)�OCT (x = 5) is an octagon 3 ≤ x ≤ 5 that can also be written as −x ≤ −3∧x ≤ 5.
We use this domain for all of the examples in the paper. However, our results extend to
other domains such as polyhedra [14] (conjunctions of linear inequalities) and sets of
octagons or polyhedra as well.

Parametric Abstract Domain PD. In this section, we define an abstract domain PD,
called the parametric domain, that captures information about control locations of con-
figurations of a parameterized system. In the rest of this section, we fix a parameterized
system P , and use Q to denote its control locations. Elements of PD are called ab-
stract locations. Each element s ∈ PD is a map Q → 2� such that s[q] is finite for all
q ∈ Q and for q, q′ ∈ Q, if q �= q′ then s[q] ∩ s[q′] = ∅. Intuitively, s[q] represents the
processes that are currently at q. For example, let

s1 = (q1 �→ {1}, q2 �→ {2, 3}) (�)

Intuitively, s1 represents all concrete configurations in which there are at least three
processes: one at q1, and two at q2. Note that the actual numeric PIDs are irrelevant and
are only used for reference as we show below.

Let s be in PD. We write PROC(s) for the set of all PIDs appearing in s. Formally,
PROC(s) �

⋃
q∈Q s[q]. We write |s| for |PROC(s)|, and PC(i, s) for the control location

of process i, i.e., PC(i, s) = q iff i ∈ s[q]. For example, for s1 above, PROC(s1) =
{1, 2, 3}, |s1| = 3, and PC(1, s1) = q1. Without loss of generality, we assume whenever
|s| = m, then PROC(s) = {1, .., m}.

In the rest of this section, we formalize the definitions of concretization, abstract
ordering, and join for this domain. Intuitively, γPD(s) is the set of all configura-
tions that have at least |s[q]| processes at q, for all q ∈ Q. Formally, let c =
〈(q1, v1), . . . , (qn, vn)〉 be a configuration, s ∈ PD such that |s| = m ≤ n, and
h : {1, .., m} → {1, .., n} be an injection. We say that c satisfies s under h, written
c |=h s iff

∀i ∈ PROC(s) : PC(i, s) = qh(i)

We define γPD(s) � {c | ∃h : c |=h s}. It is easy to see that this defini-
tion captures our intuition. For example, let c1 = 〈(q1, v1), (q2, v2), (q1, v3), (q2, v4)〉,
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where {vi} are arbitrary valuations, and h = {1 �→ 1, 2 �→ 2, 3 �→ 4}. Then, c1 |=h s1;
thus, c1 ∈ γPD(s1).

For two abstract locations s and t, if for all q ∈ Q, |t[q]| ≤ |s[q]|, then t approximates
more concrete configurations. We define the ordering 
PD as:

s �PD t ⇔ (∀q ∈ Q : |t[q]| ≤ |s[q]|)
For example, let s2 = (q1 �→ {2}, q2 �→ {1}) and s3 = (q1 �→ {1, 2}, q2 �→ {3}).
Then, s3 
PD s2, but s3 �
PD s1 and s1 �
PD s3. Note that the abstract domain PD
is not a lattice. Thus, the Galois connection framework of AI (Example 4.6 in [13]) is
not applicable. Therefore, we follow a more general framework of Abstract Interpreta-
tion [13] that allows for an abstract domain to be a pre-order.

Let �PD be defined as an element s such that for all q ∈ Q, s[q] = ∅. Then, �PD

is the 
PD-largest element of PD. For s, t ∈ PD, we define the join as s �PD t = t
if s 
PD t and �PD otherwise. At a first glance, our definition of join may look too
imprecise. However, our analysis algorithm (see BACKREACH in Sec. 4) only applies
the join s �PD t under the assumption that s 
PD t.

Theorem 1. The abstract ordering 
PD and the join �PD are sound.

The proof of the theorems can be found in the appendix. In the next section, we show
how to extend the domain PD with a numeric (or even an arbitrary) abstract domain.

Abstract Domain PD(A). We combine the parametric domain PD with an abstract
domain A. The new domain is called PD(A). For clarity of presentation, we assume
that A is a numerical abstract domain. We call elements of PD(A) abstract global
states (AGS). An AGS is of the form (s, ψ), where s ∈ PD and ψ ∈ A. Intuitively,
s captures the control location information and ψ captures numerical constraints on
process variables. For an AGS r = (s, ψ), we write loc(r) for the abstract location s.

In the rest of the section, we fix a parameterized system P = (Q, V, T ). For x ∈ V ,
we write Pi.x to refer to the variable x of process i. We require that for every element
(s, ψ) ∈ PD(A), ψ is an expression over variables in the set {Pi.x | x ∈ V, i ∈
PROC(s)}. For example, an AGS (s1, P1.x < P2.y), where s1 is as defined in (�),
represents all concrete configurations that satisfy s1 and, additionally, have a process
i in state q1 and a process j in state q2 such that Pi.x < Pj .y. Note that i and j are
not necessarily 1 and 2, since the PIDs in the abstract global states are only used for
reference and do not directly correspond to PIDs in concrete configurations.

We now proceed to define γPD(A) formally. For a function h : �→ � and an expres-
sion ψ, we write h(ψ) for the result of permuting all process references in ψ according
to h, i.e., h(ψ) � ψ[Pi ← Ph(i) | i ∈ �]. Let c = 〈u1, . . . , un〉 be a concrete con-
figuration. We write σc for a valuation corresponding to the configuration c, defined as
follows: σc(Pj .x) � uj(x). Let (s, ψ) be an AGS, such that |s| = m and m ≤ n,
and h : {1, .., m} → {1, .., n} be an injection. We say that c satisfies (s, ψ) under h,
written, c |=h (s, ψ) iff c |=h s ∧ σc |= h(ψ). Finally, we define γPD(A)((s, ψ)) � {c |
∃h : c |=h (s, ψ)}.

We now describe the ordering
PD(A) . Let s, t be in PD, such that s 
PD t. We write,
U(s, t) for the set of all functions h such that (a) h is an injection from {1, .., |t|} to
{1, .., |s|}, and (b) for all i ∈ PROC(t) : i ∈ t[q] ⇒ h(i) ∈ s[q]. That is, h maps each
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process of t to an equivalent process of s. For example, let s4 = (q1 �→ {1, 2}), and
s5 = (q1 �→ {1}), then U(s4, s5) = {h1, h2}, where h1 = {1 �→ 1} and h2 = {1 �→
2}. Note that if s 
PD t, then U(s, t) is not empty. The ordering 
PD(A) is defined as:

(s,ψ) �PD(A) (t, ϕ)⇔ s �PD t ∧ ∃h ∈ U(s, t) : ψ �A h(ϕ)

For example, let ψ1 = ((P1.x > 0) ∧ (P2.x > 4)), and ψ2 = (P1.x > 1), then
(s4, ψ1) 
PD(A) (s5, ψ2), since ψ1 implies h2(ψ2) = (P2.x > 1).

The 
PD(A) -largest element is (�PD ,�A), where �A is the 
A-largest element of
A. The join �PD(A) is defined as:

(s,ψ) 
PD(A) (t, ϕ) �
{

(s,ψ 
A h(ϕ)) s �PD t ∧ t �PD s

�PD(A) otherwise

where h is any injection in U(s, t). Intuitively, we use the join �A of A to join the
constraints of the variables, while aligning PIDs between s and t. Note that a different
choice for h affects precision but not soundness of the join. In practice, it is best to pick
an h that leads to the 
PD(A) -least result. As with PD, it is possible to define join more
precisely, but it was not needed for our algorithm.

Theorem 2. The abstract ordering 
PD(A) and the join �PD(A) are sound.

Elements of PD(A) concisely represent (possibly infinite) sets of configurations of a
concrete parameterized system. This domain is the basis of our backward-reachability
algorithm that we present in the next section.

4 Backward-Reachability Analysis

We present the BACKREACH algorithm for over-approximating the backward-
reachability in parameterized systems. We begin with an overview of the algorithm, then
discuss its main step, i.e. computation of the pre-image, and conclude with an example.

Overview. The algorithm BACKREACH is shown in Fig. 2. As inputs, it takes a set
Trans of guarded commands and an AGS e. The output is a set of AGSs that over-
approximates all concrete configurations from which e is reachable.

The algorithm uses the list RL to keep track of all states seen so far, and a work list WL
to keep track of all states to be explored. When WL becomes empty, the algorithm ter-
minates. In each iteration, a state (s, ψ) is chosen from WL (lines 3–4), its predecessors
are computed (lines 6–7), and are added to RL and WL lists if needed (lines 8–19). The
computation of the predecessors is done using the function Pre, which is described in
details below. The algorithm ensures that RL contains only one state for each abstract
location by joining the AGSs with the same abstract locations (line 17).

In the rest of this section, we describe the implementation of the pre-image computa-
tion (line 7 of BACKREACH algorithm). First, we describe the operation for the domain
PD, and then extend it to PD(A).

Pre-Image for PD. Let s be an element of PD, τ : q
g→ q′ a guarded command, and

i a PID. The result of pre-image operation PrePD(s, τ, i) is a set B of elements of PD
that over-approximates all states from which a state in γ(s) is reachable by process i
executing τ . There are three cases, based on the type of the guard g.
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1: Set of AGS BACKREACH (Set Trans, AGS e)

2: WL← {e}, RL← {e}
3: forall (s, ψ) ∈ WL do
4: WL← WL \ {(s, ψ)}
5: P ← ∅
6: forall {τ ∈ Trans, i ∈ PROC(s) | τ = (q g→ q′) and i ∈ s[q′]} do
7: P ← P ∪ Pre((s,ψ), τ, i)
8: forall r ∈ P do
9: skip← false, saved← null

10: forall u ∈ RL do
11: if r �PD(A) u then
12: skip← true, break
13: if loc(r) = loc(u) then
14: saved← u
15: if skip = false then
16: if saved �= null then
17: RL← (RL\{saved})∪{saved
PD(A) r}, WL← WL∪{saved
PD(A) r}
18: else
19: RL← RL ∪ {r}, WL← WL ∪ {r}
20: return RL

Fig. 2. The BACKREACH algorithm

Case 1. g is a local guard. If s is an abstract location obtained by process Pi execut-
ing τ , then, Pi is in state q′ in s. Furthermore, Pi must have been in state q before
executing τ . To formalize this, we define a helper function MOVEPROC(s, i, q1, q2)
that moves process i in s from location q1 to location q2: MOVEPROC(s, i, q1, q2) �
t, where t[q1] = s[q1] \ {i}, t[q2] = s[q2] ∪ {i}, and t[q] = s[q] otherwise. Then,

PrePD(s, τ, i) �
{
{MOVEPROC(s, i, q′, q)} if i ∈ s[q′]
∅ otherwise.

For example, let s1 = (q1 �→ {1}, q2 �→ {2, 3}), and τ = q1
true→ q2. Then,

PrePD(s1, τ, 1) = ∅, and PrePD(s1, τ, 2) = (q1 �→ {1, 2}, q2 �→ {3}).
Case 2. g is a universal global guard: ∀other �= self : (other.pc = qo) ∧

θ. Then, the pre-image computation is similar to Case 1 except that all pro-
cesses other than i must be in control location qo in s. Thus, PrePD(s, τ, i) �
{MOVEPROC(s, i, q′, q)}, if i ∈ s[q′] and ∀j ∈ PROC(s)\ {i} : PC(s, j) = qo, and
∅ otherwise.

Case 3. g is an existential global guard: ∃other �= self : (other.pc = qo)∧θ. Then,
τ can only be executed from an abstract location that has a process different from i
at location qo. The computation of PrePD is partitioned based on the choice of that
other process. The other process can be either a process in PROC(s), or a new
process with PID (|s| + 1). Let

PrePD(s, τ, i) �
⋃

j∈s[qo]\{i}
OPrePD(s, τ, i, j) ∪ OPrePD(s, τ, i, |s|+ 1)
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where OPrePD(s, τ, i, j) is the pre-image under the assumption that Pj is the other
process. We define another helper function called MOVEADDPROC(s, i, q1, q2, j,
q3) that in addition to moving process i from q1 to q2 adds a new process j to
q3: MOVEADDPROC (s, i, q1, q2, j, q3) � t, where t[q1] = s[q1] \ {i}, t[q2] =
s[q2] ∪ {i}, t[q3] = s[q3] ∪ {j}, and t[q] = s[q] otherwise. Then,

OPrePD(s, τ, i, j) �

⎧
⎪⎨

⎪⎩

{MOVEPROC(s, i, q′, q)} if j ∈ s[qo] \ {i}
{MOVEADDPROC(s, i, q′, q, j, qo)} if j = |s|+ 1
∅ otherwise.

For example, let τ1 = q1
g1→ q2 and g1 : ∃other �= self : (other.pc = q2) ∧

θ. Then, PrePD(s1, τ1, 2) is the union of OPrePD(s, τ, 2, 3) and OPrePD(s, τ, 2, 4)
where OPrePD(s, τ, 2, 3) = (q1 �→ {1, 2}, q2 �→ {3}) and OPrePD(s, τ, 2, 4) =
(q1 �→ {1, 2}, q2 �→ {3, 4}).

Theorem 3. The pre-image operation of PD is sound.

Pre-Image for PD(A). We assume that the domain A has a pre-image operation
PreA(ψ, R) that takes an element of the domain ψ ∈ A, and a relation R described
by an expression over primed and unprimed variables. It returns an abstract element
that over-approximates the pre-image of γA(ψ) over R. Many numeric domains satisfy
this assumption. For example, in OCT, PreOCT(x ≥ 1, x′ = x + 1) is x ≥ 0.

Let (s, ψ) be an element of PD(A) and τ : q
g→ q′ a guarded command. The pre-

image operation in PD(A) is defined using the following templates. If g is either local
or universal, then

PrePD(A)((s, ψ), τ, i) � PrePD(s, τ, i)× PreA(ψ, Ri)

and if g is existential then PrePD(A)((s, ψ), τ, i) is defined similar to PrePD where

OPrePD(A)((s,ψ), τ, i, j) � OPrePD(s, τ, i, j) × PreA(ψ,Ri,j)

where i, j are PIDs, and Ri, Ri,j are relations defined based on g as described below.

Case 1. g is a local guard. Assume g = θ, where θ is an expression over self.(V ∪V ′).
Let Θi and Γi be defined as follows:

Θi � θ[self← Pi] Γi �
∧

j∈(PROC(s)\{i})

∧

x∈V

Pj .x
′ = Pj .x

Then, Ri � Θi ∧ Γi. Intuitively, Θi instantiates the guard to process i, and Γi

ensures that the variables of processes other than i are not affected. For example,
let (s1, ψ1) be an AGS where s1 is as defined in (�) and ψ1 = ((P1.x > 0) ∧
(P2.x > 1) ∧ (P3.x > 2)). Let τ1 = q1

g1→ q2 and g1 : x′ = x + 1. Then,
PrePD(A)((s1, ψ1), τ, 2) = ((q1 �→ {1, 2}, q2 �→ {3}), ((P1.x > 0) ∧ (P2.x >
0) ∧ (P3.x > 2)) since process P2 is the self process.

Case 2. g is a universal global guard: ∀other �= self : (other.pc = qo)∧ θ, where θ
is an expression over self.(V ∪ V ′) ∪ other.V variables. We need to instantiate
θ with two PIDs: one for self, and one for other. Let Θi,j be defined as:
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Table 1. An example of a computation of BACKREACH

Name Location Constraints

1 (q2 �→ {1}) (P1.x > 1) ∧ (P1.y > 3)
2 (q1 �→ {1}) (P1.x > 0) ∧ (P1.y > 3)
3 (q3 �→ {1, 2}) (P1.x > 0) ∧ (P1.y > 3) ∧ (P2.y − P2.x > 2) ∧ (P2.x > 1)
4 (q1 �→ {1}, q3 �→ {2}) (P1.x > 0) ∧ (P1.y > 5) ∧ (P2.y − P2.x > 2) ∧ (P2.x > 1)
5 (q1 �→ {2}, q3 �→ {1}) (P1.x > 0) ∧ (P1.y > 3) ∧ (P2.y − P2.x > 4) ∧ (P2.x > 1)

Θi,j � θ[self← Pi, other← Pj ]

Then, Ri �
∧

j∈(PROC(s)\{i}) Θi,j ∧ Γi. Intuitively, Ri ensures that all processes
other than i satisfy the global guard but only values of process i are affected during
the transition.

Case 3. g is an existential guard: ∃other �= self : (other.pc = qo) ∧ θ, where
θ is again an expression over self.(V ∪ V ′) ∪ other.V variables. However, in
this case, the pre-image operator provides a PID j to instantiate the other process.
Thus, Ri,j is defined as Ri,j � Θi,j ∧ Γi.

Theorem 4. The pre-image operation of PD(A) is sound.

An Example. In this section, we illustrate a run of the BACKREACH algorithm on an
example using abstract domain PD(OCT). We use the parameterized system shown in
Fig. 1, and let e be ((q2 �→ {1}), ((P1.x > 1) ∧ (P1.y > 3))).

We present the AGSs computed by the algorithm in Table 1. Each row in the table
represents a single AGS (s, ψ) where the first column is a numeric reference, the second
is the abstract location l, and the third is the octagon constraint ψ. Row 1 of the table
corresponds to e defined above. We refer to the rows of Table 1 by numeric references.

In the first iteration, the algorithm computes Pre(e, τ1, 1) that results in the AGS
(s2, ψ2) shown in row 2. In the second iteration, the algorithm computes (s3, ψ3) =
Pre((s2, ψ2), τ3, 1) shown in row 3. In the third iteration, τ2 is enabled twice: once
for process P1, and once for process P2. Row 4 shows (s4, ψ4), the result of pre-
image of τ2 with respect to process P1, i.e., Pre((s3, ψ3), τ2, 1). This state is sub-
sumed by (s2, ψ2) since s4 
PD s2 and ψ4 ⇒ ψ2. Thus, it is not added to the list
RL. Row 5 shows (s5, ψ5), the result of pre-image of τ2 with respect to process P2, i.e.,
Pre((s3, ψ3), τ2, 2). This state is subsumed by (s2, ψ2) as well. The reason is slightly
more complicated. First, s5 
PD s2. Second, the process P2 of s5 corresponds to the
process P1 of s2 and ψ5 ⇒ ψ2[P1 ← P2]. Thus, this AGS is not added to the list RL.

At this point, the work list WL becomes empty and the algorithm terminates. Thus,
the RL contains only the AGSs shown in the first three rows of Table 1.

BACKREACH is sound: if it terminates, it always computes the correct result.

Theorem 5. Let P = (Q, V, T ) be a parameterized system and e be an abstract global
state. If BACKREACH(T, e) terminates, it returns an over-approximation of the set of
backward-reachable states from γPD(A) (e).

BACKREACH is incomplete and may run forever. In the next section, we show how
sound termination can be enforced.
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5 Enforcing Convergence

There are two reasons for a possible divergence of BACKREACH. First, the numeric
abstract domain A may be infinite (like octagons or polyhedra), thus BACKREACH may
get stuck in an infinite numeric computation. Second, successive applications of pre-
image to a transition with an existential guard may introduce unbounded numbers of
processes. Here, we illustrate divergence of the BACKREACH algorithm through a set
of examples and show how to enforce termination.

Numeric Divergence. We begin with an example that illustrates numeric divergence
in the abstract domain PD(OCT). Let P = (Q, V, T ) where Q = {q}, V = {x}, and
T = {τ} where τ is q

g→ q, g : (x ≥ 0) ⇒ (x′ = x−1). Let e be ((q �→ {1}), (P1.x =
5)). Consider the execution of BACKREACH(T, e). In the first iteration, the algorithm
computes the state ((q �→ {1}), (P1.x = 6)). It is joined to e at line 17, resulting in

((q �→ {1}), ((P1.x = 5) 
OCT (P1.x = 6))) = ((q �→ {1}), (5 ≤ P1.x ≤ 6))

Similarly, the result of the second iteration is ((q �→ {1}), (5 ≤ P1.x ≤ 7)), etc. Thus,
the BACKREACH(T, e) diverges.

In AI, a common approach to force sound convergence is to use widening instead of
join to combine the reachable states. A widening operator [13], denoted by �A, is an
operator that over-approximates join, i.e., ∀x, y ∈ A : x�A y 
A x�A y; additionally,
for any increasing chain x0 
A x1 
A . . . 
A xn . . . in A, the increasing chain
y0 = x0, . . . , yn+1 = yn �A xn+1, . . . stabilizes after a finite number of terms. Thus,
replacing join with widening forces convergence of any least fixpoint computation.

We extend the widening operator of A to PD(A) in the following way. Given two
abstract global states (s, ψ) and (t, ϕ), then

(s, ψ)�PD(A) (t, ϕ) �
{

(s, ψ�A h(ϕ)) if s �PD t ∧ t �PD s

�PD(A) otherwise.

Theorem 6. The operator �PD(A) is a widening on PD(A).

In order to use this widening operator in our algorithm, we replace saved �PD(A) r
with saved�PD(A) (saved �PD(A) r) at line 17. We refer to the resulting algorithm as
BACKREACH with widening.

Consider the previous example. With widening, the result of the first iteration is
computed as follows:

((q �→ {1}), (P1.x = 5))�PD(OCT) ((q �→ {1}), (5 ≤ P1.x ≤ 6))
= ((q �→ {1}), (P1.x = 5)�OCT (5 ≤ P1.x ≤ 6))
= ((q �→ {1}), (5 ≤ P1.x))

The algorithm converges after a single iteration. In this case, the result happens to be
the exact set of all reachable states.

Successive applications of pre-image to transitions with only local or universal
guards do not increase the number of processes in the reachable abstract global states.
Therefore, systems with no existential guards may only experience numerical diver-
gence. In such systems adding widening is sufficient to enforce convergence.
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Table 2. An example of a divergent computation of BACKREACH

Name Location Constraints

1 (q2 �→ {1}) (2 ≤ P1.x ≤ 5)
2 (q1 �→ {1}, q2 �→ {2}) (2 ≤ P1.x ≤ 5) ∧ (5 ≤ P2.x ≤ 8)
3 (q1 �→ {1, 2}, q2 �→ {3}) (2 ≤ P1.x ≤ 5) ∧ (5 ≤ P2.x ≤ 8) ∧ (8 ≤ P3.x ≤ 11)
4 (q1 �→ {1, 2, 3}, q2 �→ {4}) (2 ≤ P1.x ≤ 5) ∧ (5 ≤ P2.x ≤ 8) ∧ (8 ≤ P3.x ≤ 11) ∧

(11 ≤ P4.x ≤ 14)

Theorem 7. Let P = (Q, V, T ) be a parameterized system with no existential transi-
tion and e ∈ PD(A). The BACKREACH(T, e) with widening terminates and returns an
over-approximation of the set of backward-reachable configurations from γPD(A) (e).

Parametric Divergence. Consider the following example. Assume the abstract domain
is PD(OCT). Let P = (Q, V, T ) where Q = {q1, q2}, V = {x}, and T = {τ} where

τ : q1
g→ q2 , g : ∃other �= self : (other.pc = q2) ∧ (other.x = self.x− 3)

Let e = ((q2 �→ {1}), (2 ≤ P1.x ≤ 5)) as shown in row 1 of Table 2. The first iter-
ation of BACKREACH(T, e) computes an AGS shown in row 2 of Table 2, the second,
computes the AGS shown in row 3 of Table 2, etc. The algorithm does not terminate –
each iteration adds a new AGS with one more process than in any AGS seen so far.

To mitigate this, we introduce an approximation operator called k-compact, �k,
where k ∈ �. Given an AGS (s, ψ) where |s| > k, �k computes an AGS (t, ϕ)
such that (s, ψ) 
PD(A) (t, ϕ) and |t| = k. The operator k-compact, �k((s, ψ)), is
implemented by: (a) choosing a process, say i, in s, (b) removing i from s, and (c) exis-
tentially projecting away all variables of the form Pi.x from ψ. Note that the choice of
which process to drop only affects the precision and not the soundness of k-compact.

Theorem 8. The approximation operator k-compact is sound.

To incorporate �k in the BACKREACH algorithm, we apply it after the pre-image com-
putation at line 7. This ensures that the number of processes in each AGS never becomes
larger than k.

Consider the previous example. Assume k = 3. Let φ denote the AGS computed in
the third iteration (row 4 of Table 2). Assume �3 drops process P3, then �3(φ) is

((q1 �→ {1, 2}, q2 �→ {3}), ((2 ≤ P1.x ≤ 5) ∧ (5 ≤ P2.x ≤ 8) ∧ (11 ≤ P3.x ≤ 14)))

The algorithm joins this AGS with the AGS computed in the second iteration (row 3 of
Table 2) using widening and obtains

((q1 �→ {1, 2}, q2 �→ {3}), ((2 ≤ P1.x ≤ 5) ∧ (5 ≤ P2.x ≤ 8) ∧ (8 ≤ P3.x)))

The algorithm terminates with an over-approximation of the set of reachable states.

Theorem 9. Let P = (Q, V, T ) be a parameterized system and e ∈ PD(A). The
BACKREACH(T, e) algorithm with widening and k-compact operator always termi-
nates and returns an over-approximation of the set of backward-reachable configura-
tions from γPD(A) (e).
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τ1 : idle
g1→ choose , g1 : ∀other �= self : (other.pc �= choose) ∧ (next′ = next + 1)

τ2 : choose
g2→ wait , g2 : ∀other �= self : (other.pc �= choose) ∧ (self.tick′ = next)

τ3 : wait
g3→ pause , g3 : (self.d′ = self.tick − serv)

τ4 : pause
g4→ pause , g4 : ((self.d > 0) ⇒ (self.d′ = self.d − 1))

τ5 : pause
g5→ wait , g5 : (self.d ≤ 0) ∧ (self.tick > serv)

τ6 : pause
g6→ use , g6 : (serv = self.tick) ∧ (self.d ≤ 0)

τ7 : use
g7→ idle , g7 : (next ≥ serv + 1) ∧ (serv′ = serv + 1)

Fig. 3. Lamport’s bakery mutual-exclusion protocol with proportional back-off

Lamport’s Bakery Mutual-Exclusion Protocol. Fig. 3 shows a variant of Lamport’s
bakery mutual-exclusion protocol (Alg. 2 in [21]). The algorithm maintains two shared
counters: next and serv, where next is the value of the next available ticket, and serv is
the value of the ticket of the next process to be served. The shared variables belong to
neither self nor other. We extend our framework to accommodate shared variables.

To enter the critical section, a process (i) obtains a ticket by incrementing next (as
shown in τ1), and storing its value in a local variable named tick (τ2), (ii) picks a delay
(τ3) and spins for d steps (τ4) and (τ5), and (iii) enters its critical section when its ticket
is being served (τ6), i.e. its ticket value is equal to serv. When a process leaves the
critical section, it goes back to the idle state and increments serv (τ7).

The guards on τ1 and τ2 ensure that no other process changes next while a process
is acquiring a ticket. A delay between consecutive reads of the serv is added to reduce
network contention due to the polling of the common shared variable serv. In [21], the
authors suggest that a reasonable delay is the number of processes already waiting to
enter their critical section. The protocol ensures FIFO service by serving the processes
in the same order in which they first requested it.

We have implemented the BACKREACH algorithm in JAVA using APRON library
for octagon abstract domain1.We have used this implementation to validate that the
state (idle �→ {1, 2}) is not reachable from (use �→ {1, 2}). The experiments were
performed on a P4 3.2 GHz machine running Linux SUSE 10.3. The computation with
widening converges after 56 iterations and takes 3.475 seconds. The widening is crucial
for handling τ4 that is similar to the example in the beginning of this section.

6 Conclusion

We present a framework based on Abstract Interpretation for the analysis of safety
properties of parameterized systems where each of the individual processes may be
infinite-state. We introduce a new abstract domain for the parameterized systems that
employs a numeric abstract domain. We describe an algorithm that over-approximates
backward-reachability. We combine widening with an extrapolation operator developed
for this abstract domain to enforce sound termination of the algorithm. We illustrate

1 Available at http://www.swen.uwaterloo.ca/˜nghafari/AIPMCTool

http://www.swen.uwaterloo.ca/~nghafari/AIPMCTool
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our technique by automatically verifying the mutual-exclusion property in a variant of
Lamport’s bakery protocol.

Safety verification of parameterized systems using AI-based frameworks introduces
a whole family of new, sound, automatic, and terminating static analyses procedures for
parameterized systems, each procedure varying the chosen abstraction and widening
operator. We have implemented the BACKREACH algorithm and are currently investi-
gating other protocols to which our analysis framework is applicable. One direction for
future research is to consider other possible operators like k-compact that increase the
precision of approximation by choosing the process to drop based on heuristics derived
from the features of the analyzed system.

Acknowledgments. Ghafari and Trefler are supported in part by grants from the Natural
Sciences and Engineering Research Council of Canada.
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Abstract. Collaborative editors consist of a group of users editing a
shared document. The Operational Transformation (OT) approach is
used for supporting optimistic replication in these editors. It allows the
users to concurrently update the shared data and exchange their updates
in any order since the convergence of all replicas, i.e. the fact that all
users view the same data, is ensured in all cases. However, designing algo-
rithms for achieving convergence with the OT approach is a critical and
challenging issue. In this paper, we address the verification of OT algo-
rithms with a model-checking technique. We formally define, using tool
UPPAAL, the behavior and the convergence requirement of the collabo-
rative editors, as well as the abstract behavior of the environment where
these systems are supposed to operate. So, we show how to exploit some
features of such systems and the tool UPPAAL to attenuate the severe
state explosion problem. We have been able to show that if the number
of users exceeds 2 then the convergence property is not satisfied for five
OT algorithms. A counterexample is provided for every algorithm.

1 Introduction

Collaborative editors are a class of distributed systems, where two or more users
(sites) may manipulate simultaneously some objects like texts, images, graphics,
etc. In order to achieve an unconstrained group work, the shared objects are
replicated at the local memory of each participating user. Every operation is
executed locally first and then broadcast for execution at other sites. So, the
operations are applied in different orders at different replicas of the object. This
potentially leads to divergent (or different) replicas, an undesirable situation for
replication-based collaborative editors. Operational Transformation (OT) is an
approach which has been proposed to overcome the divergence problem [4]. This
approach consists of an algorithm which transforms an operation (previously
executed by some other site) according to local concurrent ones in order to
achieve convergence. It has been used in many collaborative editors such as
Joint Emacs [9] (an Emacs collaborative editor), CoWord [14] (a collaborative
version of MicroSoft Word) and CoPowerPoint [14] (a collaborative version of
MicroSoft PowerPoint).

D. Lee et al. (Eds.): FMOODS/FORTE 2009, LNCS 5522, pp. 73–89, 2009.
c© IFIP International Federation for Information Processing 2009
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As established in [12], an OT algorithm consists of two parts: (i) an integration
procedure that is responsible for generating and propagating local operations as
well as executing remote operations; (ii) a transformation function (called IT
function) that determines how an operation is transformed against another. This
function depends on the semantics of the shared document. However, if an OT
algorithm is not correct then the consistency of shared data is not ensured. Thus,
it is critical to verify such an algorithm in order to avoid the loss of data when
broadcasting operations. According to [9], only the transformation function of a
shared data needs to fulfill two properties TP1 and TP2 (explained in Section 2)
in order to ensure convergence. Finding such a function and proving that it
satisfies TP1 and TP2 is not an easy task. This proof is often unmanageably
complicated due to the fact that an OT algorithm has infinitely many states.

In this paper, we investigate the use of a model-checking technique [1] to
verify whether an OT algorithm satisfies the convergence property or not. Model-
checking is a very attractive and automatic verification technique of systems. It
is applied by representing the behavior of a system as a finite state transition
system, specifying properties of interest in a temporal logic and finally exploring
the state transition system to determine whether they hold or not. The main
interesting feature of this technique is the production of counterexamples in
case of unsatisfied properties. Several Model-checkers have been proposed in the
literature. The well known are SPIN 1, UPPAAL2 and NuSMV 3. Among these
Model-checkers, we consider here the tool UPPAAL.

UPPAAL is a tool suite for validation and symbolic model-checking of real-
time systems. It consists of a number of tools including a graphical editor for
system descriptions, a graphical simulator, and a symbolic model-checker. This
choice is motivated by the interesting features of UPPAAL tools [8], especially
the powerful of its description model, its simulator and its symbolic model-
checker. Indeed, its description model is a set of timed automata [1] extended
with binary channels, broadcast channels, C-like types, variables and functions
(functions can be used to abstract some complicated treatments). Its simulator is
useful and convivial as it allows to get and replay, step by step, counterexamples
obtained by its symbolic model-checker. Its model-checker4, based on a forward
on-the-fly method, allows to compute over 5 millions of states.

In this work, we deal with OT algorithms that have the same integration pro-
cedure but differ only by their transformation functions. To verify these algo-
rithms, we formally describe, using UPPAAL, the behavior and the requirements
of the replication-based collaborative editors, as well as the abstract behavior of
the environment where these systems are supposed to operate. Two main models
are studied and proposed for the verification of the convergence properties of OT
algorithms: the concrete model and the symbolic model. The concrete model is
very close to the system implementation in the sense that the selection and the

1 http://spinroot.com
2 http://www.uppaal.com
3 http://nusmv.irst.itc.it
4 The model-checker is used without the graphical interface.
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effective execution of editing operations are performed during the construction
of execution traces. However, this model runs up against a severe explosion of
states (the number of signatures increases exponentially with the number of op-
erations). We have not been able to verify some OT algorithms. The symbolic
model aims to overcome the limitation of the concrete model by delaying the
effective selection and execution of editing operations until the construction of
symbolic execution traces of all sites is completed. Using the symbolic model, we
have been able to show that if the number of sites exceeds 2 then the convergence
property is not satisfied for all OT algorithms considered here. A counterexample
is provided for every algorithm.

The paper starts with a presentation of the OT approach and one of the
known OT algorithms proposed in the literature for synchronizing shared text
documents (Section 2). Section 3 is devoted to the description of the symbolic
model and its model-checking. Related work and conclusion are presented re-
spectively in sections 4 and 5.

2 Operational Transformation Approach

2.1 Background

OT is an optimistic replication technique which allows many users (or sites) to
concurrently update the shared data and next to synchronize their divergent
replicas in order to obtain the same data. The updates of each site are executed
on the local replica immediately without being blocked or delayed, and then
are propagated to other sites to be executed again. Accordingly, every update is
processed in four steps: (i) generation on one site; (ii) broadcast to other sites;
(iii) reception on one site; (iv) execution on one site.

The shared object. We deal with a shared object that admits a linear struc-
ture. To represent this object we use the list abstract data type. A list is a finite
sequence of elements from a data type E . This data type is only a template
and can be instantiated by many other types. For instance, an element may be
regarded as a character, a paragraph, a page, a slide, an XML node, etc. Let L
be the set of lists.

The primitive operations. It is assumed that a list state can only be modified
by the following primitive operations: (i) Ins(p, e) which inserts the element e
at position p; (ii) Del(p) which deletes the element at position p. We assume
that positions are given by natural numbers. The set of operations is defined as
follows:

O = {Ins(p, e)|e ∈ E and p ∈ N} ∪ {Del(p)|p ∈ N} ∪ {Nop}
where Nop is the idle operation that has null effect on the list state. Since the
shared object is replicated, each site will own a local state l that is altered only
by local operations. The initial state, denoted by l0, is the same for all sites. The
function Do : O × L → L, computes the state Do(o, l) resulting from applying
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site 1
“efecte”

site 2
“efecte”

o1 = Ins(1, f)

�������������� o2 = Del(5)
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“effecte” “efect”

Del(5) Ins(1, f)

“effece” “effect”

Fig. 1. Incorrect integration

site 1
“efecte”

site 2
“efecte”

o1 = Ins(1, f)

������������������� o2 = Del(5)

��������

����������“effecte” “efect”

IT (o2, o1) = Del(6) IT (o1, o2) = Ins(1, f)

“effect” “effect”

Fig. 2. Integration with transformation

operation o to state l. We say that o is generated on state l. We denote by
[o1; o2; . . . ; on] an operation sequence. Applying an operation sequence to a list
l is defined as follows: (i) Do([], l) = l, where [] is the empty sequence and;
(ii) Do([o1; o2; . . . ; on], l) = Do(on, Do(. . . , Do(o2, Do(o1, l)))). Two operation
sequences seq1 and seq2 are equivalent, denoted by seq1 ≡ seq2, iff Do(seq1, l) =
Do(seq2, l) for all lists l.

Definition 1. (Causality Relation) Let an operation o1 be generated at site
i and an operation o2 be generated at site j. We say that o2 causally depends on
o1, denoted o1 → o2, iff: (i) i = j and o1 was generated before o2; or, (ii) i �= j
and the execution of o1 at site j has happened before the generation of o2.

Definition 2. (Concurrency Relation) Two operations o1 and o2 are said
to be concurrent, denoted by o1 ‖ o2, iff neither o1 → o2 nor o2 → o1.

As a long established convention in OT-based collaborative editors [4, 12], the
timestamp vectors are used to determine the causality and concurrency relations
between operations. Every timestamp is a vector V of integers with a number
of entries equal to the number of sites. For a site j, each entry V [i] returns the
number of operations generated at site i that have been already executed on site
j. Let o1 and o2 be two operations issued respectively at sites so1 and so2 and
equipped with their respective timestamp vectors Vo1 and Vo2 . The causality and
concurrency relations are detected as follows: (i) o1 → o2 iff Vo1 [so1 ] > Vo2 [so1 ];
(ii) o1 ‖ o2 iff Vo1 [so1 ] ≤ Vo2 [so1 ] and Vo1 [so2 ] ≥ Vo2 [so2 ].

2.2 Transformation Principle

A crucial issue when designing shared objects with a replicated architecture and
arbitrary messages communication between sites is the consistency maintenance
(or convergence) of all replicas.

Example 1. Consider the following group text editor scenario (see Fig.1): there
are two users (on two sites) working on a shared document represented by a
sequence of characters. These characters are addressed from 0 to the end of
the document. Initially, both copies hold the string “ efecte”. User 1 executes
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operation o1 = Ins(1, f ) to insert the character f at position 1. Concurrently,
user 2 performs o2 = Del(5) to delete the character e at position 5. When o1 is
received and executed on site 2, it produces the expected string “effect”. But,
when o2 is received on site 1, it does not take into account that o1 has been
executed before it and it produces the string “effece”. The result at site 1 is
different from the result of site 2 and it apparently violates the intention of o2
since the last character e, which was intended to be deleted, is still present in
the final string. Consequently, we obtain a divergence between sites 1 and 2.
It should be pointed out that even if a serialization protocol [4] was used to
require that all sites execute o1 and o2 in the same order (i.e. a global order on
concurrent operations) to obtain an identical result effece, this identical result
is still inconsistent with the original intention of o2.

To maintain convergence, the OT approach has been proposed by [4]. When User
X gets an operation op that was previously executed by User Y on his replica of
the shared object User X does not necessarily integrate op by executing it “as
is” on his replica. He will rather execute a variant of op, denoted by op′ (called
a transformation of op) that intuitively intends to achieve the same effect as
op. This approach is based on a transformation function IT , called Inclusive
Transformation, that applies to couples of concurrent operations defined on the
same state.

Example 2. In Fig.2, we illustrate the effect of IT on the previous example.
When o2 is received on site 1, o2 needs to be transformed according to o1 as fol-
lows: IT ((Del(5), Ins(1, f )) = Del(6). The deletion position of o2 is incremented
because o1 has inserted a character at position 1, which is before the character
deleted by o2. Next, op′2 is executed on site 1. In the same way, when o1 is re-
ceived on site 2, it is transformed as follows: IT (Ins(1, f ), Del(5)) = Ins(1, f );
o1 remains the same because f is inserted before the deletion position of o2.

2.3 Transformation Function

We present here an IT function known in the literature for synchronizing linear
objects [10] altered by insertion and deletion operations. In this work, the sig-
nature of insert operation is extended by two parameters pre and post. These
parameters store the set of concurrent delete operations. The set pre contains
operations that have deleted a character before the insertion position p. As for
post, it contains operations that have removed a character after p. When an
insert operation is generated the parameters pre and post are empty. They will
be filled during transformation steps.

In Fig.3, we give the four transformation cases for Ins and Del proposed by
Suleiman and al [10]. There is an interesting situation in the first case (Ins
and Ins), called conflict situation, where two concurrent Ins(p1, c1, pre1, post1)
and Ins(p2, c2, pre2, post2) have the same position (i.e. p1 = p2). To resolve this
conflict, three cases are possible:
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1. (pre1 ∩ post2) �= ∅: character c2 is inserted before character c1,
2. (pre1 ∩ post2) �= ∅: character c2 is inserted after character c1,
3. (pre1 ∩ post2) = (post1 ∩ pre2) = ∅: in this case function code(c), which

computes a total order on characters (e.g. lexicographic order), is used to
choose among c1 and c2 the character to be added before the other. Like the
site identifiers, code(c) enables us to tie-break conflict situations [3].

Note that when two concurrent operations insert the same character (e.g.
code(c1) = code(c2)) at the same position, the one is executed and the other
one is ignored by returning the idle operation Nop. In other words, only one
character is kept. The remaining cases of IT are quite simple.

2.4 Transformation Properties

Definition 3. Let seq be a sequence of operations. Transforming any editing
operation o according to seq is denoted by IT ∗(o, seq) and is recursively defined
as follows:

IT ∗(o, []) = o where [] is the empty sequence;
IT ∗(o, [o1; o2; . . . ; on]) = IT ∗(IT (o, o1), [o2; . . . ; on])

We say that o has been concurrently generated according to all operations of seq.

Using an IT function requires us to satisfy two properties [9]. For all o, o1 and
o2 pairwise concurrent operations:

• Condition TP1: [o1 ; IT (o2, o1)] ≡ [o2 ; IT (o1, o2)].
• Condition TP2: IT ∗(o, [o1 ; IT (o2, o1)]) = IT ∗(o, [o2 ; IT (o1, o2)]).

Property TP1 defines a state identity and ensures that if o1 and o2 are con-
current, the effect of executing o1 before o2 is the same as executing o2 before
o1. This property is necessary but not sufficient when the number of concurrent
operations is greater than two. As for TP2, it ensures that transforming o along
equivalent and different operation sequences will give the same operation.

Properties TP1 and TP2 are sufficient to ensure the convergence for any
number of concurrent operations which can be executed in arbitrary order [9].
Accordingly, by these properties, it is not necessary to enforce a global total
order between concurrent operations because data divergence can always be
repaired by operational transformation. However, finding an IT function that
satisfies TP1 and TP2 is considered as a hard task, because this proof is often
unmanageably complicated.

It should be noted that, using our model-checking technique, we detected
subtle flaws in the IT function of Fig.3. These flaws lead to divergence situations
(see Section 3).

2.5 Consistency Criteria

A stable state in an OT-based collaborative editor is achieved when all generated
operations have been performed at all sites. Thus, the following criteria must be
ensured [4, 9, 12]:
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IT(Ins(p1, c1, pre1, post1), Ins(p2, c2, pre2, post2)) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ins(p1, c1, pre1, post1) if p1 < p2

Ins(p1 + 1, c1, pre1, post1) if (p1 > p2) ∨ (p1 = p2 ∧ pre1 ∩ post2 	= ∅)
Ins(p1, c1, pre1, post1) if p1 = p2 ∧ post1 ∩ pre2 	= ∅
Ins(p1, c1, pre1, post1) if (pre1 ∩ post2 = ∅ ∨ pre1 ∩ post2 = ∅) ∧

p1 = p2 ∧ code(c1) > code(c2)
Ins(p1 + 1, c1, pre1, post1) if (pre1 ∩ post2 = ∅ ∨ post1 ∩ pre2 = ∅) ∧

p1 = p2 ∧ code(c1) < code(c2)
Nop() otherwise

IT((Ins(p1, c1, pre1, post1), Del(p2))=

{
Ins(p1, c1, pre1, post1 ∪ {Del(p2)}) if p1 ≤ p2

Ins(p1 − 1, c1, pre1 ∪ {Del(p2)}, post1) otherwise

IT((Del(p1), Ins(p2, c2, pre2, post2)) =

{
Del(p1) if p1 < p2

Del(p1 + 1) otherwise

IT(Del(p1), Del(p2)) =

⎧
⎪⎨

⎪⎩

Del(p1) if p1 < p2

Del(p1 − 1) if p1 > p2

Nop() otherwise

Fig. 3. IT function of Suleiman and al

Definition 4. (Consistency Model) An OT-based collaborative editor is con-
sistent iff it satisfies the following properties:

1. Causality preservation: if o1 → o2 then o1 is executed before o2 at all sites.
2. Convergence: when all sites have performed the same set of updates, the

copies of the shared document are identical.

To preserve the causal dependency between updates, timestamp vectors are used.
The concurrent operations are serialized by using IT function. As this technique
enables concurrent operations to be serialized in any order, the convergence
depends on TP1 and TP2 that IT function must verify.

2.6 Operational Transformation Algorithms

Every site is equipped by an OT algorithm that consists of two main compo-
nents [4, 9]: the integration procedure and the transformation component. The
integration procedure is responsible for receiving, broadcasting and executing
operations. It is rather independent of the type of the shared objects. Several
integration procedures have been proposed in the groupware research area, such
as dOPT [4], adOPTed [9], SOCT2,4 [11, 15] and GOTO [12]. The transforma-
tion component is commonly an IT function which is responsible for merging
two concurrent operations defined on the same state. This function is specific
to the semantics of a shared object. Every site generates operations sequentially
and stores these operations in a stack also called a history (or execution trace).
When a site receives a remote operation o, the integration procedure executes
the following steps:

1. From the local history seq it determines the equivalent sequence seq′ that
is the concatenation of two sequences seqh and seqc where (i) seqh contains
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all operations happened before o (according to Definition 1), and; (ii) seqc

consists of operations that are concurrent to o. For more details, see [3].
2. It calls the transformation component in order to get operation o′ that is

the transformation of o according to seqc (i.e. o′ = IT ∗(o, seqc)).
3. It executes o′ on the current state.
4. It adds o′ to local history seq.

The integration procedure allows history of executed operations to be built on
every site, provided that the causality relation is preserved. At stable state,
history sites are not necessarily identical because the concurrent operations may
be executed in different orders. Nevertheless, these histories must be equivalent
in the sense that they must lead to the same final state. This equivalence is
ensured iff the used IT function satisfies properties TP1 and TP2.

In this work, we deal with OT algorithms that have the same integration
procedure but differ only by their transformation functions. Five IT functions
have been considered (see [3]).

The rest of the paper is devoted to the specification and analysis of OT al-
gorithms, by means of model-checker UPPAAL. We show how to exploit some
features of OT algorithms and the specification language of UPPAAL to attenu-
ate the state explosion problem of the execution environment of such algorithms.

3 Modelling OT Algorithms with UPPAAL

3.1 UPPAAL’s Model

In UPPAAL, a system consists of a collection of processes which can com-
municate via some shared data and synchronize through binary or broadcast
channels [8]. Each process is an automaton extended with finite sets of clocks,
variables (bounded integers), guards and actions. In such automata, locations can
be labelled by clock conditions and edges are annotated with selections, guards,
synchronization signals and updates. Selections bind non-deterministically a
given identifier to a value in a given range (type). The other three labels of
an edge are within the scope of this binding. An edge is enabled in a state if and
only if the guard evaluates to true. The update expression of the edge is evalu-
ated when the edge is fired. The side effect of this expression changes the state of
the system. Edges labelled with complementary synchronization signals over a
common channel must synchronize. Two or more processes synchronize through
channels with a sender/receiver syntax [2]. For a binary channel, a sender can
emit a signal through a given binary channel Syn ( Syn!), if there is another
process (a receiver) ready to receive the signal (Syn?). Both sender and receiver
synchronize on execution of complementary actions Syn! and Syn?. For a broad-
cast channel, a sender can emit a signal through a given broadcast channel Syn
( Syn!), even if there is no process ready to receive the signal (Syn?). When
a sender emits such a signal via a broadcast channel, it is synchronized with
all processes ready to receive the signal. The updates of synchronized edges are
executed starting with the one of the sender followed by those of the receiver(s).
The execution order of updates of receivers complies with their creation orders.
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3.2 Modelling Execution Environment of OT Algorithms

A collaborative editor is composed of two or more sites (users) which communi-
cate via a network and use the principle of multiple copies, to share some object
(a text). Initially, each user has a copy of the shared object. It can afterwards
modify its copy by executing operations generated locally and those received
from other users. When a site executes a local operation, it is broadcast to all
other users. The execution of a non local operation consists of integration and
transformation steps as explained in the previous section (see sub-section 2.6).

Two main models are proposed for the verification of the convergence prop-
erties of OT algorithms: the concrete model and the symbolic model. The main
difference between these models concerns the effective execution of operation sig-
natures. Indeed, in the concrete model, effective execution of editing operations
is performed during the generation of traces (see Fig. 4) while, in the symbolic
model, it is delayed until the construction of symbolic execution traces of all
sites is completed (see Fig 5). In this paper, we focus on the symbolic model.
For further details about the concrete model and the different variants of the
concrete and symbolic models, we refer to [3].

System definition. A collaborative editor is modelled as a set of variables,
functions, processes (one per user) and a broadcast channel. Note that the net-
work is abstracted and not explicitly represented. This is possible by putting
visible (in global variables) all operations generated by different sites and times-
tamp vectors of sites. In this way, there is no need to represent and manage
queues of messages. Behaviors of sites are similar and represented by a type
of process named Site. The only parameter of the process is the site identifier
named pid. With UPPAAL, the definition of the system is given by the following
declarations which mean that the system consists of NbSites sites of type Site:
Sites(const pid t pid) = Site(pid);
system Sites;

Input data and Variables. Variables are of two kinds: those used to store input
data and those used to manage the execution of operations. Note that almost all
variables are defined as global to be accessible by any site (avoiding duplication
of data in the representation of the system state). In addition, this eases the
specification of the convergence property and allows to force the execution, in
one step, some edges of different sites. The system model has the following inputs
and variables:

1. The number of sites (const int NbSites); Each site has its own identifier,
denoted pid for process identifier (pid ∈ [0, NbSites− 1]).

2. The initial text to be shared by users and its alphabet. The text to be shared
by users is supposed to be infinite but the attribute Position of operations
is restricted to the window [0, L − 1] of the text. The length of the window
is set in the constant L (const int L).

3. The number of local operations of each site, given in array Iter[NbSites]
(const int Iter[NbSites], Iter[i] being the number of local operations of
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site i). We also use and set in constant named MaxIter the total number of
operations (const int MaxIter =

∑
i∈[0,NbSites−1]

Iter[i]);

4. The IT function (const int algo).
5. The timestamp vectors of different sites (V [NbSites][NbSites]).
6. Vector Operations[MaxIter] to store the owner and the timestamp vector

of each operation.
7. Vectors Trace[NbSites][MaxIter] to save the symbolic execution traces of

sites (the execution order of operations).
8. Boolean variable Detected to recuperate the truth value of the convergence

property.
9. Vector Signatures[MaxIter] to get back signatures (operator, position,

character) of operations which violate the convergence property.
10. List[2][MaxIter] to save operation signatures as they are exactly executed

in two sites (after integration steps).
11. The broadcast channel Syn.

Behavior of each site. The process behavior of each site is depicted by the
automaton shown in Fig.5. Each user executes symbolically, one by one, all opera-
tions (local and non local ones), on its own copy of the shared text. The symbolic
execution of an operation (local or non local) is represented by the loop on loca-
tion l0 which consists of 3 parts: the selection of a process identifier (k : pid t),
the guard guard(k) and the update SymbolicExecution(k). The guard part ver-
ifies whether a site pid can execute an operation of site k. The update part is
devoted to the symbolic execution of an operation of a site k. The execution
order of operations must, however, respect the causality principle. The causal-
ity principle is ensured by the timestamp vectors of sites V [NbSites][NbSites].
For each pair of sites (i, j), element V [i][j] is the number of operations of site
j executed by site i. V [i][i] is then the number of local operations executed in
site i. Note that V [i][j] is also the rank of the next operation of site j to be
executed by site i. Timestamp vectors are also used to determine whether oper-
ations are concurrent or dependent. Initially, entries of the timestamp vector of
every site i are set to 0. Afterwards, when site i executes an operation of a site
j (j ∈ [0, NbSites−1]), it increments the entry of j in its own timestamp vector
(i.e., V [i][j] + +).

Symbolic execution of a local operation. A local operation can be
executed by a site pid if the number of local operations already executed
by site pid does not yet reach its maximal number of local operations (i.e.
V [pid][pid] < Iter[pid]). In this case, its timestamp vector is set to the
timestamp vector of its site. Its owner and the timestamp vector are stored in
array Operations. Its entry in Operations is stored in Trace[pid]. Its broadcast
to other sites is simulated by incrementing the number of local operations
executed (V [pid][pid] + +).
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l2l1

pid==0
pid!=0 && forall (i:pid_t)  
forall (k:pid_t) 
V[i][k]==Iter[k]
Syn?k:pid_t

k!=pid && guard(k)
Execution(k)

oper: operator, p: position, c: alphabet
V[pid][pid]<Iter[pid] && 
c== oper*c && p < Length
Operations[ns].Owner=pid,
Operations[ns].opr=oper,
Operations[ns].ipos=p,
Operations[ns].x=c,
ns++, Execution(pid)

pid==0 && 
forall (i:pid_t) forall (k:pid_t) 
V[i][k]==Iter[k]
Syn!

Fig. 4. The concrete model

l1l0

pid!=0 && forall (i:pid_t) 
forall (j:pid_t) V[i][j]==Iter[j]

Syn?

k:pid_t
guard(k)

SymbolicExecution(k) pid==0

pid==0 && forall (i:pid_t) 
forall (j:pid_t) V[i][j]==Iter[j]

Syn !

EffectiveExecution()

Fig. 5. The symbolic model

Symbolic execution of non local operations. A site pid can execute an
operation of another site k if there is an operation of k executed by k but not
yet executed by pid (i.e.: V [pid][k] < V [k][k]) and its timestamp vector is less or
equal to the timestamp vector of site pid (i.e.: ∀j ∈ [0, NbSites−1], V [pid][j] >=
Operations[num].V [j], num being the identifier of the operation). Recall that,
the transformation and effective execution of operations (Insert and Delete) are
not performed at this level. They are realized when the construction of all traces
is completed.

Effective execution of operations. When all sites complete the construction
of their respective traces, they are forced to perform synchronously, via the
broadcast channel Syn, their respective edges connecting locations l0 and l1
(synchronization on termination). The update part of edge connecting locations
l0 and l1 of site 0 is devoted to testing all signatures possibilities of operations
and then verifying the convergence property. The test of all these possibilities is
encapsulated in a C-function, called EffectiveExecution which is stopped as
soon as the violation of the convergence property is detected. This property is
violated if there exist two sites which have completed the same set of operations
but their texts are not identical. In this case, signatures of operations and exact
traces of both sites which violate the convergence property are returned in vectors
Signatures and List, and the variable Detected is set to true. The integration
steps (see sub-section 2.6) are treated at this level (i.e., in this function).
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3.3 Verification of the Convergence Property

The convergence property states that whenever two sites complete the execution
of the same set of operations, their resulting texts must be identical. A stable
state of the system is a situation where all sent operations are received and exe-
cuted (there is no operation in transit). A site i is in a stable state if all operations
sent to site i are received and executed by i (i.e. forall(k : pid t) V [i][k] ==
V [k][k]). The convergence property can be rewritten using the notion of stable
state as follows: ”Whenever two sites i and j are in stable state, they have identi-
cal texts”. For the concrete model [3], we use the negation of this property spec-
ified by the following UPPAAL’s CTL formula φ1:

E� (exists(i : pid t) exists(j : pid t)

i! = j && forall(k : pid t) V [i][k] == V [k][k] && V [j][k] == V [k][k])

&& exists(l : int[0, L − 1]) text[i][l]! = text[j][l]

This formula means that there is an execution path leading to some situation
where two sites i and j are in stable states and their copies of text text[i] and
text[j] are different. For the symbolic model, the verification of the convergence
propriety is based on a variable named Detected. This variable is set to true
when the convergence propriety is violated. Therefore, the convergence propriety
is violated iff UPPAAL’s CTL formula φ′

1 : E� Detected is satisfied.
We have tested five IT functions known in the literature for synchronizing

linear objects. Each IT function produces a new instance of OT algorithm, where
only the transformation function changes. These OT algorithms are denoted
respectively: Ellis [4], Ressel [9], Sun [13], Suleiman [10] and Imine [6]. Two
models are used : concrete and symbolic models.

We report in Table 1 the results obtained, for two properties: absence of
deadlocks (φ2 : A[] notdeadlock) and the violation of the convergence property

Table 1. Model-checking the concrete and the symbolic models

Alg. Prop. Val. Expl./Comp./Time Val. Expl./Comp./Time
Ellis 3 3 φ1/φ′

1 true 825112/1838500/121.35 true 1625/1739/0.14
Ellis 3 3 φ2 ? ? true 1837/1837/0.68

Ressel 3 3 φ1/φ′
1 true 833558/1851350/122.76 true 1637/1751/0.25

Ressel 3 3 φ2 ? ? true 1837/1837/1.63
Sun 3 3 φ1/φ′

1 true 836564/1897392/122.33 true 1625/1739/0.14
Sun 3 3 φ2 ? ? true 1837/1837/0.38

Suleiman 3 3 φ1/φ′
1 false 3733688/3733688/365.06 false 1837/1837/0.83

Suleiman 3 3 φ2 ? ? true 1837/1837/2.22
Suleiman 3 4 φ1/φ′

1 ? ? true 18450/19380/2.45
Imine 3 3 φ1/φ′

1 false 3733688/3733688/361.16 false 1837/1837/0.81
Imine 3 3 φ2 ? ? true 1837/1837/2.18
Imine 3 4 φ1/φ′

1 ? ? true 18401/19331/2.45
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(φ1 or φ′
1) defined above, in case of 3 sites (NbSites = 3), 3 or 4 operations

(MaxIter = 3 or MaxIter = 4), and a window of the observed text of length
L = 2 ∗MaxIter. A state q of a model is in deadlock iff there is no edge enabled
in q nor in states reachable from q by time progression. Property φ2 is always
satisfied and allows us to compute the size of the entire state space. Note that
all tests are performed using the version 4.0.6 of UPPAAL 2k on a 3 Gigahertz
Pentium-4 with 1GB of RAM. We give, in column 4, for each algorithm and each
property, the number of explored states, the number of computed states and the
execution time (CPU time in seconds). A question mark indicates a situation
where the verification was aborted due to a lack of memory. We report in Table 2,
the counterexamples obtained for the convergence property and the symbolic
model (each operation oi, for i = 1, 3, is generated by Sitei, o11 and o12 are
generated in this order by Site1). Note that counterexamples obtained for the
concrete and the symbolic models may be different. These results show that the
symbolic model allows a significant gain in both time and space comparatively to
the concrete model. With the symbolic model, we have been able to prove that
the convergence property is not satisfied for five OT algorithms and to provide
counterexamples.

Table 2. Counterexamples obtained for the tested IT functions

Alg. Operations Traces
Ellis o1: Ins(1,0), o2: Ins(1,1), o3: Ins(1,0) Site1: o1; o2; o3 Site3: o3; o2; o1
Ressel o1: Ins(2,0), o2: Ins(1,1), o3: Del(1) Site1: o1; o2; o3 Site3: o3; o2; o1
Sun o1: Ins(1,0), o2: Ins(2,0), o3: Ins(2,1) Site1: o1; o2; o3 Site3: o3; o1; o2
Suleiman o11: Del(1), o12: Ins(1,0), Site2 : o2; o3; o11; o12

o2: Ins(1,0), o3: Ins(2,0) Site3 : o3; o2; o11; o12
Imine o11: Ins(1,0), o12: Ins(2,0), Site1 : o11; o12; o2; o3

o2: Ins(2,0), o3: Del(1) Site3 : o3; o2; o11; o12

For instance, in Fig.6, we report a divergence scenario for OT algorithm based
on transformation function proposed by Suleiman and al [10] (see Fig.3), where
o0, o2 and o3 are pairwise concurrent and o0 → o1.

State space reduction. To reduce the size of the state space to be explored, we
propose some reductions (see [3] for more details) which preserve the convergence
property. The first reduction consists of synchronization of the execution of non
local operations in sites which have finished the execution of their local opera-
tions. This synchronization preserves the convergence property since when a site
completes the execution of all local operations, it does not send any information
to other sites and the execution of non local operations affects only the state of
the site. With this synchronization, intermediate states resulting from different
interleavings of these operations are not accessible. This reduction has been
implemented in the variant models of the concrete and the symbolic models [3].
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site 1
”0000”

site 2
”0000”

site 3
”0000”

o0 = Del(3)

�� ��

o2 = Ins(3, 0, {}, {})

����������������� o3 = Ins(4, 1, {}, {})

		���������������

000 00000 00001

o1 = Ins(3, 0, {}, {})

�� 



o′3 = Ins(5, 1, {}, {}) o′2 = Ins(3, 0, {}, {})

0000 000001 000001

o′0 = Del(4) o′′0 = Del(4)

00001 00001

Nop() Ins(5, 0, {}, {})

00001 000010

Fig. 6. Complete divergence scenario for Suleiman’s algorithm

The second reduction forces to stop the construction of concrete/symbolic traces
as soon as two any sites have completed the construction of their own traces. As
sites have symmetrical behaviors, this reduction does not alter the convergence
property. In the concrete and the symbolic models, edges connecting location l0
to l1 and the broadcast channel Syn, implement this reduction.

Another factor which contributes to the state explosion problem is the times-
tamp vectors of different sites and operations. These vectors are used to ensure
the causality principle. To attenuate this state explosion problem, we offer the
possibility to replace the timestamp vectors by a relation of dependence over
operations. This model allows to test whether an OT algorithm works or not
under some relation of dependence (see [3] for more details).

4 Related Work

To our best knowledge, there exists only one work on analyzing OT algo-
rithms [7]. In this work, the authors proposed a formal framework for modelling
and verifying IT functions with algebraic specifications. For checking the prop-
erties TP1 and TP2, they used a theorem prover based on advanced automated
deduction techniques. For all IT functions considered here, they showed that:
(i) TP1 is only satisfied for Suleiman’s and Imine’s IT functions; (ii) TP2 is
always violated.

For example, consider the IT function proposed by Suleiman et al. [10]
(see Fig.3). A theorem prover-based verification revealed a TP2 violation in this
function [5], as illustrated in Fig.7. As this is related to TP2 property, there are
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site 1 site 2 site 3

o1 = Ins(p, x, {}, {})

�� ��

o2 = Ins(p, x, {}, {Del(p)})

���������������������� o3 = Ins(p, y, {Del(p)}, {})

��																				

o′
3 = Ins(p + 1, y, {Del(p)}, {}) o′

2 = Ins(p, x, {}, {Del(p)})

o′
1 = Nop() o′′

1 = Ins(p + 2, x, {}, {})

Fig. 7. TP2 violation for Suleiman’s algorithm

three concurrent operations (for all positions p and all characters x and y such
that Code(x) < Code(y)):

o1 = Ins(p, x, {}, {}), o2 = Ins(p, x, {}, {Del(p)}) and o3 = Ins(p, y, {Del(p)},
{}) with the transformations o′3 = IT (o3, o2), o′2 = IT (o2, o3), o′1 =
IT ∗(o1, [o2; o′3]) and o′′1 = IT ∗(o1, [o3; o′2]).

However, the theorem prover’s output gives no information about whether
this TP2 violation is reachable or not. Indeed, we do not know how to obtain
o2 and o3 (their pre1 and post2 parameters are not empty respectively) as they
are necessarily the results of transformation against other operations that are
not given by the theorem prover. Using our model-checking-based technique, we
can get a complete and informative scenario when a bug is detected. Indeed,
the output contains all necessary operations and the step-by-step execution that
lead to divergence situation. Thus, by model-checking verification, the existence
of the TP2 violation depicted in Fig.7 is proved (or certified) by the complete
scenario given in Table 2.

As they are the basis cases of the convergence property, TP1 and TP2 are
sufficient to ensure the data convergence for any number of concurrent operations
which can be performed in any order. Thus, a theorem prover-based approach
remains better for proving that some IT function satisfies TP1 and TP2. But it is
partially automatable and, in the most cases, less informative when divergence
bugs are detected. A model-checking-based approach is fully automatable for
finding divergence scenarios. Nevertheless, it is more limited as the convergence
property can be exhaustively evaluated on only a specific finite state space.

5 Conclusion

We proposed here a model-checking technique, based on formalisms used in
tool UPPAAL, to model the behavior of replication-based collaborative editors.



88 H. Boucheneb and A. Imine

To cope with the severe state explosion problem of such systems, we exploited
their features and those of tool UPPAAL to establish and apply some abstrac-
tions and reductions to the model. The verification has been performed with
the model-checking module of UPPAAL. An interesting and useful feature of
this module is to provide, in case of failure of the tested property, a trace of
an execution for which the property is not satisfied. We used this feature to
give counterexamples for five OT algorithms, based on different transformation
functions proposed in the literature to ensure the convergence property. Using
our model-checking technique we found an upper bound for ensuring the data
convergence in such systems. Indeed, when the number of sites exceeds 2 the
convergence property is not achieved for all OT algorithms considered here. We
think that our work is a forward step towards an efficient framework for formally
developing shared objects based on the OT approach.

However, the serious drawback of the model-checking is the state explosion.
So, in future work, we plan to investigate the following directions: (i) It is in-
teresting to find, under which conditions, the model-checking verification prob-
lem can be reduced to a finite-state problem. (ii) Combining theorem-prover
and model-checking approaches in order to attenuate the severe state explosion
problem.
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Abstract. This work is motivated by and arose from the parametric
verification of communication protocols over unbounded channels, where
the channel capacity is the parameter. Verification required the use of
finite state automata (FSA) reduction, including ε-removal, for a specific
infinite family of FSA. This paper generalises this work by introducing
Recursive Parametric FSA (RP-FSA), an infinite family of FSA that
can be represented recursively in a single parameter. Further, the pa-
per states and proves a necessary and sufficient condition regarding the
transformation of a RP-FSA to its language equivalent ε-removed family
of FSA that is also a RP-FSA in the same parameter. This condition
also guarantees a further structural property regarding the RP-FSA and
its ε-removed family.

Keywords: Parametric Automata, Protocol Verification, Automata
Reduction, Language Equivalence.

1 Introduction

The Capability Exchange Signalling (CES) protocol [9] is a multimedia control
protocol that allows a communication party to inform its peer of its multimedia
(e.g. audio and/or video) transmission and reception capabilities. To verify the
CES protocol against its service specification, we need to obtain the CES service
language: the set of allowable sequences of CES service primitives (i.e. user
observable events). Our approach [4] is to extract service languages from state
spaces of Coloured Petri Net (CPN) [10] models of service specifications by using
automata reduction [2]. The CES service CPN has transitions that model CES
service primitives and a transition that models message loss, an internal event
that is not to be included in the CES service language (but is needed to capture
sequences of primitives). We derive a Finite State Automaton (FSA) from the
state space [4] by designating initial and final states and mapping the CPN
transition modelling message loss to an ε-transition. Then we use FSA reduction
to remove ε-transitions and non-determinism as steps towards proving language
equivalence or inclusion (with respect to the protocol).

Our CPN model [11] of the CES service is parameterised by a positive integer
(channel capacity), so it has an infinite family of state spaces. To verify the
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CES protocol against its service for any value of the parameter, we firstly obtain
symbolic representations for the state spaces and the associated FSAs. In [11]
we exploit regularities in the state spaces to obtain a recursive representation.
We then derive an infinite family of FSAs from the state spaces. In [12,14] we
proved that the language equivalent ε-removed (LE-ER) family of automata can
also be represented recursively. Furthermore, after removing non-determinism,
we obtain a language equivalent recursively represented family of automata that
represents the CES service language for arbitrary capacity [13]. These results
lead us to the following generalisation: if a parametric FSA can be represented
recursively, under what conditions can its LE-ER (or determinised) family also
be represented recursively? In this paper, we determine a sufficient condition for
a recursively represented parametric FSA to retain its recursive representation
under ε-removal. We also determine a necessary condition to satisfy another
structural property regarding these families of automata.

We firstly define a (first order) Recursive Parametric FSA (RP-FSA) in terms
of a system parameter l ∈ N+ (the positive integers). Intuitively, FSAl com-
prises a base component, FSAl−1, plus another component, ADDl. We then
consider the LE-ER family derived from a RP-FSA, which we denote FSAER

l .
We identify and prove the necessary and sufficient condition for a) FSAER

l to be
a RP-FSA in l and b) the base component of FSAER

l to be identical to FSAER

l−1.
The result contributes to the development of automata theory which we believe
will be applicable to the verification of a class of parametric systems, as already
demonstrated for the CES service [12,13,14].

There has been work on Recursive State Machines [1] and Unrestricted Hierar-
chical State Machines [3] where nodes correspond to ordinary states or to recursive
invocations of other state machines. In contrast, we develop recursive representa-
tions of an infinite family of FSAs in an integer parameter and examine its related
LE-ER family. We are not aware of any other work in this area.

The rest of the paper is organised as follows. Section 2 defines a RP-FSA.
A theorem regarding transforming a RP-FSA to its LE-ER family is given in
Section 3 with its proof in Section 4. Section 5 summarises the paper and suggests
future work.

2 Definition of a Recursive Parametric FSA

Our work on the CES service has motivated us to define an infinite family of
FSAs over a parameter l ∈ N+. Members of the family are related in that the
FSA for l includes the FSA for (l−1), and the alphabet and initial state are the
same for all members of the family.

Definition 1. A Recursive Parametric FSA is an infinite family of FSAs in a
system parameter l ∈ N+, where its lth member, FSAl = (Vl, Σ, Al, v0, Fl), is
given by

– Vl is a finite set of states or nodes that depends on l,
– Σ is a finite set, known as the alphabet,
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– Al⊆Vl×(Σ∪{ε})×Vl, is the transition relation, where ε is the empty string,
– v0 ∈ Vl is the initial state, and every state in Vl is accessible from v0,
– Fl is the set of final states.

Given FSA1 = (V1, Σ, A1, v0, F1), the family, FSAl (for l ≥ 2) is obtained
recursively as follows.

Vl = Vl−1 ∪ V add
l (1)

Al = Al−1 ∪ Aadd
l (2)

Fl−1 ⊆ Fl (3)
where

Vl−1 ∩ V add
l = ∅ (4)

Aadd
l ⊆ (Vl−1 × (Σ ∪ {ε})× V add

l ) ∪ (V add
l × (Σ ∪ {ε})× Vl) (5)

An example of a RP-FSA is the parametric FSA, FSACESl
, derived from the state

space of our parameterised CES service CPN [12,14]. Fig. 1 shows FSACES3 . The
subgraph that ignores the shaded nodes (13 to 20) and their associated arcs is
FSACES1 . It has 12 nodes and 33 arcs, including 4 dashed arcs (ε-transitions).
The initial state and the only final state of FSACES1 are both node 1. The al-
phabet, Σ = {Treq, T ind, T res, T cnf, Rreq, Rind, RindU, RindP}, is the set of
(abbreviated) names of the CES service primitives. From Fig. 1, by ignoring the
darkly shaded nodes (17 to 20) and their associated arcs, we obtain a subgraph
that is FSACES2 . We see that FSACES2 can be constructed from FSACES1 by
adding the 4 grey nodes (13 to 16) and the 16 grey arcs. By denoting vadd1

2 =
13, vadd2

2 = 14, vadd3
2 = 15 and vadd4

2 = 16, and vadd1
1 = 2, vadd2

1 = 10, vadd3
1 = 4

and vadd4
1 = 12, the 16 additional arcs are given in Table 1 for l = 2. When look-

ing at the whole graph in Fig. 1, FSACES3 can be constructed from FSACES2

by adding 4 nodes (17 to 20) and 16 arcs (Table 1 for l = 3), when denoting
vadd1
3 = 17, vadd2

3 = 18, vadd3
3 = 19 and vadd4

3 = 20.
It has been shown in [12,14] that, for l ≥ 2, FSACESl

can be recursively
constructed in the following way:

Vl = Vl−1 ∪ V add
l

Al = Al−1 ∪ Aadd
l

Fl = Fl−1 = {v0} = {1}
where

V add
l = {vaddi

l | i ∈ {1, . . . , 4}}, Vl−1 ∩ V add
l = ∅

and Aadd
l is given in Table 1, where vadd1

1 = 2, vadd2
1 = 10, vadd3

1 = 4, vadd4
1 = 12

(Fig. 1). From Definition 1, the family FSACESl
(l ∈ N+) is a RP-FSA.

3 RP-FSA and ε-Removal

In this section, we propose the necessary and sufficient condition for the LE-ER
automata family derived from FSAl (l ∈ N+) to be a RP-FSA in l, where its
base component is the LE-ER automaton of FSAl−1. We firstly provide some
definitions related to FSAl, where l ≥ 2.
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Fig. 1. FSACES3

Definition 2. A node v ∈ Vl−1 is an entry node to FSAl−1, iff ∃ (v′, t, v) ∈ Al

where v′ ∈ V add
l . The set of entry nodes of FSAl−1 is denoted by V EN

l−1 .

Definition 3. A node v ∈ Vl−1 is an exit node from FSAl−1, iff ∃ (v, t, v′) ∈
Al where v′ ∈ V add

l . The set of exit nodes of FSAl−1 is denoted by V EX

l−1 .
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Table 1. Aadd
l (l ≥ 2)

Name Arc Name Arc Name Arc

aadd1
l (vadd3

l−1 , T req, vadd1
l ) aadd2

l (vadd4
l−1 , T req, vadd2

l ) aadd3
l (vadd1

l , RindP, vadd3
l )

aadd4
l (vadd1

l , T ind, vadd2
l−1 ) aadd5

l (vadd1
l , ε, vadd1

l−1 ) aadd6
l (vadd2

l , RindP, vadd4
l )

aadd7
l (vadd2

l , ε, vadd2
l−1 ) aadd8

l (vadd2
l , T res, vadd1

l ) aadd9
l (vadd2

l , Rreq, vadd1
l )

aadd10
l (vadd2

l , Rind, vadd1
l ) aadd11

l (vadd3
l , T ind, vadd4

l−1 ) aadd12
l (vadd3

l , ε, vadd3
l−1 )

aadd13
l (vadd4

l , T res, vadd3
l ) aadd14

l (vadd4
l , Rreq, vadd3

l ) aadd15
l (vadd4

l , Rind, vadd3
l )

aadd16
l (vadd4

l , ε, vadd4
l−1 )

FSAl

FSAl-1

ADDl

v12

v11

v10

t3

v6

v7

t2

v9

v5

v4

t1

v13

v1

v2

t2

t1

v3

v8

Fig. 2. An illustration of the definitions related to a RP-FSA

Definition 4. The base component of FSAl is FSAl−1, and the added
component of FSAl is a labelled directed graph, ADDl = (V add

l ∪ V EN

l−1 ∪
V EX

l−1 , Aadd
l ).

Definition 5. A node of FSAl is a candidate node (denoted vC), iff
∃ (v′, t, vC) ∈ Al and t ∈ Σ. We denote the set of candidate nodes of FSAl,
V C

l , which comprises V C
l−1 = {vC | (v, t, vC) ∈ Al−1, t ∈ Σ} and V addC

l =
V C

l \ V C
l−1 = {vC | (v, t, vC) ∈ Aadd

l and (v′, t′, vC) �∈ Al−1, t, t
′ ∈ Σ}.

Definition 6. A finite sequence of transitions of FSAl that starts at node vs
and ends at node ve is a candidate sequence (denoted sC

(vs,ve,t)), iff for n ≥ 1

sC
(vs,ve,t) = vs

ε→ v1
ε→ . . .

ε→ vn
t→ ve (6)

where t ∈ Σ. The set of candidate sequences of FSAl is denoted by SC
l .

Definition 7. A finite sequence of transitions of FSAl that starts at node vs
and ends at node ve is a return sequence (denoted sR

(vs,ve,t)), iff for n ≥ 1,
sR
(vs,ve,t) ∈ SC

l , vs, ve ∈ Vl−1 and ∃ vi ∈ {v1, . . . , vn} such that vi ∈ V add
l . The

set of return sequences of FSAl is denoted by SR
l .
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Definition 8. An empty cycle of a FSA is a sequence of ε-transitions that
starts and ends in the same state.

Fig. 2 illustrates the definitions, where dashed arcs show ε-transitions. The base
component and added components of FSAl are the parts above and under the
curly grey line respectively. v4 and v11 are entry nodes, v2 and v7 are exit nodes,
and they are drawn at the boundary of the base and added components. v1, v5,
v9 and v12 are candidate nodes. s1 = v1

ε→ v2
ε→ v3

ε→ v4
t1→ v5, s2 = v1

ε→ v2
t1→ v5,

s3 = v6
ε→v7

ε→v8
t2→v9, s4 =v10

ε→v11
t3→v12, are candidate sequences, and s1 is a

return sequence while the other three are not.
Another example is FSACESl

. In Table 1, vadd3
l−1 and vadd4

l−1 are exit nodes
because, from each of them, there is a transition to a node in V add

l , i.e. aadd1
l and

aadd2
l . vadd1

l−1 , vadd2
l−1 , vadd3

l−1 and vadd4
l−1 are entry nodes because there are transitions

that start at nodes of V add
l and end at each of them (i.e. transitions aadd4

l , aadd5
l ,

aadd7
l , aadd11

l , aadd12
l , and aadd16

l ). FSACESl
contains candidate sequences, but

it does not have return sequences because a return sequence requires at least
one ε-transition that starts at a node in Vl−1 and ends at a node in V add

l . From
Table 1 and Fig. 1 (FSACES1 only), FSACESl

does not have such ε-transitions.
Now we formalise the necessary and sufficient condition in the theorem below.

Theorem 1. For l ∈N+, let FSAl = (Vl, Σ, Al, v0, Fl) be a RP-FSA without
empty cycles, and FSAER

l = (V ER

l , Σ, AER

l , v0, F
ER

l ) its family of LE-ER au-
tomata. FSAER

l is a RP-FSA in l, where, for l≥2, its base component is FSAER

l−1
iff for vs, ve ∈ V C

l−1, sR
(vs,ve,t) ∈ SR

l ⇒ (sC
(vs,ve,t) ∈ SC

l−1 or (vs, t, ve) ∈ Al−1).

The theorem states that when the presence of a return sequence (sR
(vs,ve,t)) be-

tween two candidate nodes in FSAl, implies the presence of either a corre-
sponding candidate sequence (sC

(vs,ve,t)) between the same candidate nodes in
the base component of FSAl (i.e. FSAl−1) or a direct transition between them
((vs, t, ve) ∈ Al−1), then the LE-ER automaton of FSAl is also a RP-FSA in l,
with its base component being the LE-ER automaton of FSAl−1. The converse
also holds.

Referring to Fig. 2 and assuming that s1 is the only return sequence, this RP-
FSA satisfies the condition as a candidate sequence s2 that belongs to FSAl−1
is between v1 and v5 and the last transitions of s2 and s1 are both t1. If s2 did
not exist (assuming no other candidate sequences from v1 to v5 with t1 as their
last transition and that (v1, t1, v5) does not exist), the FSA would not satisfy
the condition. As mentioned earlier, FSACESl

does not have return sequences,
so the condition is satisfied, and its LE-ER FSA can be represented recursively
based on the LE-ER FSA of FSACESl−1 , a result that we proved in [12,14].

4 Proving the Necessary and Sufficient Condition

4.1 Preliminaries

We can remove ε-transitions by constructing ε-closures [15]. The ε-closure of
a state or a set of states is the set of all states that are accessible by only
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v''v v' t

t

Fig. 3. Removing an ε-transition using Algorithm 1

ε-transitions from that state or set of states. Our goal is to determine the condi-
tion under which the LE-ER automaton of FSAl is also a RP-FSA, where the
base component of the LE-ER automaton is the LE-ER automaton of the base
component of FSAl. To derive the condition we remove ε-transitions in the base
component (FSAl−1) and the added component (ADDl) separately, so that it is
easier to identify if the LE-ER automaton of FSAl−1 is included in the LE-ER
automaton of FSAl. When an ε-closure includes ε-transitions of FSAl−1 and
ADDl, the above approach removes all the ε-transitions in an ε-closure at one
time, and is thus not appropriate for our procedure.

Barrett et al [2] present an incremental approach. To transform a FSA to its
LE-ER automaton, we firstly remove empty cycles (Definition 8), then remove all
the remaining ε-transitions one by one. The algorithm for removing ε-transitions
from a FSA without empty cycles is formalised as follows, based on [2].

Algorithm 1. For FSA = (V, Σ, A, v0, F ) without empty cycles, its LE-ER
automaton, FSAER = (V ER, Σ, AER, v0, F

ER) is created as follows:

1. Initially, let V ER = V , AER = A, FER = F .
2. While AER

ε = {(v, ε, v′) | (v, ε, v′) ∈ AER} �= ∅, do:
(a) choose any (v, ε, v′) ∈ AER

ε

(b) update AER to (AER \ {(v, ε, v′)}) ∪ {(v, t, v′′) | (v′, t, v′′) ∈ AER, t ∈
(Σ ∪ {ε})}

(c) if v′ ∈ FER, update FER to FER ∪ {v}.
3. Update V ER to V ER \ {v | �s = v0

t0→ . . . vn
tn→ v, n ≥ 0, ti ∈ Σ, 0 ≤ i ≤ n}

4. Update AER to AER \ {(v, t, v′) | v /∈ V ER or v′ /∈ V ER}
As shown in Fig. 3, when using the algorithm to remove (v, ε, v′), if (v′, t, v′′) ∈

AER, (v, t, v′′) is included in AER (step 2(b)). Furthermore, if v′ is a final state
of FSA, v is included in F ER (step 2(c)). After all the ε-transitions are removed
by following step 2, some nodes of V ER may become inaccessible from the initial
state v0, so in steps 3 and 4, we exclude inaccessible states and their associated
transitions from V ER and AER respectively.

We now state three lemmas to be used in the proof of the theorem. Lemma
1 gives the result of removing a sequence of ε-transitions. Lemma 2 states the
necessary and sufficient condition for adding a non-ε-transition when removing
ε-transitions from FSAl. Lemma 3 presents the necessary and sufficient condition
for a node of FSAl to remain accessible after all ε-transitions are removed.

Lemma 1. Let FSA = (V, Σ, A, v0, F ) be an FSA that includes ε-transitions.
Consider a transition sequence s = vs

ε→ v1
ε→ . . .

ε→ vn
t→ ve where n ≥ 1 and
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t
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v1
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vi+1
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Fig. 4. Removing ε-transitions from the transition sequence in Lemma 1

t ∈ Σ. After the n ε-transitions are removed from this sequence using steps 1
and 2 of Algorithm 1, transitions {(v, t, ve) | v ∈ {vs, v1, . . . , vn}} are in AER.

Proof. Referring to Fig. 4, we firstly remove the second last transition in s,
(vn−1, ε, vn), then the preceding ε-transition, and keep moving backwards until
the first ε-transition, (vs, ε, v1) is removed.

On removing (vn−1, ε, vn), arc (vn−1, t, ve) is added according to Algorithm
1. When the third last transition (vn−2, ε, vn−1) (if n ≥ 3) is removed, because
(vn−1, t, ve) has just been added, (vn−2, t, ve) has to be added. In general, when
removing any ε-transition (vi, ε, vi+1) (1 ≤ i < n − 1) in this way, because
(vi+1, t, ve) exists, (vi, t, ve) has to be added. This process is continued until
(vs, ε, v1) is removed while (vs, t, ve) is added because (v1, t, ve) has been added
previously or was the last in the sequence if n = 1.

So after the n ε-transitions are removed, the set of arcs {(v, t, ve) | v ∈
{vs, v1, . . . , vn}}, n ≥ 1 are added to AER. Hence, Lemma 1 is proved. ��
Lemma 2. For t ∈ Σ and (vs, t, ve) /∈ Al, when applying Algorithm 1 to FSAl,
after steps 1 and 2 are completed, a non-ε-transition (vs, t, ve) is in AER

l iff
sC
(vs,ve,t) ∈ SC

l .

Proof. The sufficient condition follows immediately from Lemma 1 as
(vs, t, ve) is one of the arcs added when removing ε-transitions from sC

(vs,ve,t).
The necessary condition states that if transition (vs, t, ve) is added then there

must be a candidate sequence sC
(vs,ve,t) (and (vs, t, ve) /∈ Al). To show this holds,

we prove its contrapositive, i.e. if there does not exist sC
(vs,ve,t) ∈ SC

l , (vs, t, ve)
can not be added when removing ε-transitions from FSAl.

From Algorithm 1 if there does not exist a transition sequence from vs to ve at
all, no new arc (vs, t, ve) can be added. So we only need to show that, (vs, t, ve)
still can not be added when none of sequences from vs to ve are candidate
sequences, i.e. any sequence from vs to ve is of the form s′ = vs

t1→ v1
t2→ . . .

tn−1→
vn

t→ ve, where n ≥ 1, t ∈ Σ, and ∃t′ ∈ {t1, . . . , tn−1} such that t′ �= ε, a
sequence that can only be made up of a chain of non-ε-transitions, or of both
ε-transitions and non-ε-transitions.

In the first case, s′ contains only non-ε-transitions, no ε-transitions to be
removed from s′, hence no arcs can be added. For the second case, assume that
(vs, t′, v1) is a non-ε-transition. According to Algorithm 1, when removing any
of the ε-transitions between v1 and vn, it is not possible to add an arc that starts
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from vs because vs is not the source node of an ε-transition. Now assume that
(vm, t′, vm+1) (1 ≤ m ≤ n − 1) is the first non-ε-transition we encounter in the
chain (i.e. all preceding transitions are ε-transitions), then from Lemma 1, arcs
{(v, t′, vm+1) | v ∈ {vs, v1, . . . , vm−1}} will be added when all the ε-transitions
from vs to vm are removed. However, these added arcs are not ε-transitions
because t′ �= ε. When removing any ε-transitions between vm+1 and vn, again
according to Algorithm 1, it is not possible to add an arc starting from vs.
Therefore, for the transition sequence s′ described above, arc (vs, t, ve) cannot
be added.

Since we have used s′ to represent any of the possible transition sequences
existing from vs to ve, we have proved that if all of the transition sequences
from vs to ve are not candidate sequences, then (vs, t, ve) can not be added. So
the necessary condition is proved as well.

Therefore Lemma 2 holds. ��
Lemma 3. When applying Algorithm 1 to FSAl, after steps 1 and 2 are com-
pleted, a state v (v �= v0) remains accessible iff v ∈ V C

l (a candidate node).

Proof. Because all the states of FSAl are accessible, there must exist at least
one transition sequence from v0 to a state v. It can be seen that a transition
sequence from v0 to a predecessor of v, v′, may be of one of the 3 types: Type 1:
a sequence that comprises ε-transitions only; Type 2: a sequence that comprises
non-ε-transitions only; Type 3: a sequence that comprises both ε and non-ε-
transitions.

Fig. 5. Example transition sequences from v0 to a predecessor (v′) of node v

Fig. 5 shows an example for each of the 3 types of transition sequences from
v0 to v′. In this figure, an ε-transition is drawn as a dashed arc and a non-ε-
transition is shown as a solid arc. The sequence on the top that comprises dashed
arcs only is a type 1 sequence. The sequence in the middle that has solid arcs
only is a type 2 sequence, and the sequence at the bottom that has two solid
arcs and some dashed arcs is of type 3.

In the following we prove the sufficient condition first, i.e. if there exists
(v′, t, v) and t ∈ Σ, v is still accessible after ε-removal.

With a type 1 sequence, from Lemma 1, on the removal of ε-transitions the
transition (v0, t, v) is added, making v directly accessible.

For a type 2 sequence no ε-transitions are removed and the sequence remains
ensuring v is accessible.
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For a type 3 sequence, consider the example sequence shown at the bottom
of Fig. 5. It has two non-ε-transitions (vi, ti, vi+1) and (vj , tj , vj+1), and ti �= ε,
tj �= ε. When removing all the ε-transitions before vi in the sequence, according
to Lemma 1, from each node in the sequence before vi, an arc labelled with ti and
pointing to vi+1 is added. So we have (v0, ti, vi+1) in AER

l . When ε-transitions
between vi+1 and vj are removed, similarly from each node in the sequence
from vi+1 to vj−1 an arc labelled with tj and pointing to vj+1 is added. So we
have (vi+1, tj , vj+1) in AER

l . Finally when the ε-transitions between vj+1 and v′

are removed, from each node of this part of the sequence (including vj+1 but
excluding v′), a non-ε-transition that points to v and is labelled with t is added,
including (vj+1, t, v). Therefore, from v0, via three non-ε-transitions (v0, ti, vi+1),
(vi+1, tj , vj+1) and (vj+1, t, v), we can reach v. So v must be accessible after all
of the ε-transitions of FSAl are removed.

The necessary condition states if v remains accessible after ε-removal, then
there must exist (v′, t, v) ∈ Al and t ∈ Σ. To show that this statement is correct,
we prove its contrapositive, that is, if there does not exist (v′, t, v) ∈ Al where
t ∈ Σ, v is inaccessible after ε-removal.

As v is accessible before removing ε-removal, there must be a set of arcs
A2v

l ⊆ Al such that A2v
l = {a | a = (v′, t, v) ∈ Al}. Because �(v′, t, v) ∈ Al and

t ∈ Σ, all the arcs in A2v
l are ε-transitions. Furthermore, as no empty cycles

are allowed in FSAl, so we have A2v
l = {a | a = (v′, ε, v) ∈ Al, v

′ �= v}. Then if
applying Algorithm 1 to FSAl, transitions {(v′, t′, v′′) | ∃(v, t′, v′′) ∈ Al, v

′′ �= v′}
are added, and none of the added arcs pointing to v. Meanwhile, all the arcs of
A2v

l are removed. So no arcs will point to v after ε-removal, i.e. v has become
inaccessible. The necessary condition has been proved.

Therefore Lemma 3 holds. ��
From Lemma 2, when removing ε-transitions, transitions are added only be-
tween starting and ending nodes of candidate sequences (Definition 6). So such
sequences are candidates for adding new transitions, that is why we call them
candidate sequences. From Lemma 3 the destination node of a non-ε-transition is
a candidate to be kept in the LE-ER automaton of FSAl as it remains accessible
after ε-removal, so we call such a node a candidate node (Definition 5).

4.2 Proving the Sufficient Condition

Lemma 4. For l ∈ N+, let FSAl = (Vl, Σ, Al, v0l
, Fl) be a RP-FSA without

empty cycles, and FSAER

l = (V ER

l , Σ, AER

l , v0, F
ER

l ) its LE-ER automata family.
If for vs, ve ∈ V C

l−1, sR
(vs,ve,t) ∈ SR

l ⇒ (sC
(vs,ve,t) ∈ SC

l−1 or (vs, t, ve) ∈ Al−1),
then for l ≥ 2,

V ER

l = V ER

l−1 ∪ (V ER

l )add (7)

AER

l = AER

l−1 ∪ (AER

l )add (8)
F ER

l−1 ⊆ F ER

l (9)

where

V ER

l−1 ∩ (V ER

l )add = ∅ (10)
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(AER

l )add ⊆ (V ER

l−1 × Σ × (V ER

l )add) ∪ ((V ER

l )add × Σ × V ER

l ) (11)

Proof. The proof is structured into 3 lemmas concerning the states of FSAER

l

(Lemma 5), its arcs (Lemma 6) and its final states (Lemma 7).

Lemma 5. Let FSAl and FSAER

l be the automata referred to in Lemma 4, then
for l ≥ 2, the set of states of FSAER

l is given by Equations (7) and (10).

Proof. From step 3 of Algorithm 1, V ER

l comprises states of FSAl that remain
accessible after ε-removal. Based on Lemma 3, a state of FSAl is accessible after
ε-removal iff it is a candidate node, i.e. V ER

l = V C
l , for l ∈ N+. Thus we have

V ER

l−1 =V C
l−1. From Definition 5, V C

l = V C
l−1 ∪ V addC

l and V C
l−1 ∩ V addC

l = ∅. Let
(V ER

l )add = V addC
l , then V ER

l = V ER

l−1 ∪ (V ER

l )add and V ER

l−1 ∩ (V ER

l )add = ∅. So
Equations (7) and (10) always hold, thus Lemma 5 is proved. ��
Lemma 6. Let FSAl and FSAER

l be the automata referred to in Lemma 4. If
for vs, ve ∈ V C

l−1, sR
(vs,ve,t) ∈ SR

l ⇒ (sC
(vs,ve,t) ∈ SC

l−1 or (vs, t, ve) ∈ Al−1), then
for l ≥ 2, the set of arcs of FSAER

l is given by (8) and (11).

Proof. As AER

l is obtained from Al by removing and adding transitions, we have

AER

l = (Al ∪ AA
l ) \ AD

l (12)

where AA
l represents the set of non-ε-transitions added and AD

l the set of tran-
sitions that are removed. From Algorithm 1, the set of transitions removed from
Al comprises ε-transitions of FSAl and the transitions whose source and/or des-
tination nodes become inaccessible. From Lemma 3, the set of inaccessible states
is (Vl \ V C

l ). Therefore we have,

AD
l = {(v, ε, v′) ∈ Al}

∪{(v, t, v′) ∈ Al | t ∈ Σ, v ∈ (Vl \ V C
l ) or v′ ∈ (Vl \ V C

l )} (13)

Note that if the source and/or destination nodes of a transition added in step
2 become inaccessible, this transition is removed in step 4. However, we do
not include these transitions in AD

l as we use AA
l to only represent the non-

ε-transitions that are added between candidate nodes (which remain accessible
after ε-removal).

Because Al = Al−1 ∪ Aadd
l (Equation (2)), AD

l can be represented as AD
l =

AD
l−1 ∪ (Aadd

l )D, where

AD
l−1 = {(v, ε, v′) ∈ Al−1}

∪{(v, t, v′) ∈ Al−1 | t ∈ Σ, v ∈ (Vl−1 \ V C
l−1) or v′ ∈ (Vl−1 \ V C

l−1)}
(Aadd

l )D = {(v, ε, v′) ∈ Aadd
l }

∪{(v, t, v′) ∈ Aadd
l | t ∈ Σ, v ∈ (Vl \ V C

l ) or v′ ∈ (Vl \ V C
l )} (14)

From Definition 5, V C
l−1 comprises all the states in Vl−1 that remain accessible

via states in Vl−1, i.e. (Vl−1\V C
l−1) is the set of states of Vl−1 that are inaccessible
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when only considering Vl−1. So AD
l−1 comprises all the transitions removed from

Al−1 when transforming FSAl−1 to FSAER

l−1 by itself. So we can revise Equation
(12) to:

AER

l = (Al−1 \ AD
l−1) ∪ (Aadd

l \ (Aadd
l )D) ∪ AA

l (15)

We now look at the details of AA
l . From Lemma 2, a non-ε-transition is added

between vs and ve iff there is sC
(vs,ve,t) ∈ SC

l . So we have:

AA
l = {(vs, t, ve) | vs, ve ∈ V C

l , t ∈ Σ and sC
(vs,ve,t) ∈ SC

l } (16)

As V C
l = V C

l−1 ∪ V addC
l , there are four cases for the location of the starting

and ending nodes of sC
(vs,ve,t). They are case 1: vs, ve ∈ V C

l−1; case 2: vs ∈ V C
l−1,

ve ∈ V addC
l ; case 3: vs ∈ V addC

l , ve ∈ V C
l−1; and case 4: vs, ve ∈ V addC

l .
We use AA1

l to represent all the transitions in AA
l that are added based on

case 1 candidate sequences, and AA234
l for all the transitions that are added

based on cases 2, 3 and 4. So AA
l = AA1

l ∪ AA234
l , where

AA1
l = {(vs, t, ve) ∈ AA

l | vs, ve ∈ V C
l−1} (17)

AA234
l = {(vs, t, ve) ∈ AA

l | vs ∈ V addC
l or ve ∈ V addC

l } (18)

We have proved V ER

l =V ER

l−1∪(V ER

l )add, with V ER

l−1 =V C
l−1, (V ER

l )add =V addC
l . So

AA234
l ⊆ (V ER

l−1 × Σ × (V ER

l )add) ∪ ((V ER

l )add × Σ × V ER

l ) (19)

That is, a transition in AA234
l is in (AER

l )add (see (11)).
The candidate sequence, based on which a transition in AA1

l is added, can
belong to FSAl−1, denoted case 1a (see the example sequence from v1 to v5 in
Fig. 6(a)), or be a return sequence. When it is a return sequence, sR

(vs,ve,t), there
are two cases. In the first case (case 1b) there is also either a direct transition
(vs, t, ve) ∈ Al−1 or a candidate sequence, sC

(vs,ve,t) that belongs to FSAl−1.

Fig. 6(b) provides an example where s1 =v1
ε→v6

ε→v7
ε→v8

ε→v9
t1→v4 is a return

sequence, and s2 =v1
ε→v2

ε→v3
t1→v4 belongs to FSAl−1. s1 and s2 have the same

starting and ending nodes and their last transitions are both labelled by t1. In
the second case (case 1c), there is neither a direct transition (vs, t, ve) ∈ Al−1
nor a candidate sequence, sC

(vs,ve,t) that belongs to FSAl−1 (sC
(vs,ve,t) �∈ SC

l−1).

Fig. 6(c) illustrates case 1c, where s1 = v1
ε→ v2

ε→ v3
ε→ v4

ε→ v5
t1→ v6 and

s2 = v1
ε→ v2

ε→ v3
ε→ v8

t3→ v9 are return sequences. From v1 to v6 there is no
direct transition nor a candidate sequence of FSAl−1. From v1 to v9, there is
no direct transition and only one candidate sequence in FSAl−1 but its last
transition is labelled by t2, rather than t3, so it is not a corresponding candidate
sequence.

In case 1a, (vs, t, ve) is added and must be in AER

l−1, because when using
Algorithm 1 to transform FSAl−1 to FSAER

l−1 (by itself), (vs, t, ve) is included
in AER

l−1, from Lemma 1. For case 1b, if (vs, t, ve) ∈ Al−1, then Algorithm 1 will
not remove it (as t ∈ Σ and from Lemma 3) so it must be in AER

l−1. Alternatively, if
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FSAl

FSAl-1

ADD

v3

v5

v4

t1

v1

v2

t2

v6

FSAl

FSAl-1

v3

v5

v4

t1v1

v2

t2

v6

t1

v

v8

v9

FSAl

FSAl-1v10

v6

v1

t2

v2

t1

v
v4

v5

v7

v9

v8

t3t2

ADDl

(a) Case 1a

ADDl

v7

(b) Case 1b

ADDl

v3

(c) Case 1c

Fig. 6. An illustration of Case 1 sequences

sC
(vs,ve,t) ∈ SC

l−1, then by Lemma 2, (vs, ve, t) ∈ AER

l−1. Hence the return sequences
from vs and ve only add transitions that are already in AER

l−1 and therefore have
no effect. So far the transitions added in cases 1a and 1b are all in AER

l−1 and the
transitions added in cases 2 to 4 are in (AER

l )add.
For case 1c, since (vs, t, ve) �∈ Al−1 it will only be included in AER

l−1 if sC
(vs,ve,t) ∈

SC
l−1 from Lemma 2. Since there is no such candidate sequence, (vs, t, ve) is not

in AER

l−1. For example, referring to Fig. 6(c), (v1, t3, v9) is added when using Algo-
rithm 1 on FSAl, but it is not in AER

l−1 because, when removing ε-transitions from
FSAl−1, sC

(v1,v9,t3) is not in SC
l−1 (Lemma 2). Similarly, (v1, t1, v6) is added when

transforming FSAl based on Lemma 2, but it is also not in AER

l−1 as sC
(v1,v6,t1)

is not in SC
l−1. The added transition (vs, t, ve) is not in (AER

l )add either be-
cause a transition of (AER

l )add must have its source and/or destination node
in (V ER

l )add (see (11)). Thus if we exclude case 1c, so that for vs, ve ∈ V C
l−1,

sR
(vs,ve,t) ∈ SR

l ⇒ (sC
(vs,ve,t) ∈ SC

l−1 or (vs, t, ve) ∈ Al−1), then the base compo-
nent of the LE-ER FSAl will be FSAER

l−1 because its set of transitions will be
AER

l−1 (rather than a superset). This is the condition stated in Lemma 4 (and
Theorem 1). Thus we have shown that under this condition, all the added arcs
during ε-removal for FSAl are in AER

l−1 or (AER

l )add, and we can revise the rep-
resentation of AER

l from Equation (15) to:

AER

l = (Al−1 \ AD
l−1) ∪ (Aadd

l \ (Aadd
l )D) ∪ AA1ab

l ∪ AA234
l

= ((Al−1 \ AD
l−1) ∪ AA1ab

l ) ∪ ((Aadd
l \ (Aadd

l )D) ∪ AA234
l (20)

where

AA1ab
l = {(vs, t, ve) | vs, ve ∈ V C

l−1, t ∈ Σ and (21)

sR
(vs,ve,t) ∈ SR

l ⇒ (sC
(vs,ve,t) ∈ SC

l−1 or (vs, t, ve) ∈ Al−1)}
comprises all the transitions added when transforming FSAl−1 to FSAER

l−1. AD
l−1

comprises all transitions removed in the same context, so under this condition,
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(Al−1\AD
l−1)∪AA1ab

l consists of all the transitions of FSAER

l−1, i.e.

AER

l−1 = (Al−1 \ AD
l−1) ∪ AA1ab

l (22)

Now consider (Aadd
l \ (Aadd

l )D) ∪ AA234
l , the second half of Equation (20).

Transitions in Aadd
l have source and/or destination nodes in V add

l . (Aadd
l )D com-

prises all the ε-transitions of Aadd
l and all the transitions that are removed from

Aadd
l because their source and/or destination nodes are not in (V ER

l )add. So all
the transitions in (Aadd

l \ (Aadd
l )D)) have source and/or destination nodes in

(V ER

l )add. AA234
l satisfies (19), thus

((Aadd
l \ (Aadd

l )D)∪AA234
l ) ⊆ ((V ER

l−1 ×Σ × (V ER

l )add)∪ ((V ER

l )add ×Σ × V ER

l ))

If we let (AER

l )add = (Aadd
l \ (Aadd

l )D))∪AA234
l , then (11) is satisfied. From this

and Equations (20) and (22), AER

l = AER

l−1 ∪ (AER

l )add, so Equation (8) holds.
Therefore Lemma 6 is proved. ��
Lemma 7. Let FSAl and FSAER

l be the automata referred to in Lemma 4, then
for l ≥ 2, the set of final states of FSAER

l is given by (9).

Proof. From Algorithm 1, the final states of FSAER

l are obtained by adding
new final states and keeping accessible states in Fl. That is F ER

l = FA
l ∪FK

l ,
where FA

l = {v ∈ V C
l | (v, ε, v′) ∈ Al where v′ ∈ Fl}, and FK

l = Fl ∩ V C
l . As

Al = Al−1 ∪ Aadd
l and V C

l = V C
l−1 ∪ V addC

l , we have

FA
l = {v ∈ V C

l−1 | (v, ε, v′) ∈ Al−1 where v′ ∈ Fl−1} (23)

∪{v ∈ V addC
l | (v, ε, v′) ∈ Aadd

l where v′ ∈ Fl}
FK

l = (Fl−1 ∩ V C
l−1) ∪ (Fl ∩ V addC

l ) (24)

Using the same argument for FSAl−1, we get

F ER

l−1 = {v ∈ V C
l−1 | (v, ε, v′) ∈ Al−1 where v′ ∈ Fl−1} ∪ (Fl−1 ∩ V C

l−1)

so that F ER

l−1 ⊆ F ER

l , i.e. (9) holds, and Lemma 7 is proved. ��

Thus (7) to (11) hold under the condition of the lemma and hence Lemma 4 is
proved. ��

4.3 Proving the Necessary Condition

Lemma 8. For l ∈ N+, if FSAER

l is a RP-FSA as specified in (7) to
(11), then FSAl satisfies for vs, ve ∈ V C

l−1, sR
(vs,ve,t) ∈ SR

l ⇒ (sC
(vs,ve,t) ∈

SC
l−1 or (vs, t, ve) ∈ Al−1).

Proof. To prove the lemma, we prove its contrapositive, i.e. for vs, ve ∈ V C
l−1

when sR
(vs,ve,t) ∈ SR

l �⇒ (sC
(vs,ve,t) ∈ SC

l−1 or (vs, t, ve) ∈ Al−1) then FSAER

l is
not a RP-FSA as specified in (7) to (11).
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From the proof of Lemma 6, if case 1c is not excluded, i.e. for vs, ve ∈ V C
l−1

when sR
(vs,ve,t) ∈ SR

l �⇒ (sC
(vs,ve,t) ∈ SC

l−1 or (vs, t, ve) ∈ Al−1), then (vs, t, ve) is
added where vs, ve ∈ V ER

l−1. However, this transition is not in AER

l−1 or (AER

l )add

as explained in the proof of Lemma 6. This means AER

l �= AER

l−1 ∪ (AER

l )add, so
Equation (8) does not hold. Hence FSAER

l is not a RP-FSA as specified in (7)
to (11), and the contrapositive is true. Hence Lemma 8 is proved. ��
Therefore, based on Lemma 4 and Lemma 8, Theorem 1 holds.

5 Conclusion and Future Work

In this paper we have defined an infinite family of FSA related by an integer
parameter, called Recursive Parametric FSA (RP-FSA). We considered the re-
moval of ε-transitions from this family and identified (and proved) the necessary
and sufficient condition for which this transformation results in another family
which is RP-FSA in the same parameter, where the transformed family’s base
component is the ε-removed base component of the original RP-FSA. This is of
theoretical interest and may provide the basis for an algebra of RP-FSA where
ε-removal and graph addition are operators. However, this work was motivated
by the verification of a multimedia protocol. We have developed a more general
theory that we believe can be applied to other practical systems. In [5], a struc-
tural regularity has been discovered in the data transfer service of the Internet’s
Transmission Control Protocol (TCP) operating over unbounded channels. This
can lead to a recursive (or closed form) expression for the state space in terms
of the channel capacity. We have also observed similar regular behaviour in the
state space of a simulator model [8]. The symbolic FSAs derived from the state
spaces of these systems are RP-FSA. When the RP-FSA contains ε-transitions
we can use the condition identified in this paper to check if the corresponding
LE-ER RP-FSA can be obtained. If this is the case and this ε-removed RP-FSA
is (or can be transformed to) a deterministic RP-FSA, then we have a recursive
representation of a specification against which the system can be verified.

Future work will include developing the theory on the condition under which
an RP-FSA is closed under FSA determinisation, i.e. the determinised family of
FSA can also be represented in the same recursive style, and applying it and the
result presented in this paper to the verification of industrial systems. We will
also consider extending the theory to two integer parameters for protocols with
two parameters, as illustrated in the verification of the Stop and Wait Protocol
class [6,7].
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“A.I.Cuza” University of Iaşi, Romania
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Abstract. TiMo is a process algebra using timeouts for interactions
and adaptable migration between explicit locations. Starting from this
formalism, we have implemented a software platform for agent migra-
tion, separating the migration mechanism such that it can be reused for
other systems with mobility. We describe the platform architecture and
functionalities, the software modules and some implementation details,
emphasizing the novel aspects and comparing with similar implemen-
tations. The implementation corresponds rigorously to the semantics of
TiMo. An example illustrates the use of the migration platform for a
simple problem.

1 Introduction

Mobile applications represents an important topic in distributed system field.
Mobility is difficult in both the modeling part and in implementation, espe-
cially when time is also considered. To address the modeling part, many for-
malisms have been proposed over the years such as π-calculus [8], distributed
π-calculus [6], timed distributed π-calculus [4], TiMo [3]. Concerning the imple-
mentation, there are several architectures and different programming languages
(Telescript [11], Java) which support or facilitate code mobility or mobile agents
programming. Although there are several papers on both aspects (theoretical
and practical) addressing mobility, the link between the theoretical specification
and effective implementation is not clearly defined.

Our aim is to provide a platform for agent migration which corresponds to a
formal model. Starting from TiMo, we implement such a platform. To ensure
that it corresponds with the high-level operational semantics of TiMo, we define
a formal notion of configuration and use it to describe and reason about the
evolution of a system.

Since mobility is the main concept, we separate the low-level mobility concerns
and the high-level model aspects into two layers. Thus, our implementation con-
sists of an extensible basic framework which can be used to implement various
systems based on mobility and a framework inspired by TiMo which facilitates to
specify mobile agents. The lower layer is named MobileCalculi framework and,
besides a migration mechanism, it offers generic implementations of common
concepts needed to implement mobile systems. The upper layer is inspired by
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TiMo and it is referred as the software framework for T iMo; it also provides a
compiler for an intermediate language in which someone can specify systems of
mobile agents. In order to prove the extensibility of MobileCalculi framework we
also implemented a software framework for dπ-calculus [6]. The whole system
is named MCTools. Thus, MCTools represents a software platform for mobile
calculi implementation.

MCTools system is developed according to a choreography based distributed
architecture. It is working without a central coordinator. Agents are free to roam
and travel in a network of machines which have the system installed, without
being orchestrated by a central entity.

The paper is structured as follows. We first briefly present the TiMo model in
Section 2, then we describe some implementation details in Sections 3 and 4. We
present the correspondence between TiMo and the implementation in Section
5. Before ending with conclusion and related works, an illustrating example is
presented in Section 6.

2 TiMo

TiMo [3] is a simple process algebra in which one can formally model distributed
systems with explicit locations, migration and temporal constraints. It is a part
of the π-calculus family [8], close to the distributed π-calculus [6] and timed
distributed π-calculus [4]. TiMo features a simple syntax, dropping the type
aspects of distributed π-calculus and focusing on interaction and migration. The
time is local and modeled by timers which are associated with basic actions.
The result is that the interaction and migration time is no longer indefinite.
Moreover, if an action does not happen in a predefined time, then the process
continues with a “safety” alternative.

T iMo Syntax is given below. It is assumed that Chan is a set of channels, Loc
is a set of locations, Var is a set of location variables and Ident is a finite set of
process identifiers (each identifier I ∈ Ident has a fixed arity mI ≥ 0).

P, Q ::= 0 | aΔt ! 〈v〉 thenP else Q | aΔt ? (u) thenP else Q |
goltΔmt v thenP else Q | I(v1, . . . , vmI ) | P |Q | #P

M, N ::= k[[P ]] | M |N

In the above description it is assumed that a ∈ Chan; t, lt, mt ∈ N,; v, v1, . . . ,
vmI ∈ Loc∪V ar; k ∈ Loc and u ∈ V ar. Moreover, each process identifier I ∈
Ident has a unique definition of form I(u1, . . . , umI ) = PI where ui �= uj (for
i �= j) are variable acting here as parameters.

Process aΔt ! 〈v〉 thenP else Q attempts to send v over channel a for t units
of time. If the communication takes place then it continues as P , otherwise it
continues as Q. Input process aΔt ? 〈u〉 thenP else Q has a similar behaviour.
Process goltΔmt v thenP else Q implements mobility. It first waits lt units of
time which represents the local time dedicated to local work, then it moves to
location v in mt units of time (mt stands for migration time). If the move is
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accomplished within the specified time, then the process behaves as P (at v),
otherwise it continues as Q at current location. Processes are further constructed
from the basic processes together with the terminating process 0 by using the
parallel composition P |Q. A located process k[[P ]] is a process running at lo-
cation k. The symbol # from #P is a purely technical notation used in the
formalization of structural operational semantics of TiMo. Intuitively, it says
that the process has finished its action and it is temporally waiting for the next
tick of the clock.

Operational Semantics of TiMo is given by the rules presented in Table 1.

Table 1. TiMo operational semantics

go: k[[go0Δmt l thenP else Q ]]
k:l−−−−−→ l[[#P ]]

com: l[[aΔt ! 〈l〉 thenP else Q

| aΔt′ ? (u) thenP ′ else Q′ ]]
k:a(l)

−−−−−→
l[[#P |#{l/u}P ′]]

par:
N

β−−−−−→ N ′

N |M β−−→ N ′ |M

struc:
N ≡ N ′ N

β−−−−−→ M M ≡ M ′

N ′ β−−→ M ′

time:
N �→

N

√
−−−−−→ φ(N)

Looking to the labels of the transitions, there are two kinds of transition rules:

M
β−−→ N and M

√
−−→ N . The first one corresponds to the execution of an action

β, while the second one represents a timing tick. The action β can be either k : l
or k : a(l), where k is the location where the action takes place, l is either the
location where the process goes, or the location transmitted along the channel
a. In rule Time, N �→ denotes that no other rule can be applied.

φ is the time-passing function which acts in the following way. Each top-level
expression I(l1, . . . , lmI ) is replaced by the corresponding definition {l1/u1, . . . ,
lmI /umI}PI . Each top-level expression of the form aΔ0... thenP else Q or
go0Δ0...then P elseQ is replaced by #Q. For the top-level communication
expressions with Δt > 0, t is decreased by 1. Each top-level expression of the
form goltΔmt thenP else Q is replaced by golt′Δ(mt′) thenP else Q where
lt′ = max{0, lt − 1} and mt′ = mt if lt > 0 or mt′ = max{0, mt − 1} if lt = 0.
All occurrences of the special symbol # are deleted.

A top-level expression is not containing a symbol #. Note that only after the
lt timer reaches 0, the process migrates to the destination.
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3 MobileCalculi Framework

As stated in the introduction MobileCalculi framework represents the lower level
of the MCTools system. Its purpose is to be the low-level link between the
theoretical part of mobility (represented by various formalisms such as those
from π-calculus family) and the practical part which deals with mobile code
and mobile systems implementations. It was designed to abstract the concepts
used in the formal models, and to handle low-level details such as network or
location management. The correspondence between location names and physical
locations, represented by an IP address plus a port, is done at this level.

The framework serves as a base for implementation of models for mobility,
dealing with the common part of such formalisms: names, locations, agents, mi-
gration, fresh name generation, etc. It provides a default mechanism for migra-
tion which makes possible to migrate an agent by its code and data. Moreover,
it provides the architecture of an engine for simulation of the formal evolution
of a process. It also handles communications with other machines, and thus it
can create and initialize a distributed environment from a global specification,
making it a useful tool for distributed experiment. The global specification of a
system is represented by the agent distribution at their initial locations.

The framework is based on an extensible architecture so that the majority
of components can be customized according to needs. It is implemented in Java
language, the main reason being the infrastructure offered by Java for working
with mobile code and dynamic classes. A formalism is implemented by extend-
ing structures from the framework and adapting them to its specific features.
The software framework for TiMo serves as an example, but we can also use
other formalism implementation. To prove the extensibility of the MobileCalculi
framework we also implemented a software framework for dπ-calculus.

We developed a generic purpose GUI in order to ease the user interaction with
MCTools platform, in particular with the MobileCalculi framework. Using the
GUI one can easily access the majority of framework functionalities without any
coding. It is possible to start or stop the system, change the active formalism
(the upper layer), compile, load and execute specific formalism specifications and
interact with other MCTools platforms.

We describe the implementation from a functional viewpoint. A global view
of the platform architecture can be seen in Figure 1, where it is presented the
interaction between the two layers, the lower layer represented by MobileCal-
culi framework, and the upper layer represented by a formalism framework (in
particular TiMo framework). It also present the dependency inside the layers.

The functionality of MobileCalculi framework is divided into several mod-
ules. The most important ones are the core module which deals with common
functionalities and general patterns, and the mobility module which encapsu-
lates the mobility mechanism. These modules are presented below. To keep the
presentation clear and simple the rest of the modules are omitted.

Core Module. The core module is the heart of the MobileCalculi framework.
It contains the main functionalities and propose the patterns which must be
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Fig. 1. MCTools Functional Architecture

followed by a formalism implementation. The implementation of a formalism
either extends these patterns and enhances agent execution with specific features,
or just uses some of the basic functionalities.

The main entities in a formalism for mobility are agents, locations and names.
An agent is represented by an object which contains a main method with its ac-
tions/instructions. This representation defines an execution pattern by assuming
that agent execution is equivalent with its main method execution. The agent
runs at a specific location, in a private thread. The location acts as an execution
environment for agents. It keeps a list with resources, such as communication
channels, which can be used by agents. All the entities (including resources) are
referred by name, so the name concept is also defined as a separate entity.

A formalism implementation must provide at least an execution model and an
execution environment. The execution model is defined by the formalism primi-
tives (such as migration, communication) which have to be described according
to the formal specification. One must focus only on these primitives since the
basic ones such as starting or stooping the execution, joining with other ex-
ecution threads or spawning addition workers are implemented in the default
pattern. This model runs inside a specific execution environment and uses a
naming structure. For example the execution environment for TiMo defines a
virtual clock and the agents defined in TiMo are governed by this clock. Again,
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some basic functionalities of an execution environment are implemented at the
framework low-level (adding or removing new agents, generating unique names).

Since the framework is built for mobility formalism, it assumes that migration
primitives are present in every formalism implementation. Considering this, the
core module facilitate the use of the mobility mechanism presented in Section 3,
by managing the low level details and acting as a mobility façade.

It is worth noting that this module also incorporates many other functional-
ities which are transparent to the developer of a certain formalism implemen-
tation. It handles communication with other machine, not just for transmitting
agents, but also for synchronization and control. It manages the execution envi-
ronment, and it sets up a distributing environment from a global specification.
Moreover, it manages the several formalisms providing a way to switch between
them dynamically; this enable the possibility to change the execution model (in
other words the upper layer of MCTools system) without shutting down the
platform and independently of other platforms.

Another important functionality which can be use directly by the upper layer
is the formal evolution engine. Given a formal specification, this engine enables
to execute locally the evolution of a formal specification corresponding to the
formalism semantic rules. Using this feature one can detect possible discrepancies
between formal specifications and their implementations.

Mobility Module. This module creates the needed infrastructure for agent
migration. It also provides a default migration mechanism based on bytecode
migration. This module abstracts the migration objects by providing an interface
which must be implemented by all the entities which want to migrate. This
maintains a decoupled architecture and makes it possible to easily change the
migration mechanism. The main feature of this module is the proposed migration
architecture.

Among the possible alternatives we consider the solution based on bytecode
migration. It ensure the dependencies migration by using special class loaders.
The main idea is to retain the bytecode of agents in a local repository. In or-
der to access a class bytecode, the class must be loaded with a special class
loader which saves the bytecode at loading. At migration the agent definition
and dependencies are searched in this repository. The definitions of agent and its
dependencies are stored at destination in a similar repository from where they
can be loaded. After loading the agent, data can be recovered.

Note that we preferred to migrate the dependencies together with the agent
rather than implementing a lazy mechanism. The motivation behind this is given
by the fact that after a valid migration the agent should work correctly inde-
pendent of other locations. In a lazy situation it is possible that the location
containing the dependencies does not work when the agent needs a certain de-
pendency. Thus, bringing the dependency in a lazy way determines the failure
of the agent. Having all the dependencies transported together with the agent,
we avoid this scenario and let the agent to execute independently of previous
locations. Our choice has also the advantage of simplifying the handling of dis-
connected operations (the agent can execute even if the owner is not connected).
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4 Software Framework for TiMo

The main features of TiMo implementation are:

– creating and executing TiMo agents in a distributed environment;
– the possibility of introducing native Java code into the agents body;
– an intermediate language TLang and a (typed) compiler which can generate

the Java code from a simple syntax;
– an operational correspondence between implementation and its formal

model.

In order to help writing the TiMo agents, we develop a language called TLang
to intermediate between the high-level TiMo and the low-level Java code. TLang
uses only a limited set of Java types and instructions. Even if TLang does not
include all Java functionalities, it provides several important advantages like
type checking, syntax for agents distribution, possibility to embed Java code,
mechanisms for simulation of strong mobility. We also create a compiler which
translates TiMo agents (written in a simple syntax) into the appropriate Java

Fig. 2. Migration of a TiMo agent
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code. The compiler also builds the objects necessary to run the agents in a
distributed environment using MobileCalculi framework.

Before presenting the implementation, we analyze some constraints imposed
by the transition from theory to practice. We allow other values than locations to
be transmitted on channels. Only allowing locations to be transmitted, our im-
plementation would serve mainly for theoretical simulation and not for practical
use. The communication values can be of any Java type if the agent is writ-
ten directly in Java, and of some restricted type if it is developed with TLang.
Communication on channel is well typed. This means that a channel has an as-
sociated type. For instance, if an agent wants to sent or receive a location on a
channel dedicated to strings, an error appears (more exactly, a compile error if
the compiler is used, or a runtime error if Java is used). The safety process is
activated either when time expires for a communication (as in the formalism),
or when an exception is thrown out and the agent is about to fail.

More implementation details are presented in [2]. Here we briefly summarize
TiMo primitives and temporal aspects. The temporal aspects are implemented
with the help of a virtual clock. The clock is local to each location, and so has a
predefined frequency. At each tick it triggers an event, and the subscribers take
the appropriate actions. One subscriber is the TimoLocation which analyzes at
every tick the requests it has received.

Migration uses the infrastructures provided by the MobileCalculi framework.
Since the framework implements a ”weak” mobility mechanism, it falls to the
programmer to retain the program counter and manage the point from which the
execution of agents is restarted at destination. The semantic of migration timers
is implemented by using a distributed protocol. The local timer lt is represented
as the waiting time before the migration. It is the first one which is decremented.
The migration timer mt is implemented as a distributed protocol. After the
local time reaches 0, the migration procedure is initiated and the migration
timer starts to be decremented. After the agent arrives at its destination, a
receive message is sent back. If the message is receive before the migration timer
becomes 0 the agent is remove from its initial location and another message,
a confirmation message is sent to destination; otherwise the agent activates its
safety process at the current location. At destination the agent restarts only
after receiving the confirmation message. The default behaviour if this message
is not received is to remove the agent (at destination). A successful migration
can be visualized in Figure 2.

Communication between agents respects faithfully the TiMo definition, and
it is based on the rendez-vous mechanism [7].

5 Implementation Soundness

In this section we show that our implementation corresponds with TiMo high-
level semantics. We first define an abstract notion of configuration and then use it
to reason about the implementation soundness with respect to TiMo semantics.
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Table 2. Process Stack Definition

R �→ S(R)

goltΔmt l thenP else Q �→ P

Q

(go, (lt, mt), l)

aΔt ? (v) thenP else Q �→ P

Q

(in c, t, v)

aΔt ! 〈u〉 thenP else Q �→ P

Q

(out c, t, u)

P |Q �→ S(P) and S(Q) distinct stacks

Definition 1. Given a process R specified in T iMo, we define the process stack
S(R), or simply S, as in Table 2.

Remark 1. This definition is consistent with both the theoretical view which
presents the process as a sequence of actions, and the practical view where
each process has a stack from where the next action is executed. Moreover, it
is consistent with the software framework for TiMo. In implementation, only
the primitives of communication and migration are considered when the virtual
clock ticks. All the other actions are internal. Thus, from a temporal point of
view, we can abstract the process as being composed only from primitives of
communication and migration presented as a stack.

The configuration of a location is represented by the set of stacks S1
1 , S2

2 , ..., Sn
n

of the processes which run at that location l, and it is written as l[S1
1 , S2

2 , ..., Sn
n ].

The configuration of a distributed system is a network of location configurations
where each node contains the set of stacks corresponding to the local processes.
We denote by l1[S1

1 , ..., S1
n1

] × ... × ln[Sn
1 , ..., Sn

nn
] a network with n locations,

where for each location li the number of processes is provided by ni.
We denote by Config the set of all possible configurations, and usually refer

to a configuration only thinking to the top of its stacks. We write 0 for the empty
stack corresponding to a terminated process. When it is not explicitly specified,
by configuration we understand the configuration of a system.

Definition 2. Over the configuration set, we define the transition function δ :
Config × CT → Config, where CT = {tick, subst, go, failcom, failgo}.

In the following we write δ(c, ctype) = c′ as c
ctype−−−→ c′.

– l[S1, ..., #(chAct a, t, x), ..., Sn] tick−−−→ l[S1, ..., (chAct a, t − 1, x), ..., Sn]
where chAct ∈ {in, out} and x ∈ V al ∪ V ar.
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– l[S1, ..., #(go, (lt, mt), l), ..., Sn] tick−−−→ l[S1, ..., (go, (lt − 1, mt), l), ..., Sn]
provided that lt > 0 and l ∈ Loc.

– l[S1, ..., #(go, (0, mt), l), ..., Sn] tick−−−→ l[S1, ..., (go, (0, mt − 1), l), ..., Sn]
provided that mt ≥ 0 and l ∈ Loc.

– l[S1, ..., (in a, t, v), ..., (out a, t′, u), ..., Sn] subst−−−→ l[S1, ..., #S({u/v}P ), ...,
#S(P ′), ..., Sn] provided that min(t, t′) ≥ 0, the stack of in action is [(in a,
t, v), P, Q] and that of out action is [(out a, t′, u), P ′, Q′].

– l[S1, ..., (in a, t, x), ..., Sn]
failcom−−−−−→ l[S1, ..., #S(Q), ..., Sn]

provided that t < 0 and the stack of in action is [(in a, t, v), P , Q].

– l[S1, ..., (out a, t, u), ..., Sn]
failcom−−−−−→ l[S1, ..., #S(Q), ..., Sn]

provided that t < 0 and the stack of out action is [(out a, t, u), P, Q].
– l[Sl

1, ..., (go, (0, mt), k), ..., Sl
nl] × k[Sk

1 , ...Sk
nk]

go−−→
l[Sl

1, ..., 0, ..., Sl
nl] × k[Sk

1 , ..., Sk
nk, #S(P )]

provided that mt ≥0 and the stack of go at l is [(go, (0, mt), l), P, Q].

– l[Sl
1, ..., (go, (0, mt), k), ..., Sl

nl]
failgo−−−−→ l[Sl

1, ..., #S(Q), ..., Sl
nl]

provided that mt < 0, location k is unreachable and the stack of go at l is
[(go, (0, mt), l), P, Q].

– if none of the above rules can be applied, we apply one of the following rules:

• l[S1, ..., (chAct a, t, x), ..., Sn] tick−−−→ l[S1, ..., (chAct a, t − 1, x), ..., Sn]
provided that t ≥ 0, chAct ∈ {in, out} and x ∈ V al ∪ V ar.

• l[S1, ..., (go, (lt, mt), l), ..., Sn] tick−−−→ l[S1, ..., (go, (lt − 1, mt), l), ..., Sn]
provided that lt > 0 and l ∈ Loc.

• l[S1, ..., (go, (0, mt), l), ..., Sn] tick−−−→ l[S1, ..., (go, (0, mt − 1), l), ..., Sn]
provided that mt ≥ 0 and l ∈ Loc.

Note that the rules are maximally applied for all possible stacks of a configuration.

Proposition 1. The implementation of migration and communication primitive
corresponds operationally to the rules go and com of the T iMo formalism.

Proof. We prove this by showing that for each process R and for each possible
evolution rule of type go or com which takes R into R′, there exists a sequence of
transitions which takes the configuration corresponding to R into a configuration
which corresponds to R′. This is summarized in the following diagram, where
β = k : l or k : a(l).

R
β−→ R′

↓ ↓
config −→∗ config′

There are several cases which must be analyzed including success actions,
failed actions, and actions that come right next after a blocking.

– We first consider the communication case: k[[aΔt ? (v) thenP elseQ | aΔt′ !

(u) then P ′ elseQ′]]
k:a(u)−−−−→ k[[#{u/v}P | #P ′]]. The configuration
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k[(in a, t, v), (out a, t′, u)] corresponds to process R. We apply subst rule:
k[(in a, t, v), (out a, t′, u)] subst−−−→ k[#S(P ), #S(P ′)]. It is easy to see that
the resulting configuration corresponds to the process R′.

– The migration case is as follows: k[[go0 Δmtm thenP else Q ]] k:l−−→ m[[#P ]].
The corresponding configuration of the left-hand side is k[(go, (0, mt), m)].
We apply go rule and get k[(go, (0, mt), m)] × m[0]

go−−→ k[0]× m[#P ]. The
resulting configuration is the corresponding one for the right-hand side which
proves this case.

– The failure cases are similarly treated, and not presented here.
– When an action comes after a #, we add an extra tick transition in order to

keep the consistency between processes and configurations. Suppose that we
have the following case: k[[go0 Δmtm thenP else Q ]] k:m−−−→ m[[#P ]] with P =
aΔt?(v) thenP1 else Q1 | aΔt′!(u) thenP ′

1 else Q′
1 . The evolution contin-

ues with the tick rule: m[[#P ]] tick−−−→ m[[aΔt−1?(v) thenP1elseQ1 | aΔt′−1!

(u) thenP ′
1 else Q′

1 ]]
m:a(u)−−−−−→ m[[#P1 |#P ′

1]]. The corresponding configura-
tion transitions are: k[(go, (0, mt), m)] × m[0]

go−−→ k[0] × m[#S(P )]. Ex-
panding S(P ) we get: m[#S(P )] = m[#(in a, t, v), #(out a, t′, u] subst−−−→
m[#S(P1), #S(P ′

1)] which corresponds to the resulting process.
– The other cases are similarly treated, and not presented here.

Remark 2. Each syntactic structure from TiMo can be represented in TLang (the
compiler language) which then can be translated into a Java implementation.

Table 3. timo2lang function

We show how a high-level structure from TiMo becomes a low-level implemen-
tation by defining two functions, timo2lang and lang2impl, which translate a
process expression into a TLang program, and then a TLang program into a Java
implementation. Let T imoProc be the set of all TiMo processes, TLangProg
the set of all programs/specifications which can be written in TLang language,
and JavaCode the set of correct Java programs. The functions are defined as
follows:

timo2lang : T imoProc → TLangProg
lang2impl : TLangProg → JavaCode

Since the TiMo processes are built structurally, it is enough to show how the
basic syntactic structures are handled. For the basic cases, functions timo2lang



A Software Platform for Timed Mobility and Timed Interaction 117

Table 4. lang2impl function

and lang2impl are presented in Tables 3 and 4. The left column represents the
argument, and the right one is the result of function application.

TiMo processes can also be encoded directly in Java without using the inter-
mediate language TLang. This can easily be proved by composing the functions
lang2impl and timo2lang; lang2impl◦timo2lang takes a process expression and
returns its Java program. Note that timo2lang(T imoProc) ⊂ TLangProg and
timo2lang(TLangProg) ⊂ JavaCode, thus not every program written in TLang
or Java encodes a TiMo process.

Proposition 1 and Remark 2 show a sound way of deriving Java code for
mobility starting from TiMo specification. Thus we conclude with the following
statement.

Remark 3. Each agent specified in TiMo can be implemented by the software
platform defined by MCTools, and its execution reflects the operational semantics
of TiMo.

6 Example

We present a simple problem which demonstrates the usability of the migration
platform and timing constraints. The scenario is given by the discovery of a
specific resource, in our case a shop location (though it could be any other like a
printer, a scanner etc). We first describe the problem, then we show how it can
be encoded into TiMo. Then, we briefly discuss the TLang implementation, and
the running Java code.

Suppose that we have a Client who wishes to find the best Shop for a specific
product. Although the client does not know where to find the specific product, it
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knows a location where a Broker may inform about the right place. The problem
is that the Broker is available only for some limited amount of time. Moreover,
the best shop changes over time in such a way that in the first 4 units of time
the best one is shopA and then, in the next 7 units of time the best one is shopB.
Besides, the Client has to do some internal work and cannot leave its location in
the first 2 units of time. After that, it may move in 3 units of time to the Broker
location, and it cannot afford to spend more than 2 units of time at the Broker
location. The communication channel between the Client and the Broker is A.
The Client is located initially at home, and the Broker at location info. The
whole system is named Shops. The TiMo specification for Shops is as follows:

Client = go2Δ3 info then (AΔ2 ? (u) thengo0Δ0 u else go0Δ3 home )

Broker = AΔ4 ! 〈shopA〉 then 0 else AΔ7 ! 〈shopB〉
Shops = home[[Client]] | info[[Broker]]

Minimally, the Shops system may be encoded in TLang as in Figure 3. We say
minimally because we do not see any result from this, and the agent does not
do anything besides communicating and migrating. A possible running result of
this system, completed with some output, is presented in Figure 4. We say ”a
possible running” because if the agent does not arrive in time at location info,
or a destination is unreachable, then the output would be different.

#extended−language
#l o c a t i o n home ( 1 9 2 . 1 6 8 . 1 . 2 : 9 0 0 0 , 0 ) ;
#l o c a t i o n i n f o ( 1 9 2 . 1 6 8 . 1 . 2 : 9 0 0 9 , 0 ) ;
#l o c a t i o n shopA ( 1 9 2 . 1 6 8 . 1 . 2 : 9 0 9 9 , 0 ) ;
#l o c a t i o n shopB ( 1 9 2 . 1 6 8 . 1 . 2 : 9 9 9 9 , 0 ) ;

const channel<l o ca t i on > A;

agent C l i en t
l o c a t i o n shop ;
t ry ( go [ 2 , 3 ] i n f o ){
t ry ( on A read [ 2 ] shop ) {
t ry ( go [ 0 , 0 ] shop ){}

} e l s e {
t ry ( go [ 0 , 3 ] home){}

}
}

endagent

agent Broker
t ry ( on A wr i t e [ 4 ] shopA)
{
} e l s e {

t ry ( on A wr i t e [ 7 ] shopB )
{
}

}
endagent

system Shops
@locat ion home
Cl i en t

end loca t i on
@locat ion i n f o
Broker

end loca t i on
endsystem

Fig. 3. TLang encoding of Shops system

Some explanations are needed in order to understand the implementation. The
first line tells the compiler that the program will use Java types and instructions.
The next line describes the location addresses and communication ports. For
example home (192.168.1.2: 9000, 0) tells that home location has the IP address
192.168.1.2, it runs the basic framework at port 9000 and has no preferred
port for receiving agents. The next line declare a global channel named A for
messages of type location. The rest of the specification deals with agents code
and distribution.
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Fig. 4. Running of the Shops system

Figure 4 presents the result of system execution after the agents were com-
pleted with some text output. Each window corresponds to a location which is
written in the status bar. The text boxes contains system messages and agents
output, providing useful information about the system evolution. The Client
starts at location home, and after 5 units of time it moves to location info. At
info he communicates with the Broker and receives the name shopB along chan-
nel A. It is important to observe that he does not interact at local time 6, when
he arrives, but after another tick. To understand why this happens it is enough

to follow the Client configuration evolution: home[(go, (2, 3), info)] tick−−−→
5 go−−→

info[#(in A, 2 shop)] tick−−−→ info[(in A, 2, shop)]. This emphasizes the corre-
spondence between the implementation and the TiMo semantics. Then the agent
moves to location shopB where it prints a confirmation message. Location shopA
remains empty during the entire period of time. If we describe the system by
a configuration perspective, we get the following evolution which abstracts the
system execution and follows the TiMo semantics:

home[(go, (2, 3), info)]×info[(out A, 4, shopA)] tick−−−→
4 comfail−−−−−→ home[(go, (0, 1),

info)] × info[ #(out A, 7, shopB)] tick−−−→ go−−→ tick−−−→ home[0] × info[(out A, 6,

shopB), (in A, 2, shop)] com−−−→ tick−−−→ info[(go, (0, 0), shopB), 0B]
go−−→ tick−−−→
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info[0B] ×shopB[0C ]. By 0C we denote the terminated Client process and by
0B the terminated Broker process. We omit the empty location configuration.

7 Related Work and Concluding Remarks

The paper presents a software platform for timed migration. We develop this
platform starting from a process algebra which uses time constraints to control
both the communication between processes and movement between locations.

We design this platform in two layers. The lower layer deals with low-level
details and provides the migration mechanism. It also implements the general
concepts used in process algebra of the upper layer, and so it can be re-used for
the implementation of other formalisms with mobility. We emphasize the upper
layer implementing TiMo, a process algebra with communication, migration and
temporal aspects. An intermediate language called TLang is used to specify a
TiMo distributed systems. The novel features of the lower layer are given by a
reusable mobility mechanism using various Java class-loading techniques, as well
as the possibility to see the formal evolutions (defined by their semantics) for
both TiMo and dπ-calculus which can emphasize possible discrepancies between
formal specifications and their implementations. Another feature is represented
by the implementation of a distributed protocol without a central coordinator; it
allows a sound development methodology of agents on a single machine followed
by their distribution among locations.

In TiMo the novelty is provided by the use of two timers lt and mt, and
a safety process depending on the the migration timer mt. This aspects are
reflected in the corresponding implementation of TiMo.

A similar platform called IMC is presented in [1]. Based on this platform, the
authors have implemented the distributed π-calculus. MCTools lower layer corre-
sponds to IMC, and offers more functionalities based on a different architecture.
Let us mention few differences: the naming mechanism, an integrated formal
evolution engine, remote actions which allow to initialize a distributed environ-
ment based on a specification. Moreover, using two layers, MCTools implements
a handling mechanism of various formalism which is not available with IMC.

Several formalisms and implementations have been proposed in the recent
years. Among them, we mention Facile [10], join calculus [5] and nomadic π-
calculus [9]. Compared to these works, MCTools provide a flexible migration
layer which could be used by several formalisms. The migration is based on the
movement of the agent class and its dependencies from each location to any
other location using MCTools lower layer.
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Abstract. In this paper, we present the modeling, validation, and veri-
fication of an industrial protocol for constraint-based path computation,
called PCEP. From the PCEP specification defined by IETF, we divide
the functionalities of PCEP into two parts: application and protocol.
The protocol part of PCEP is then described in the IF language which
is based on communicating timed automata. A number of basic require-
ments are identified from the PCEP specification and then described as
properties in the IF language. Based on these properties, the validation
and verification of the formal specification are carried out using the IF
toolset. Test cases are generated by using an automatic test generation
tool, called TestGen-IF, which uses partial state space exploration guided
by test purposes. As a result of the modeling, validation, and verifica-
tion, some errors and ambiguities are found in the PCEP specification.
Also a number of test cases are obtained which will be used for testing
implementations.

1 Introduction

Formal methods are mathematically rigorous techniques that can be used to de-
scribe and analyze the behavior of systems. A number of advantages arise from
the use of formal methods during the software development procedure. Less am-
biguous specifications are provided and these can be used in model checking
and model-based testing. Validation is the process of evaluating software dur-
ing or at the end of the development process to determine whether it satisfies
specified requirements [1]. Model checking and model-based testing have been
widely used for validation and verification of systems. Recently, there have been
a number of industrial case studies that use formal methods in validation and
verification. Bozga et al. [2] presented the verification and test generation for the
SSCOP protocol and Jia and Graf [3] performed the verification experiments on
the MASCARA protocol using IF (Intermediate Format) [4]. Hessel and Pet-
tersson [5] provides model-based testing of a WAP gateway using Uppaal [6].
� This work has been supported by the French competitiveness cluster SYSTEM@TIC,
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The CARRIOCAS project [7] aims at providing a distributed pilot network
for industrial applications with high complexity, scope, and scale. A number
of hardware and software components are developed in the project in order
to provide the connectivity services for such large-scale distributed, data, and
computing intensive applications. One of the important activities of the CAR-
RIOCAS project is the validation experiment on the proposed pilot network. As
a part of the validation activities, a communication protocol for constraint-based
path computation which is called Path Computation Element Communication
Protocol (PCEP) [8] is chosen for validation and verification.

In this paper, we present the modeling, validation, and verification of PCEP,
which are carried out in the CARRIOCAS project. From the PCEP specification
defined by IETF (Internet Engineering Task Force), we divide the functionalities
of PCEP into two parts: application and protocol. The protocol part is then de-
scribed in the IF language. A number of basic requirements are identified from
the PCEP specification and then described as properties in IF. Based on these
properties, the validation and verification of the formal specification are car-
ried out using the IF toolset [9]. From the basic requirements, a number of test
purposes are defined and test cases are generated by using an automatic test
generation tool, called TestGen-IF [10]. As a result of the modeling, validation,
and verification, we found some errors and ambiguities in the PCEP specifica-
tion. Also we obtained a number of test cases which will be used for testing
implementations in the CARRIOCAS project.

The paper is organized as follows. In Section 2, we explain briefly about
the CARRIOCAS project and PCEP. The IF language and the IF toolset are
explained in Section 3. In Section 4, we describe how to model PCEP in the IF
language and the validation of the formal specification is carried out in Section
5. The test generation methods and results are discussed in Section 6 and finally
Section 7 concludes the paper.

2 CARRIOCAS Project and PCEP

2.1 CARRIOCAS Project

Large scale distributed applications (often termed as Grid applications) chal-
lenge the performance of the existing telecom network infrastructures. In the
CARRIOCAS project, a number of research and industrial applications are con-
sidered such as car design with crash simulations for safety analysis and energy
production with atomic reactor models for central problem simulations. These
applications require ultra-high performance computers to execute their simu-
lation application workflows during the life-cycle of the project and also need
exchange of massive amounts of data in order to enable local and distant groups
of engineers to work collaboratively while viewing and analyzing their results.

The purpose of the CARRIOCAS project is to design and develop the com-
ponents of high-throughput capacity system and flexible network architectures
that can adapt its connectivity services dynamically for the data-intensive and
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delay sensitive distributed applications. The pilot network aggregates the Eth-
ernet data flows issued from client networks to be transported by carrier grade
Ethernet Virtual Circuits. The CARRIOCAS project is attempting to develop a
common service management component based on the Scheduling, Reconfigura-
tion, and Virtualization (SRV) functions to allow the compositions of different
connection service elements from a network infrastructure. The SRV functions
can be extended above different types of infrastructures including computational
servers and data storage centers to deliver bundles of service elements. These
extensions require advanced Network Management capabilities based on Path
Computation Element (PCE) functions which provide the routes of the con-
nection services, e.g. the routes on GMPLS (Generalized Multi-Protocol Label
Switching)-capable carrier grade Ethernet switches.

In addition to the design and development of the network, one of the impor-
tant activities of the CARRIOCAS project is the validation experiment on the
proposed pilot network. As a part of the validation activities, a communication
protocol for constraint-based path computation which is called PCEP is chosen
for validation and verification.

2.2 Path Computation Element Communication Protocol

In large scale and multi-domain networks, path computation can be complex
and may require specific computational components and cooperation between
elements in different nodes. In order to address these problems, an architecture
based on PCE model has been proposed [8]. In this PCE-based architecture,
a PCE is an entity that computes a network path based on a network graph
and computational constraints and a Path Computation Client (PCC) is any
kind of client application requesting a path computation to be performed by
a PCE. PCEP is a communication protocol between a PCC and a PCE, or
between two PCEs in order to exchange path computation requests and path
computation replies as well as notifications of specific events related to the use
of a PCE. PCEP operates over TCP [11] which provides reliable messaging and
flow control. The following PCEP messages are defined:

– Open message is used to initiate and negotiate a PCEP session.
– Keepalive message is used to establish and maintain a PCEP session.
– PCReq message is sent to request a path computation.
– PCRep message is sent in reply to a path computation request.
– PCNtf message is sent to notify a specific event.
– PCErr message is sent upon the occurrence of a protocol error condition.
– Close message is used to close a PCEP session.

A PCC may have PCEP sessions with more than one PCE and similarly a
PCE may have PCEP sessions with multiple PCCs. Once the TCP connection is
established between a PCC and a PCE, the PCC and the PCE (also referred to
as “PCEP peers”) initiate PCEP session establishment. Various session param-
eters including the Keepalive timer, the Deadtimer, other detailed capabilities,
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and policy rules are carried within Open messages. If the session parameters
are agreed, Keepalive messages are used to acknowledge Open messages. Once
the PCEP session has been successfully established, Keepalive messages may be
exchanged between PCEP peers to ensure the liveness of the PCEP session. If
the session parameters are not acceptable but negotiable, session negotiation
can be performed where the proposed session parameters are contained within
PCErr messages. If the PCEP peers disagree on the session parameters or one
of the PCEP peers does not answer after the expiration of the establishment
timer, the TCP connection is immediately closed. Figure 1 shows the scenario
of PCEP session establishment after negotiation.

PCCPCE

Open Open

TCP Connection
Established

Error Keepalive

Keepalive

Open

PCEP Session
Established

Session parameters
not acceptable

Prepare new 
session parameters

Fig. 1. PCEP session establishment after negotiation

After establishment of a PCEP session, when an event is triggered that re-
quires the computation of a set of paths, the PCC sends a PCReq message which
contains a set of constraints and attributes for the path for computing. Upon
receiving a path computation request from a PCC, the PCE triggers a path com-
putation, the results are sent back to the PCC in a PCRep message where they
can be either positive (one or more computed paths) or negative (no path found).
When a PCE wants to notify a specific event to PCCs such as possible unaccept-
able delay because of overload, it sends a PCNtf message to PCCs. Similarly,
a PCC may desire to notify a PCE of a particular event such as the cancela-
tion of pending requests. A PCErr message is sent in several situations: when
a protocol error condition is met or when the request is not compliant with the
PCEP specification, e.g. reception of malformed messages or unexpected mes-
sages. When one of the PCEP peers desires to terminate a PCEP session, it first
sends a Close message and then closes the TCP connection. When the PCEP
session is terminated, the PCC and the PCE cancel all pending operations and
clear corresponding resources.
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3 IF Language

3.1 IF Model

IF [4] is a formal method based on communicating timed automata in order to
model asynchronous communicating real-time systems. In IF, a system is ex-
pressed by a set of parallel processes communicating asynchronously through a
set of buffers. A process instance can be created and destroyed dynamically dur-
ing system execution. An IF process is described as a timed automaton extended
with discrete data variables. A process has a set of control states and a private
buffer for input messages, and can have local data such as discrete variables and
clocks. There are two types of control states: stable states and unstable states.
An unstable state is a temporary state where no interleaving between processes
is possible. In other words, if a process moves to an unstable state by an action,
the atomicity of the execution is guaranteed until it reaches a stable state.

Transitions describe the behavior of a process on stimuli. A transition can be
triggered either by (timed) guards or by an input message where an urgency at-
tribute (eager, delayable or lazy) defines the priority of the transition over time
progress. When an eager transition is executable, time progress is blocked until
the transition is executed. If there is an executable delayable transition, time can
progress as long as the transition is executable. If time progress makes the de-
layable transition non-executable, time progress is blocked until the transition is
executed. For lazy transitions, time can progress although the transitions become
non-executable. The action of a transition may include sending output messages,
setting/resetting clocks, assignment of variable values, and creation/destruction
of processes.

3.2 IF Toolset

The IF toolset [9] provides an environment for modeling and validation of an IF
specification. The core components of the toolset are the IF static analyzer and
the IF exploration platform. The IF static analyzer transforms an IF specifica-
tion into an abstract syntax tree which is a collection of C++ objects. The IF
exploration platform performs the simulation of process executions by using the
abstract syntax trees. A set of APIs is provided by the IF exploration platform,
which allows implementation of user-specific exploration. Through these APIs,
CADP [12], a tool for validation of LTS models and TGV [13], for test case
generation using on-the-fly technique can be connected to the IF toolset.

In the IF toolset, it is possible to check if given properties hold for an IF
specification by using observers. Once a property is described in the IF language
using a specific syntax for observers, e.g. monitoring of events and cutting off
generation of irrelevant states, it is executed in parallel with the target system.
The communication between the system and the observer process is synchronous
and the observer process has always the highest priority during exploration so
that monitoring of an event is triggered immediately when the event occurs.
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4 Formal Description of PCEP

4.1 Overall Architecture

In our experiments, we divide the functionalities of PCEP into two parts: appli-
cation and protocol. The functionalities of the application part include session
initiation, session parameter negotiation, request/reply of path computation,
notification of specific events, closing the session, etc. The functionalities of the
protocol part include the handling of finite state machines including local vari-
ables and timers, collision resolution procedure, keeping the current session by
exchanging Keepalive messages, etc. In our formal specification of PCEP, the pro-
tocol part is modeled by a system. PCEP applications and the lower layer (TCP)
are, therefore, considered to be an environment. A complete set of service prim-
itives are defined between PCEP applications and the system and between the
system and the lower layer. As a PCEP application can communicate with more
than one peer PCEP applications, it is necessary to model multiple instances
of the PCEP protocol. The system consists of a main process and multiple in-
stances of a child process where each instance of the child process handles a
PCEP session. The Figure 2 shows the overall architecture.

Environment (PCEP application)

TCP_Open_req, 
TCP_Data_req,
TCP_Close_req, 
TCP_Abort_req

System PCEP

Environment (TCP)

TCP_Open_cfm,
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TCP_Close_ind,
TCP_Abort_ind,
TCP_connection_fail_ind

PCEP_Open_req,
PCEP_Keepalive_req,
PCEP_PCReq_req,
PCEP_PCRep_req,
PCEP_Noti_req, 
PCEP_Error_req,
PCEP_Close_req
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PCEP_Open_ind,
PCEP_Keepalive_ind,
PCEP_PCReq_ind,
PCEP_PCRep_ind,
PCEP_Noti_ind,
PCEP_Error_ind.
PCEP_Close_ind

TCP_Open_indTCP_Open_resp

Invoke PCEP child

PCEP_Open_init_req

 

 

 

 

 

 

 

 

 

 

Fig. 2. Overall architecture of the formal specification of PCEP

In TCP, function interfaces are defined to provide a certain minimum set of
services to guarantee that all TCP implementations can support the same proto-
col hierarchy [11]. The service primitives between the system and TCP are based
on those function interfaces. For exchange of user data, i.e. exchange of the PCEP
messages through Send and Receive user calls, we introduce parameterized ser-
vice primitives, TCP Data PCEP xxx req and TCP Data PCEP xxx ind. The
TCP Data PCEP Unknown ind service primitive represents an unknown PCEP
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message from its peer and the TCP connection fail ind service primitive rep-
resents TCP connection failures such as the failure of sending a message. The
service primitives between the system and PCEP applications are based on the
PCEP messages. In order to model session initiation request from a PCEP appli-
cation, the PCEP Open init req service primitive is introduced. When the main
process receives a session initiation request by receiving either the TCP Open ind
message from a PCEP peer or the PCEP Open init req message from a PCEP
application, it creates a child process which manages the PCEP session.

4.2 States, Internal Variables, and Timers

As mentioned in Section 4.1, we have two kinds of processes in our model: a
main process and a child process. Since the purpose of the main process is to
create instances of a child process when there are session initiation requests, the
main process has only one stable state, Idle. In a child process the following four
stable states are defined based on the PCEP specification: TCPPending, Open-
Wait, KeepWait, and SessionUP. In addition to the stable states, we introduce
a number of unstable states in order to branch off the control flow of a process.
If the behavior is decided by internal variable values or clock values, each case
can be represented by a transition. If the decision should be made by the pa-
rameter values of an input message, however, it is necessary to have more than
one transition, one to receive a message and the others to check the parameter
values. In this case, the parameter values are checked in unstable states in order
to guarantee the atomicity of the behavior. The following shows an example.

state TCPPending;
deadline lazy;
input TCP_Open_cfm(tcpConnectResult);
nextstate TCPPending_TCP_Open_cfm_decision;

...
endstate;

state TCPPending_TCP_Open_cfm_decision #unstable ;
provided (tcpConnectResult = ConnectSuccess);
...

nextstate OpenWait;

provided (tcpConnectResult = ConnectFail) and
(tcpConnectRetry < TCPConnectMaxRetry);

...
nextstate TCPPending;

...
endstate;

In our model, four internal variables and five timers are defined based on the
PCEP specification: tcpConnectRetry, pcepOpenRetry, remoteOK, and localOK
for internal variables, and tcpConnectTimer, pcepOpenWaitTimer, pcepKeep-
WaitTimer, pcepKeepaliveTimer, and pcepDeadTimer for timers. In addition to
the above internal variables, the main process manages a childInfoTable which
contains information on the current ongoing sessions in order to manage the
number of active sessions and duplicated session initiation requests. Also the
childInfoTable is used for collision resolution procedure when there are simulta-
neous session initiation requests between PCEP peers.
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As mentioned in Section 4.1, a decision on session parameter negotiation is car-
ried out by PCEP applications in our model. When a child process in OpenWait
state receives an Open message from its peer, it sends the received information
to its PCEP application and then waits for a reply from the application. If there
is no reply for a given time, the child process should release the corresponding
PCEP resources and close the TCP connection. A new timer, internalKeep-
WaitTimer is introduced for that purpose. Similarly, internalOpenWaitTimer is
introduced for waiting a reply from applications when a PCErr message is re-
ceived from its peer for session negotiation. The SyncTimer is not included in
our model because the cancelation of path computation request is considered to
be the functionality of PCEP applications.

4.3 Abstraction of Information

In PCEP, each PCEP message has a common header and may have a number of
PCEP objects. In our service primitives, the number of parameters is minimized
in order to reduce the problem size of the model. A minimum set of parameters
to decide the behavior of the system is defined for each service primitive as fol-
lows: Keepalive and Deadtimer for an Open message, a list of pairs of errorType
and errorValue for a PCErr message, the existence of rpObject and endPointO-
bject for a PCReq message, and the existence of rpObject for a PCRep message.
The Keepalive parameter value is used to send a Keepalive message periodically
in SessionUP state. A PCEP session is closed if there is no PCEP message from
its peer during the time given in the Deadtimer parameter. The errorType and
errorValue are necessary since the behavior of the system can be different ac-
cording to these values. The existence of rpObject and endPointObject is used
to send proper PCErr messages when these mandatory parameters are missing.

In our model, we assume that the PCEP messages received from PCEP peers
may have errors such as missing mandatory objects and unknown objects. In
order to model any errors in the received PCEP message which cannot be mod-
eled by other parameters, a boolean type parameter, errorInPCEPMessage is
defined in TCP Data PCEP XXX ind service primitives. For example, receiving
an unknown object is modeled by “errorInPCEPMessage=true” while missing
rpObject by “rpObjectExist=false”. Since the errorInPCEPMessage parameter
represents most erroneous messages, some cases are missing in our model, e.g.
the system should send a PCErr message with “errorType=3” when it receives
an unknown object from its peer. When there is a TCP connection request from
its peer, the decision whether accept it or not is usually made by system calls
without interaction with its applications. Therefore, the tcpConnectResult pa-
rameter, which contains the result of this decision, is included in TCP Open ind
service primitive.

4.4 Remarks

In this section, we explain two issues that we have faced when modeling.
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How to make time progress in a system? In IF, it is assumed that time does
not progress during execution of transitions, i.e. the time spent during execution
of transitions is always zero. Time can progress only in stable configurations as
long as there is no executable eager transition. In our model, there is always at
least one executable transition enabled by an input message from environment
at any stable state as we designed the system in such a way that the interaction
between the system and environment is possible at any instance. Therefore, if the
transitions enabled by an input message from environment have eager deadline,
time in the system will never progress. In order to solve this problem, we used
lazy deadline for every transition enabled by an input message from environment.

Is the first incoming message served first in a process? In IF, the com-
munication between two processes is asynchronous, i.e. messages from other
processes are stored in a buffer before being consumed. However, messages from
environment are handled in a different way. The Figure 3 shows how incoming
messages are handled in a process.

 

Process
Buffer
(FIFO)

env

signalroute_1 
(FIFO or Multiset)

signalroute_n-1
(FIFO or Multiset)

peer process_1

peer process_n-1

peer process_n

Fig. 3. Handling of incoming messages in a process

As shown in the figure, there is a FIFO buffer for each process. The messages
sent from other processes arrive at the buffer either through a signalroute or
directly from the peer process. Each signalroute has its own property such as
fifo/multiset, reliable/lossy, etc. When a message is passed to a receiver process
from a signalroute, it is stored in the buffer. The order of passing messages from
signalroute to the buffer can be either FIFO or random according to the property
of the signalroute. When a process sends a message to a receiver process directly
by using the destination process ID, it is stored in the buffer immediately. When
a message is sent from environment to a process, the message is not stored in the
buffer and is consumed immediately by the process although there are messages
in the buffer waiting for being consumed. Therefore, the communication between
environment and a process is synchronous while the communication between two
processes is asynchronous.

In our model, in the beginning, there was an internal communication between
the main process and a child process. When an instance of a child process is to
terminate, it sends a done message to the main process and the main process



Modeling, Validation, and Verification of PCEP Using the IF Language 131

clears all internal information related to that child process. In order to keep the
consistency of resources, the main process should consume the done message as
soon as it receives. However, this cannot be guaranteed since the main process
can receive messages from environment at any time. As a result, we had resource
mismatch problem, i.e. the child information was not cleared in the main process
although the child process had already been terminated. In order to solve this
problem, we removed the internal communication and the internal information
related to a child process is cleared by the child process itself. Note that our
solution is a temporary one and only applicable to limited cases. A general
solution is required for the above problem.

5 Validation of the Formal Description

5.1 Validation with IF Observers

IF observers can be used to check if given properties hold for an IF specification.
Properties are based on observable actions such as input and output messages,
and also include checking variable values and clock values. Once a property is
described in the IF language, an exhaustive state space exploration using either
breadth first search or depth first search is carried out by the IF simulator. During
the simulation, the observer process checks if it can observe the expected behav-
ior. In our experiments, first, we define the following three general properties.

– Property G1: The specification must be deadlock-free.
– Property G2: In any state, there must be at least one active timer.
– Property G3: In any state, the value of any active timer must be no greater

than its maximum.

The purpose of the property G2 is to avoid infinite time progress waiting for
some events1. The property G3 checks if the system stops timers appropriately
either by timeout or by cancelation. Second, the properties specific to PCEP are
identified from the PCEP specification. In order to facilitate the modeling, we
define a state transition table that describes the behavior of the system for a
given set of state, input, and conditions. Table 1 shows an example.

According to Table 1, if the system is in KeepWait state where the Keepalive
timer is active and remoteOK=0 and it receives a TCP Data PCEP Keepalive ind
message without error, it should send a PCEP Keepalive ind message and move
to OpenWait state. The above information represents an atomic behavior that
the system should follow and it can be considered to be a requirement. In our ex-
periments, 101 basic requirements are identified from a complete state transition
table and then 66 requirements are described as properties in the IF language.
For each requirement, it is considered that the property holds for the formal
specification if the system sends the expected output messages and moves to the
expected next state for the given set of state, input, and conditions.
1 In the case of PCEP, the property G2 may not hold if the Keepalive timer and the

Deadtimer have zero values.
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Table 1. State transition table

Input KeepWait
Index Condition Output Next state

TCP Data PCEP Keepalive ind 56

Keepalive
timer active,
No error in

msg,
remoteOK=0

PCEP Keepalive ind OpenWait

In order to reduce the problem size during the validation, first, the timer
values and retry numbers are limited. The maximum values of the tcpConnect-
Timer, the pcepOpenWaitTimer, and the pcepKeepWaitTimer are limited to 2
instead of 60 seconds2. The maximum values of the pcepKeepaliveTimer and
the pcepDeadTimer are limited to 2 and 8 respectively as the recommended
value for the pcepDeadTimer is four times the value of the pcepKeepaliveTimer
used by the remote peer. The tcpConnectMaxRetry is limited to 1 instead of
5. Second, we limit the range of parameter values. The values of the Keepalive
and the Deadtimer parameters in an Open message are fixed to have 2 and 8,
respectively. The number of error objects that can be carried within a PCErr
message is limited to 1 and the values of errorType and errorValue parameters
are limited to 1 and from 1 to 6 respectively.

5.2 Validation Results

With the limited timer values, retry numbers, and parameter values, the system
with one instance of a child process was completely explored with 410 states and
12010 transitions. When we allowed all possible values for the input parameters
while the timer values and retry numbers were limited, we had extremely large
number of transitions. The system was completely explored with 3095 states and
55355305 transitions. When we used the timer values and retry numbers as given
in the PCEP specification, e.g. 60 seconds for the tcpConnectTimer, while the
parameter values were limited, we could explore the system with 85750 states
and 3945670 transitions. In the case of two instances of a child process with the
limited timer values, retry numbers, and parameter values, the simulator com-
pleted state space exploration with 74476 states and 4294788 transitions. For
most properties, the validation is carried out where the timer values, retry num-
bers, and parameter values are limited. If it is necessary to have other parameter
values, the ranges of those parameters are changed appropriately in the formal
specification. For the property 29, the validation is carried out with two instances
of a child process as it checks if the current PCEP connection is released by the
collision resolution procedure. Table 2 shows the validation results.

Among 69 properties (three general and 66 specific to PCEP), 66 properties
were successfully validated where most simulations were terminated within 15
2 It is possible to consider that timer values are abstracted such that 0 represents no

time progress, 1 time progress up to 59 seconds, and 2 represents 60 seconds.
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Table 2. Validation results

Properties # of states # of trans
Time

(hh:mm:ss) Results

Prop. G1 85514 2855179 12:26:09 Interrupted (No failure)
Prop. G2 1568 54981 6 Validated
Prop. G3 51923 1050744 3:47 Validated
Prop. 18 2516 55929 9 Failed (No success)
Prop. 29 108111 2629793 9:58:28 Interrupted (Success, No failure)
Others < 33500 < 867000 < 2:25 Validated

seconds. For two properties (property G1 and property 29), the simulations
were interrupted after around 10 hours because of state explosion problem3.
Although we observed the expected behavior and no failure was found for those
two properties, we cannot say that the validation was successful since we could
not explore all possible state space. We found that the property 18 does not
hold for our formal specification. Although we explored all possible state space,
we could not observe the expected behavior. This was due to the problem that
was found in the original PCEP specification. There exists a case in the PCEP
specification that never happens.

5.3 Remarks

One of the difficulties during the validation was the large size of state space. In
our model, some internal variables, e.g. internal variables for receiving parame-
ter values, are used temporarily. During the validation, we found that a number
of redundant states were generated due to those internal variables. In order to
remove those redundant states, we initialized those internal variables by the end
of each transition. For example, once we check the value of the tcpConnectResult
variable in TCPPending TCP Open cfm decision state as presented in Section
4.2, the variable is initialized as it is not used in other states. As a result, the
numbers of states and transitions explored after exhaustive state space explo-
ration reduced from 30329 states and 941313 transitions to 410 states and 12010
transitions.

In IF observers, internal variable values and the parameter values of messages
can be checked after the execution of each transition. Therefore, if a property
includes checking variable values or parameter values while those values are
initialized after the execution of the transition, e.g. by going back to Idle state, it
is not possible to check the property. The main reason why only 66 requirements
are described as properties while 101 basic requirements are identified is due to
this limitation.

3 In our experiments, it is considered to have the state explosion problem either when
the simulation proceeds very slowly where the memory usage reaches almost its
maximum or when the simulator crashes due to lack of memory.
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6 Test Generation of PCEP

6.1 Testgen-IF

The TestGen-IF generates timed test cases from an IF specification and a set
of test purposes. Partial state space exploration guided by test purposes is car-
ried out, which is called the Hit-or-Jump algorithm [14]. A test purpose is a
set of (ordered) conditions. A condition is a conjunction of a process instance
constraint, state constraints, action constraints, variable constraints, and clock
constraints. A process instant constraint indicates the identifier of a process in-
stance. A state constraint indicates source state or target state of a transition.
Action constraints describe observable actions such as sending or receiving mes-
sages as well as non-observable actions such as informal statements. A variable
constraint gives conditions on variable values and a clock constraint conditions
on either clock values or status of clocks, e.g. active/inactive. The following
shows the test purpose which corresponds to the requirement given in Table 1.

tp56 = {cond1}
cond1 = constraint1 ∧ constraint2 ∧ . . . ∧ constraint7
constraint1 = “process : instance = {PCEPChild}0”
constraint2 = “state : source = KeepWait”
constraint3 = “state : target = OpenWait”
constraint4 = “action : input TCP Data PCEP Keepalive ind(f)”
constraint5 = “action : output PCEP Keepalive ind()”
constraint6 = “variable : remoteOK = false”
constraint7 = “clock : pcepKeepWaitTimer is active”

The state exploration starts from a given state si, which is the initial state in
the beginning, using breadth first search with a given depth limit. Initially, all
conditions in a test purpose are unmarked. If an unmarked condition is satisfied
in a transition during exploration where the target state is sj , which is called
a Hit, the condition is marked, the path from si to sj is stored, the buffer that
stores visited state information is cleared, and then the exploration starts again
from sj . If no unmarked condition is satisfied during the exploration until the
given depth limit, which is called a Jump, one of leaf nodes, e.g. the state s′j is
chosen for the start state, the path from si to s′j is stored, the buffer that stores
visited state information is cleared, and then exploration starts again from s′j .
The state space exploration terminates either when all conditions are marked
or when all state space is explored within the depth limit. Once all conditions
are satisfied during the exploration, i.e. all conditions are marked, the path from
the initial state to the target state of the transition where the last condition is
satisfied becomes a test sequence for the test purpose. A test sequence consists of
observable actions such as input and output messages and delays which represent
time intervals between observable actions.

6.2 Test Generation and Results

As mentioned in Section 5.1, 101 basic requirements are identified from the
PCEP specification. In our experiments, for simplicity, we generate a test case
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for each requirement. Among 101 requirements, 98 requirements are described as
test purposes. Three requirements are missing because of the following reasons.
As explained in Section 5.2, there is a requirement that our formal specifica-
tion does not meet (property 18). For the other two requirements, they are not
considered because the atomicity of the behavior cannot be guaranteed in our
description of test purposes since two processes are involved in the behavior.

Similar to the case of validation, the timer values, retry numbers, and param-
eter values are limited for most test purposes. If it is necessary to have other
parameter values, the ranges of those parameters are changed appropriately. The
following shows an example test sequence which is generated by the test purpose
given in Section 6.1

?TCP_Open_ind{1,ConnectSuccess} !TCP_Open_resp{ConnectSuccess}

!TCP_Data_PCEP_Open_req{{{2,8}}}

?TCP_Data_PCEP_Open_ind{f,{{2,8}}} !PCEP_Open_ind{{{2,8}}}

?PCEP_Error_req{{1,{{1,4},}}} !TCP_Data_PCEP_Error_req{{1,{{1,4},}}}

?TCP_Data_PCEP_Keepalive_ind{f} !PCEP_Keepalive_ind{}

For all 98 test purposes, the test sequences are generated successfully. After
deleting the test sequences which are the prefix of another one, we finally obtain
90 test sequences where the total number of test inputs is 353. The generated
test sequences will be used for testing PCEP implementation developed by one
of the partners of the CARRIOCAS project.

7 Conclusions

In this paper, we presented the modeling, validation, and verification of PCEP
which is a protocol for constraint-based path computation defined by IETF.
The protocol part of PCEP is described in the IF language. A number of ba-
sic requirements are identified from the PCEP specification and then described
as properties in the IF language. Based on these properties, the validation of
the formal specification is carried out by using the IF toolset. From the basic
requirements, a number of test purposes are defined and test cases are gener-
ated by using the TestGen-IF. The obtained test cases will be used for testing
implementations developed by one of the partners of the CARRIOCAS project.

Our experiments showed very promising results concerning the use of formal
methods for modeling, validation, and verification. A number of errors and am-
biguities were found from the original specification including a wrong sentence
that misleads the behavior of the protocol, a non-executable transition (related
to the property 18 as explained in Section 5.2), and unclear descriptions such
as when a timer should be started. It should be noted that most of these errors
were found during the modeling phase. Therefore, we can conclude that if we
describe specifications using formal methods, we can obtain higher quality of
specifications, i.e. with less errors and ambiguities even before validation of the
formal specifications.
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Abstract. Conformance testing with the guaranteed fault coverage is based on 
distinguishing faulty system implementations from the corresponding system 
specification. We consider timed systems modeled by timed possibly non-
deterministic finite state machines (TFSMs) and propose algorithms for distin-
guishing two TFSMs. In particular, we present a preset algorithm for separating 
two separable TFSMs and an adaptive algorithm for r-distinguishing two possi-
bly non-separable TFSMs. The proposed techniques extend existing methods 
for untimed non-deterministic FSMs by dealing with the fact that unlike  
untimed FSMs in general, a TFSM has an infinite number of timed inputs. Cor-
respondingly we state that the upper bounds on the length of distinguishing se-
quences are the same as for untimed FSMs.  

1   Introduction 

Timed systems are used in various application areas such as telecommunication sys-
tems, plant and traffic controllers and others. A number of formal models have been 
proposed for testing and verification of timed systems (see, for example, [1], [5], [22]) 
including systems modeled as timed Finite State Machines (FSMs) [9], [15], [16]. 
FSMs are widely used in many application areas; in particular, they are used as the 
underlying models for formal description techniques, such as SDL and UML State 
Diagrams, and many conformance test derivation methods are based on a specifica-
tion given in the form of a finite state machine. For surveys see [3], [11] and for some 
related experiments see [4]. Most of the past work on FSM-based conformance testing 
has been done for deriving tests for deterministic FSMs w.r.t. the equivalence rela-
tion. In addition, there also exist methods for deriving tests for non-deterministic 
FSMs w.r.t. a number of conformance relations, such as the equivalence, reduction, 
and the non-separability relations [6], [7], [8], [12], [17], [18], [21]. Two FSMs are 
equivalent if they have the same input/output behavior and an FSM P is a reduction of 
FSM S if the behavior of P is contained in the behavior of S. Moreover, two FSMs are 
non-separable [23] if the sets of output responses of these machines to each input  
sequence intersect. If there exists an input sequence, called a separating sequence, 
such that the output responses of the two FSMs to the sequence are disjoint then the  
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machines are separable. Two complete FSMs are r-distinguishable if they have no 
common complete reduction. This fact can be checked by a finite set of sequences 
which is called an r-distinguishing set of the two FSMs. In this paper, we say that two 
FSMs are distinguishable if they are separable or r-distinguishable. Experiments that 
distinguish two FSMs can be classified as adaptive and preset [10]. In an adaptive 
experiment the next input of an experiment depends on the outputs to previous input 
sequences and in a preset experiment the whole input sequence is predetermined in-
dependently of the intermediate outcome of an experiment. Separating two FSMs can 
be done in a preset experiment; however, two non-separable FSMs can be still distin-
guished by an adaptive experiment using the r-distinguishability relation.  

Testing based on timed FSM models is a difficult task since it requires checking 
the time constraints of the system in addition to input and output behavior. In the past 
few years some work has been carried out on deriving test suites based on timed 
automata. For example, Springintveld et al. [22] proposed a rigorous method that de-
rives test suites with the guaranteed fault coverage w.r.t. the equivalence relation 
when the system specification and an Implementation Under Test (IUT) are determi-
nistic. The results were extended in [5] to non-deterministic timed automata w.r.t. the 
equivalence relation under the assumption of “all weather conditions” [13], [14], also 
called complete testing assumption in [12]. According to this assumption, if an input 
sequence (a test case) is applied a number of times to a non-deterministic IUT, then 
all possible output sequences of the IUT to this test case are observed while testing. 
Similar to FSM-based methods, the methods in [5], [22] use so-called distinguishing 
sequences in test derivation; however, these sequences are derived for the equivalence 
relation. Recently, Merayo et al. [15], [16] considered a timed possibly non-
deterministic FSM model. Time constrains limit a time elapsed when an output has to 
be produced after an input has been applied to the FSM. When an output is produced 
the clock variable is reset to zero. The model also takes into account time-outs; if no 
input is applied at a current state for some time-out period, the (timed) FSM moves 
from current state to another state using a time-out function. Various conformance 
relations are introduced for such a timed FSM model; however, the problem of deriv-
ing distinguishing sequences w.r.t. the proposed relations is not tackled in the papers. 
A timed model of a stochastic FSM is considered in [9] where the authors propose a 
method for deriving a complete test suite for the considered model w.r.t. the reduction 
relation. Distinguishing sets used for deriving a complete test suite extend corre-
sponding sets for untimed FSMs based on related random variables.   

When an IUT has a limited controllability, as happens, for instance, in remote test-
ing, the complete testing assumption cannot be satisfied. In this case, the only relation 
that can be used for the preset testing with the guaranteed fault coverage is the sepa-
rability relation [19], defined by Starke in [23], and the only relation that can be used 
for the adaptive testing with the guaranteed fault coverage is the r-distinguihability 
relation. Derivation methods and upper bounds on length of distinguishing sequences 
for untimed non-deterministic FSMs based on the separability relation can be found in 
[2], [20] and derivation methods based on the r-distinguishability relation can be 
found in [8], [17], [18]. However, methods given for the derivation of distinguishing 
sequence for untimed FSMs cannot be directly applied to timed FSMs, since in timed 
FSMs, in general, the number of timed inputs is infinite; thus, the extension of these 
methods is not a trivial problem. Accordingly, in this paper, we propose algorithms 
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for distinguishing timed non-deterministic FSMs (TFSMs) w.r.t. the separability and 
r-distinguishability relations. In particular, given two TFSMs, we present a preset 
algorithm for deriving a shortest (timed) sequence that separates the two machines, 
when such a sequence exists. For two non-separable but r-distinguishable TFSMs, we 
present an adaptive algorithm for deriving sequences that r-distinguish these ma-
chines. We also state that upper bounds on the length of such distinguishing se-
quences coincide with those of untimed FSMs and similar to untimed FSMs those 
bounds are reachable. As usual, the algorithms presented in this paper can be used as 
well for fault diagnosis of timed FSMs.  

We note that the TFSM model considered in this paper is somehow similar to that 
given in [15], [16]. In particular, as in [15], [16], we consider non-deterministic timed 
FSMs where time constraints are used to limit time elapsed at states and we also use 
one clock variable that is reset at every transition; however, unlike [15], [16], we do 
not consider time-outs at states. According to this fact, more complex time constraints 
can be described by the model in [15], [16]. Another timed model that is used as basis 
for test derivation is given in [5], [22]. This model is very close to the popular 
automaton based model presented by Alur and Dill [1]. However, we recall that the 
work in [22] considers only deterministic input/output behaviors of a timed I/O 
automaton while the authors in [5] consider non-deterministic behaviors only w.r.t. 
the equivalence relation under “all weather conditions” assumption. In comparison to 
the models used for test derivation in [5], [22], the models presented in this paper and 
in [15], [16] have less modeling capability since one clock is used and the clock is 
reset at every transition. However, unlike the timed model used in [5], [22], the timed 
models of this paper and in [15], [16] consider non-determinism and have an FSM as 
the underlying model. Correspondingly, for such TFSMs, FSM-based methods can be 
adapted for deriving distinguishing sequences as well as for deriving test suites with 
the guaranteed fault coverage. 

This paper is organized as follows. Section 2 includes preliminaries. Sections 3 and 4 
include algorithms, propositions and examples related to the derivation of separating 
and r-distinguishing sequences for timed non-deterministic FSMs. Section 5 concludes 
the paper. 

2   Preliminaries 

In this section, we introduce a timed non-deterministic Finite State Machine (TFSM) 
with some related notions and definitions.  

Definition 1. An FSM S is a 5-tuple (S, I, O, λS, s0), where S, I, and O are finite sets 
of states, inputs and outputs, respectively, s0 is the initial state and λS ⊆ S × I × O × S 
is a behavior relation.                                                                                                     � 

A timed possibly non-deterministic and partial FSM (TFSM) is an FSM annotated 
with a clock, a time reset operation and time guards associated with transitions. The 
clock t is a real number that measures the time delay at a state and the time reset op-
eration resets the value of the clock t to zero at the execution of a transition. A time 
guard gi describes the time domain when a transition can be executed and is given in 
the form ⎡min, max⎤, where ⎡ ∈ {(, [},⎤ ∈ {), ]} and min and max are non-negative 
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rationales such that min ≤ max. When min = max we consider the only interval [min, 
min] = {min}. An output delay describes the time domain when an output has to be 
produced after an input is applied and is also given in the form ⎡min, max⎤ over ra-
tional bounds min and max where min ≤ max. Here we assume that the time reset op-
eration is specified at every transition of a given TFSM.  

Definition 2. A timed FSM (TFSM) S often called simply a machine throughout the 
paper, is a 5-tuple (S, I, O, λS, s0); the transition relation λS ⊆ S × I × O × S × Π × ℵ 
where Π is the set of time guards over [0, ∞) and ℵ is the set of output delay intervals 
over [0, ∞).                                                                                                                     � 

The behavior of a TFSM S can be described as follows. If (s, i, o, s′, gi = ⎡min, max⎤, 
go = ⎡min′, max′⎤) ∈ S × I × O × S × Π × ℵ, we say that TFSM S when being at state s 
and accepting input i at time t satisfying the time guard t ∈ ⎡min, max⎤, responds (af-
ter the input i has been applied) with output o within the time delay specified in go and 
moves to the state s′. The clock is reset to zero and starts advancing at s′.  

A zero output delay, i.e. go = [0, 0], indicates that the output is produced instantly at 
the time when the input is applied. For simplicity, for a transition with go = [0, 0] and 
input guard gi over [0, ∞), we omit go and gi from the description of the transition. Thus, 
a transition (s, i, o, s′) indicates that being at state s and accepting input i at any time, S 
responds with output o instantly when i is applied. In this paper, we consider only func-
tional distinguishability [15], [16] between TFSMs and thus, we do not consider output 
delays. In other words, the transition relation is a 5-tuple, λS ⊆ S × I × O × S × Π. 

TFSM S is well-defined if for each two transitions (s, i, o, s′, ⎡min1, max1⎤), (s, i, o′, 
s′′, ⎡min2, max2⎤) ∈ λS s.t.  min2 ∈ ⎡min1, max1⎤ or min1 ∈ ⎡min2, max2⎤ it holds that o 
≠ o′ or s′ ≠ s′′. In this paper, we consider only well-defined TFSMs. In this case, we 
cannot merge two guards, out of the same state and under the same input, without 
changing the behavior of the TFSM. 

A TFSM S is observable if for each two transitions (s, i, o, s′, ⎡min1, max1⎤), (s, i, 
o′, s′′, ⎡min2, max2⎤) ∈ λS it holds that if ⎡min1, max1⎤ ∩ ⎡min1, max1⎤ ≠ ∅ then o′ = o 
implies s′ = s′′. 

The machine S is (time) deterministic if for each two transitions (s, i, o, s, ⎡min1, 
max1⎤), (s, i, o′, s′, ⎡min2, max2⎤) ∈ λS, it holds that ⎡min1, max1⎤ ∩ ⎡min2, max2⎤ = ∅; 
otherwise, the machine S is (time) non-deterministic. Each deterministic TFSM is 
observable. 

The TFSM S is input enabled if the underlying FSM is complete, i.e., if for each 
pair (s, i) ∈ S × I, λS has a transition (s, i, o, s′, ⎡min, max⎤). 

The TFSM S is complete if the underlying FSM is complete and for each pair (s, i) 
∈ S × I of TFSM S, the union of time guards over all transitions (s, i, o, s′, ⎡min, 
max⎤) ∈ λS equals to [0, ∞); otherwise, the machine is called partial. Given a com-
plete TFSM, the behavior of the TFSM is defined at each state for each input that can 
be applied at any time instance in [0, ∞). 

Definition 3. Given a TFSM S = (S, I, O, λS, s0), a pair (i, t), i ∈ I, t is a nonnegative 
rational, is a timed input that states that an input i is applied at time t. Given a state s, 
there is a clocked transition (s, (i, t), o, s′) in S if there exists a transition (s, i, o,  
s′, ⎡min, max⎤) ∈ λS with t ∈ ⎡min, max⎤.                                                                     � 
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A TFSM S = (S, I, O, λS, s0) is a submachine of TFSM P = (P, I, O, λP, p0) if S ⊆ P, s0 

= p0 and each clocked transition (s, (i, t), o, s′) of S is a clocked transition of P. 

Definition 4. Given TFSM S = (S, I, O, λS, s0), state s and a (time) guard g = ⎡min, 
max⎤, state s ′  is an (i, g)-successor of state s if there exists t ∈ g s.t. (s, (i, t), o, s′) is a 
clocked transition of S. Generally, the set of (i, g)-successors of state s can be empty 
as well as can have several states. Given a set of states M ⊆  S and a timed guard g = 
⎡min, max⎤, the set M′  of states is an (i, g)-successor of the set M if M′  is the union of 
the sets of (i, g)-successors over all states of the set M.                                               � 

Given a TFSM S = (S, I, O, λS, s0) and a pair (s, i) ∈ S × I, let G = {j1 = 0, j2, …, jm}, 
ja < ja+1,  a = 1, …, m - 1, be the finite ordered set of boundaries of guards over all 
transitions (s, i, o, s′, gj) ∈ λS. We denote Π(s, i) the (finite) set {(j1, j2), …, (jm-1, jm), 
(jm, ∞), {j1},{j2}, {j3}, ..{jm}}, i.e., the set Π(s, i) has singletons for all boundaries and 
all (infinite) domains with consecutive boundaries of the set G. By definition, the set 
Π(s, i) is finite and items of the set are very close to regions of the region graph in [1]. 
Each item of the set Π(s, i) describes a time domain (or region) where the TFSM has 
the same behavior for the pair (s, i). If there is no transition (s, i, o, s′, ⎡min, max⎤) ∈ 
λS then, by definition, Π(s, i) is the empty set. By definition of the set Π(s, i), the follow-
ing statement holds. 

Proposition 1. Given a TFSM S = (S, I, O, λS, s0), a pair (s, i) ∈ S × I s.t. the set Π(s, i) 
is not empty, g ∈ Π(s, i) and t1, t2  ∈ g, the sets of (i, t1)- and (i, t2)-successors of state s 
coincide.                                                                                                                                                       � 

We note that a TFSM can have the same behavior for the pair (s, i) in different do-
mains of the set Π(s,i). For example, suppose that λS has transitions (s, i, o1, s1, [0, 2)), 
(s, i, o2, s2, [2, ∞)), (s, i, o3, s1, [0, 3)), (s, i, o2, s1, [3, ∞)) for (s, i). The set Π(s, i) = {(0, 
2), (2, 3), (3, ∞), {0}, {2}, {3}}. The set of (i, 1)-successors of state s coincides with 
the set of (i, 0.5)-successors. Moreover, the TFSM at state s has the same behavior for 
timed inputs (i, 0) and (i, 1) despite of the fact that time instances 0 and 1 belong to 
different domains of the set Π(s, i).  

Definition 5. Given a TFSM S, a sequence over the input (output) alphabet is called an 
input (output) sequence. A sequence (i1, t1) … (il, tl) of timed inputs is a timed input 
sequence. The set of all timed sequences is denoted It*. We also introduce the function 
outS that maps the set S × It* into the set of output sequences. Given state s and a timed 
input sequence α = (i1, t1) … (il, tl), an output sequence o1 … ol ∈ outS(s, α) if there 
exist states s1 = s, …, sl+1 s.t. for each j ∈{1, …, l} the TFSM S has a clocked transition 
(sj, (ij, tj), oj, sj+1) and as usual, we say that the pair (α, outS(s, α)) can take the machine 
S from state s to state sl+1. A pair “timed_input_sequence_α/output_sequence_β” is a 
timed I/O sequence or a timed trace of S at state s if β = outS(s, α). 

If TFSM S is deterministic then for each state s and each timed input sequence α, 
the set outS(s, α) has at most one item. If TFSM S is complete then the set outS(s, α) 
is not empty. 

The set of all timed traces of S at state s is denoted TTrS(s), also denoted TTrS for 
short if s is the initial state of S. As usual, the TFSM S is initially connected if for 
each state s, there exists a timed trace that can take the machine from the initial state 
to state s. 
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As usual, the behavior of two TFSMs can be compared using their intersection. The 
intersection of two TFSMs S and P is not defined at state (s,p) for a timed input (i, t) 
when S and P at states s and p produce disjoint sets of outputs to this timed input. 

Definition 6. Given TFSMs S and P, the intersection S ∩ P is the largest connected 
submachine of the TFSM (S × P, I, O, λS∩P, (s0,p0)) where ((s,p), i, o, (s′,p′), ⎡min1, 
max1⎤ ) ∈ λS∩P if there are transitions (s, i, o, s′, ⎡min2, max2⎤) ∈ λS and (p, i, o, p′, 
⎡min3, max3⎤) ∈ λP s.t. ⎡min2, max2⎤  ∩ ⎡min3, max3⎤  ≠ ∅ and ⎡min1, max1⎤ = ⎡min2, 
max2⎤  ∩ ⎡min3, max3⎤.                                                                                                   � 

Similar to untimed FSMs [18], a number of compatibility and distinguishability rela-
tions can be defined between two complete non-deterministic timed FSMs. The only 
difference is that these relations are defined w.r.t. timed input sequences.  

Definition 71  

- TFSMs S and P are equivalent if TTrS = TTrP; otherwise, the machines are 
distinguishable.  A timed input sequence α s.t. outS(s0, α) ≠ outP(p0, α) is 
said to distinguish machines S and P. 

- TFSM S is a reduction of TFSM P if TTrS ⊆ TTrP; otherwise, S is not a re-
duction of TFSM P. If a complete TFSM S is not a reduction of a complete 
TFSM P then there exists a timed input sequence α such that outS(s0, α) ⊄ 
outP(p0, α) and α is said to r-distinguish the TFSM S from the TFSM P . 

- TFSMs S and P are non-separable if for each timed input sequence α it 
holds that outS(s0, α) ∩ outP(p0, α) ≠ ∅. If there exists a timed input se-
quence α s.t. outS(s0, α) ∩ outP(p0, α) = ∅ then TFSMs S and P are separa-
ble and α is said to separate machines S and P.  

- TFSMs S and P are r-compatible if there exists a complete TFSM that is a 
reduction of both machines S and P. If TFSMs S and P are not r-compatible 
then they are r-distinguishable. Similar to untimed FSMs, r-distinguishable 
TFSMs are not necessary r-distinguishable by a single sequence.                 � 

In this paper, we propose methods for deriving separating and r-distinguishing se-
quences for two complete and observable TFSMs (when such sequences exist). As the 
number of timed inputs of a complete TFSM is infinite, the methods used for untimed 
FSMs cannot be directly used. 

 

 
                            a)                                                  b) 

Fig. 1. a) Timed FSM S   b) Timed FSM P 

                                                           
1 In the same way, the compatibility and distinguishability relations can be introduced for two 

states of two TFSMs or for two states of a TFSM. 
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Fig. 2. Timed FSM S ∩ P 

3   Separability Relation and Separating Sequences 

Similar to untimed FSMs, the separability of TFSMs S and P can be checked by using 
the intersection S ∩ P. The following statement holds.  

Proposition 2. Given complete TFSMs S and P, if the intersection S ∩ P is complete 
then the TFSMs S and P are non-separable.                                                                  � 

In fact, state s of TFSM S and state p of TFSM P can be separated by a timed input 
(i, t) if and only if outS(s, (i, t)) ∩ outP(p, (i, t)) = ∅. If the intersection S ∩ P is com-
plete then for each state (s, p) and each timed input (i, t) it holds that outS(s, (i, t)) ∩ 
outP(p, (i, t)) ≠ ∅. Correspondingly, for each timed input sequence α it holds that 
outS(s0, α) ∩ outP(p0, α) ≠ ∅.  

We now present an algorithm for deriving a minimum length separating sequence 
for two complete observable TFSMs. Algorithm 1 uses the intersection of two parti-
tions. Given two partitions Π(q, i) and Π(s, i) over [0, ∞), the intersection of these parti-
tions contains non-empty intersections g ∩ h, g ∈ Π(q, i), h ∈ Π(s, i).  

 

Algorithm 1: Deriving a minimum length separating sequence of  
two TFSMs 
Input: Complete observable TFSMs S = (S, I, O, λS,  s0) and P = (P, I, O, λP,  p0) 
Output: A separating sequence of TFSMs S and P (when such a sequence exists)  

    Derive the intersection Q = S  ∩ P;  
If Q is a complete TFSM then END Algorithm 1. TFSMs S and P are non-
separable. 
Otherwise, assign 

k : = 0;  
Edge: = ∅;  
Qk 0 : = {(s0 ,p 0)}; 
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Qk : = {Q k 0}; 
While  

(for some Qk j∈ Qk , j ≥ 0, there exists a timed input (i, t) such 
that for each state (s,p) of the set Qk j , states s and p are sepa-
rated by (i, t) (Rule  1)   
or  
for each Qk j  ∈ Q k , there exists Qa m  ∈ Q a , a < k, s.t. each state 
(s,p) ∈ Qk j  is a reduction of some state (s′,p′) ∈ Qa m  (Rule 2)) 

Do: 
Qk + 1 : = ∅; 
For each subset Qk j  ∈ Qk , j = 0, ..., |Qk | - 1, for which there 

is no Qa m  ∈ Qa , a < k, s.t. each state (s,p) ∈ Q k j  is a re-
duction of some state (s′,p′) ∈ Qa m  and for each input i,  

Do: 
Derive the set Π as the intersection of Π(q, i) over all 

state pairs q ∈ Qk j ; 
For each guard g ∈ Π, derive the set M as the union 

of (i, g)-successors over all q ∈ Qk j  of the TFSM 
Q ; 

Add M to Qk + 1 ; 
Add a triple (Qk j , (i, g), M) to the set Edge;  
Increment k by 1; 

 

If for some 
kjkQ ,  j ≥ 0, there exists a timed input (i, t) such that for 

each state (s,p) of the set Q k j , states s and p are separated by (i, t) 
(Rule  1)  then derive a timed sequence α as follows. Given the set 

Edge, derive the sequence (Q 0 0 , (i1, g1), 
11 jQ ), (

11 jQ , (i2, g2), 
22 jQ ), 

…, (
1

)1(
−

−
kjkQ , (ik, gk), 

kjkQ ) such that (
1

)1(
−

−
ljlQ , (il, gl), 

ljlQ ) ∈ 

Edge for each l ∈ {1, …, k} and then derive a sequence of timed inputs 
α = (i1, t1) … (ik, tk) s.t. tj ∈ gj, j = 1, …, k. The sequence α is a shortest 
separating sequence of TFSMs S and P. 

If for each Q k j  ∈ Qk , there exists Qa m  ∈ Qa , a < k, s.t. each state 
(s,p) ∈ Qk j  is a reduction of some state (s′,p′) ∈ Qa m  then TFSMs S 
and P are non-separable.                                                                        � 

Proposition 3. If TFSMs S and P are separable then Algorithm 1 returns a shortest 
separating sequence of S and P.                                                                                    � 

In fact, in [20] an algorithm is given for deriving a shortest separating sequence for 
two untimed FSMs based on the successor tree of the intersection of two FSMs. Algo-
rithm 1 uses also the intersection and successor tree when deriving a shortest separat-
ing sequence of two timed FSMs. However, for TFSMs, the number of timed inputs is 
infinite and thus, each state has an infinite number of timed successors. In order to 
make this number finite we introduce and then use in Algorithm 1 the notion of a par-
tition Π(q, i). According to Proposition 1, given a state q of the intersection S ∩ P, an 
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input i, and a region g ∈ Π(q, i), for each t1, t2 ∈ g, the set of (i, t1)- and (i, t2)-
successors of state q coincide. Correspondingly, all such successors coincide with the 
set of (i, g)-successors of state q. 

Proposition 4. Given two complete TFSMs S and P with n and m states, if the ma-
chines are separable then there exists a separating sequence with length at most 2mn– 1 
and the upper bound 2mn – 1 is reachable.                                                                        � 

The first part of the statement is implied by Algorithm 1, as by construction, accord-
ing to Rule 2, k cannot be greater than 2mn – 1 + 1. The second part holds since the up-
per bound is reachable for untimed FSMs [20] which can be considered as a particular 
case of timed FSMs where for each pair (s, i) the set Π(s, i) has a singleton [0, ∞). 

In order to show that the upper bound in Proposition 4 is reachable it is enough to 
show that is reachable for untimed complete non-deterministic FSMs. For any n and 
m, there exist observable untimed FSMs S and P with n and m states which can be 
separated only by a timed input sequence of length 2nm-1. As an example, we can con-
sider such untimed FSMs from [20]; these machines have the input alphabet I, |I| = 
2nm−1, and the output alphabet O, |O| = 2nm. However, determining the minimal num-
ber of inputs, for separating two separable machines, such that the upper bound of 
Proposition 4 is reachable is still an unsolved problem. 

Example. As an application example for Algorithm 1, consider TFSMs S (Fig. 1a) 
and P (Fig. 1b) with initial states a and 1 defined over inputs {i1, i2}, outputs {o1, o2, 
o3}. The intersection S ∩ P is shown in Fig. 2. By definition, the set Q0  = {Q0 0}, 
where Q0 0  = {(a ,1)}. Given the intersection S ∩ P, the set Π(a 1 ,  i 1 ) = {(0, 1), (1, 2), 
(2, 3), (3, ∞), {0}, {1}, {2}, {3}}, and thus, for Q0 0  and i 1 , Π = {(0, 1), (1, 2), (2, 
3),(3, ∞), {0}, {1}, {2}, {3}}, while for Q 0 0  and i2 , Π = {(0, ∞), {0}}. Correspond-
ingly, we obtain the set Edge = {(Q0 0 , ( i1, 0 < t < 1), {(b,2)}); (Q0 0 , ( i1, 1 < t < 2), 
{(a,2), (b,1)}); (Q0 0 , (i1, 2 < t < 3), {(a,1), (b,1)}); (Q0 0 , (i1, t > 3), {(a,1)}); (Q0 0 , (i1, 
0), {(b,2)}); (Q0 0 , (i1, 1), {(a,2), (b,1)}); (Q0 0 , (i1, 2),{(a,2), (b,1)}), (Q0 0 , (i1, 3), 
{(a,1), (b,1)}), (Q0 0 , (i2, t > 0), {(a,1)}), (Q0 0 , (i2, {0}), {(a,1)})}. Therefore, the set 
Q1= {{(b,2)}, {(a,2), (b,1)}, {(a,1), (b,1)}, {(a,1)}, {(b,2)}, {(a,1), (b,1)}, {(a,1)}}. 

For states (a,1) and (b,2), the union of time guards in the intersection S ∩ P is [0, ∞) 
for both inputs i1 and i2, and thus, states a and 1 and states b and 2 are not 1-separable. 
However, we observe that the behavior of the intersection S ∩ P is not defined at states 
(a,2) and (b,1) for timed inputs (i1, t > 3). Thus, states a and 2 and states b and 1 are 
separable by a timed input (i1, 4). Given timed input (i1, 1), the intersection reaches 
from the initial state (a,1) states (a,2) and (b,1) and thus, the sequence of timed inputs 
(i1, 1) (i1, 4) separates TFSMs S and P. 

In order to distinguish two separable timed FSMs we do not need the “all weather 
conditions” assumption. It is enough to apply a separating input sequence once since 
the sets of outputs of the machines to this sequence are disjoint. However, it is well-
known that when a common reduction of non-separable complete non-determinisitic 
untimed FSMs does not exist such machines can be distinguished without “all weather 
conditions” assumption [18] by a so-called r-distinguishing set. Similar to untimed 
non-deterministic FSMs, if two timed complete observable FSMs do not have a com-
mon complete reduction then these machines can be distinguished by an adaptive  
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experiment using the r-distinguishability relation. In the following section, we present 
an algorithm for an adaptive experiment that checks the r-distinguishability of two 
observable TFMSs and if the machines are r-distinguishable an r-distinguishing set is 
derived. 

4   R-Distinguishability Relation and r-Distinguishing Sets 

Two complete TFSMs S and P which have no common complete reduction are  
r-distinguishable. If TFSMs S and P have a common complete reduction then these 
TFSMs are r-compatible. Generally the number of pair-wise non-equivalent complete 
reductions of a timed FSM is infinite and thus, it is not trivial to decide if two com-
plete timed TFSMs are r-distinguishable. However, if TFSMs S and P are observable 
then, similar to observable untimed non-deterministic FSMs, we can use another 
(equivalent) definition of the r-distinguishability relation that helps us when checking 
r-distinguishability by an adaptive experiment.  

Given observable timed FSMs S and P and their intersection Q = S ∩ P, states s 
and p are 1-r-distinguishable if states s and p can be separated by a timed input, i.e. 
the intersection is partially specified at state q = (s,p). In other words, there exists an 
input i s.t. in the intersection S ∩ P the union Ω of guards over all transitions ((s,p), i, 
o, (s′,p′), g) ∈ λS∩P is different from [0, ∞). A set Rsp = {(i, t)/o: o ∈ outS(s, (i, t)) or o 
∈ outP(p, (i, t))} where t ∈ [0, ∞)\Ω, is an r-distinguishing set of states s and p. We 
note that one timed input (i, t) is sufficient for r-distinguishing 1-r-distinguishable 
states s and p. 

Consider k  >  1  and assume that all pairs of (k -1)-r-distinguishable states are  
determined and for each pair of (k-1)-r-distinguishable s and p an r-distinguishing 
 set Rsp is also determined. States s and p are k-r-distinguishable if these states are  
(k-1)-r-distinguishable or for some input i there exists t ∈ [0, ∞) such that for each 
transition ((s,p), i, o, (s′,p′), g) ∈ TS∩P, g ∋ t, states s′ and p′ are (k -1)-r-
distinguishable. In this case, an r-distinguishing set for states s and p is constructed as 
the concatenation of (i, t)/o, t ∈ g, o ∈ outS∩P((s,p), (i, t)), with each sequence of each 
set Rs′p′ such that S ∩ P has the transition (s,p) → (i, t)/o → (s′,p′). We refer to such a 
timed input (i, t) as a k-r-distinguishing timed input of states s and p. 

Similar to untimed FSMs, it can be shown that observable TFSMs S and P are  
r-distinguishable if there exists an integer k  s.t. their initial states are k-r-
distinguishable. A set of sequences that r-distinguish the initial states of TFSMs is an 
r-distinguishing set of TFSMs S and P. 

Let observable TFSMs S and P be r-distinguishable. Then they can be distin-
guished based on an r-distinguishing set of TFSMs S and P by using an adaptive  
experiment. For TFSMs with n and m states length of each sequence in the r-
distinguishing set is at most nm and this upper bound is reachable. Moreover, during 
an adaptive experiment only one sequence of timed inputs of an r-distinguishing set 
will be applied to r-distinguish considered machines. However, the following proposi-
tion shows that the total length of an r-distinguishing set can be exponential. 

Proposition 5. Given integers n and m, n ≥ 1, m ≥ 1, there always exist  
r-distinguishable TFSMs S and P with n and m states s.t. the total length of all  
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sequences of some r-distinguishing set is at most (nm+2)2nm−3 and this upper bound is 
reachable.                                                                                                                                                     � 

In fact, the proposition is a corollary to the similar proposition [24] for untimed FSMs 
which can be considered as a particular case of timed FSMs where for each pair (s, i) 
the set Π(s, i) has a singleton [0, ∞). However, below we show that similar to untimed 
FSMs, an r-distinguishing set can be represented as the set of traces of a partial timed 
FSM that has at most nm + 2 states and thus, there exists a representation of an  
r-distinguishing set with the polynomial complexity.  

Algorithm 2. Deriving an r-distinguishing set of two TFSMs  

Input: Complete observable TFSMs S =  (S ,  I ,  O ,  λS ,  s 0)  and 
P =  (P ,  I ,  O ,  λP ,  p 0)   

Output: Partial initially connected TFSM R(S,P) if TFSMs S and P are  
r-distinguishable  

Derive the tuple R = (R ,  I ,  O ,  λR)  where,  λR  is empty and R contains 
two states which we call rS and rP; 
Derive the intersection Q  = S ∩ P of TFSMs S and P;   
k: = 1;  
Qk : = Q , where Q  is the set of states of S ∩ P ; 

While ((s 0 ,p 0)  ∈ Q k  and the set Qk  has pairs of k-r-distinguishable 
states), do: 

Determine all pairs of the set Qk  which have k-r-
distinguishable states; 

For each pair (s,p) of the set Qk  s.t. s and p are k-r-
distinguishable  

Determine a k-r-distinguishing timed input (i, t) of 
states s and p;  
Add state (s,p) into set R ;   

For each o ∈  O  s.t. there is the transition ((s,p), i, o, 
(s′,p′), g) ∈  λQ  where g ∋  t, add the tuple ((s,p), 
i, o, (s′,p′), [t]) to λR ;  

For each o ∈  O  s.t. there is no transition ((s, p), i, o, 
(s′,p′), g) ∈  λQ  where g ∋  t, add to λR  the tuple 
((s,p), i, o, rS, [t]) if o ∈ outS(s, (i, t)). If o ∈ 
outP(p, (i, t)) add the tuple ((s,p), i, o, rP, [t]);  

Delete state (s,p) from the set Qk ; 
Increment k by 1; 
Qk : = Q k - 1 ; 

If (s0 ,p 0)  ∉ Q k  then convert the tuple R into TFSM by claiming 
state (s0 ,p 0)  as the initial state of the TFSM. The largest initially con-
nected submachine of TFSM R is TFSM R(S,P); END Algorithm 2. 

If states of each pair of Qk  are not k-r-distinguishable then End Al-
gorithm 2. TFSMs S and  P are r-compatible, i.e. are not r-
distinguishable.                                                                                       � 

By construction of TFSM R(S,P), the following statement holds. 
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Proposition 6. Given two r-distinguishable observable TFSMs S and P with n and m 
states, Algorithm 1 returns an acyclic partial TFSM R(S,P) such that for each state (s,p) 
of R(S,P) there exists exactly one input i for which Π(s, i) is not empty. Moreover, no 
input is defined at states rS and rP.                                                                                � 

According to Proposition 6, if Algorithm 2 returns a TFSM R(S,P) then an r-
distinguishing set R of TFSMs S and P is the set of all timed traces, which take the 
TFSM R(S,P) from the initial state to states rS and rP. Correspondingly, the final state of 
an executed trace uniquely indicates which TFSM S or P is under experiment. In 
other words, if the final state of an executed trace is rS (rP) then the TFSM under ex-
periment is S (P). 

Example. As an example of Algorithm 2, consider TFSM S with the initial state 1 
and also TFSM S with the initial state 3 (Figure 3). Since in this example we consider 
two submachines of S starting from initial states 1 and 3, we denote the first machine 
as S1  and the second as S3  and we add into R two states rS1 and rS3 with subscripts 
indicating the initial states of the TFSMs. Part of the intersection Q = S 1∩ S3  is 
shown in Figure 4. Set Q 1  = Q (for k = 1) includes all states of the TFSM Q. States 3 
and 2 of Q 1  are 1-r-distinguishable by a timed input (i2, 1) and states 2 and 4 are 1- r-
distinguishable by a timed input (i1, 2). Thus, we remove states (3, 2) and (2, 4) from 
Q1  and obtain Q 2  which does not include states (3, 2) and (2, 4). States 1 and 3 of the 
initial state (1, 3) in Q 2  are 2-r-distinguishable. By direct inspection, one can observe  
that states (3, 2) and (2, 4) are reached from the initial state by a timed input (i1, 3) 
and thus, TFSM R(S1, S3), shown in Figure 5, represents an r-distinguishing set {(i1, 
3)/o1.(i2,  1)/o1, (i1, 3)/o1.( i2, 1)/o2, (i1, 3)/o2.( i1, 2)/o1, (i1, 3)/o2.( i1, 2)/o2}.  

 

 

Fig. 3. TFSM S where states 1 and 3 are not separable but they are r-distinguishable 
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Q  = S1 ∩ S3 (1,3) (3,2) (2,4) (2,2) 
i1, t ≤ 2 (1,3) / o1 (3,1) / o1 - (1,1) / o1 
i1, 2 < t ≤3 (3,2) / o1 

(2,4) / o2 
(2,2) / o1 - (2,2) / o1 

i1, t > 3 (3,1) / o1 (1,3) / o1 - (3,3) / o1 
 
i2, t ≤ 1 

(1,3) / o1 - (1,3) / o2 (1,1) / o2 

i2, 1 < t < 2 (1,3) / o1 - (2,2) / o2 (2,2) / o2 
i2, t = 2 (1,3) / o1 - (4,4) / o2 (4,4) / o2 
i2, t > 2 (1,3) / o1 - (4,4) / o2 (4,4) / o2 

 
Fig. 4. Part of the intersection TFSM Q  = S ∩ P 

 
R(S1,S3)  (1,3) (3,2) (2,4) rS1 rS3 
i1,  t=3 
 
i1,  t=2 
 

(3,2) / o1 

(2,4) / o2 
- rS1/o1 

 
rS3/o2 

- - 

i2, t = 1  
- 

rS1/o1 
rS3/o2 

- 
 

- - 

 
Fig. 5. TFSM R(S1,S3) 

5   Conclusion and Further Research Work 

In this paper, we present algorithms for distinguishing timed non-deterministic finite state 
machines (TFSMs). More precisely, we present a preset algorithm for separating two 
separable TFSMs and an adaptive algorithm for distinguishing two r-distinguishable 
possibly non-separable TFSMs. The algorithms take into account the fact that in general, 
unlike untimed FSMs, in a TFSM the number of timed inputs is usually infinite. We also 
state that the upper bounds on length of distinguishing sequences are as those of untimed 
FSMs. In this paper, we only consider complete TFSMs where for every state and input 
action of the TFSM the set of outgoing transitions of the state under the input action is 
not empty and the time guards of these outgoing transitions are defined over [0, ∞). In 
order to apply our work to partial TFSMs, one can complete a TFSM in the well-known 
way: for every state and input action where there is no outgoing transitions under the 
input action at some time instance, add a self-loop transition to the state with the Null 
output and with a corresponding time guard. 

The work presented in this paper can be extended in various ways. For example, 
the presented algorithms can be used as a basis for test derivation of TFSMs with the 
guaranteed fault coverage. In addition, the algorithms can be adapted for other distin-
guishability relations as those defined for untimed non-deterministic FSMs. 
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Abstract. In this paper, we present an approach to define the seman-
tics for object-oriented modeling languages. One important property of
this semantics is to support underspecified and incomplete models. To
this end, semantics is given as predicates over elements of the seman-
tic domain. This domain is called the system model which is a general
declarative characterization of object systems. The system model is very
detailed since it captures various relevant structural, behavioral, and in-
teraction aspects. This allows us to re-use the system model as a domain
for various kinds of object-oriented modeling languages. As a major con-
sequence, the integration of language semantics is straight-forward. The
whole approach is supported by tools that do not constrain the seman-
tics definition’s expressiveness and flexibility while making it machine-
checkable.

1 Introduction

Modeling is an integral part of complex software system development projects.
The purpose of models ranges from assisting developers and customers commu-
nicate to test case generation or (automatic) derivation of the developed system.
A prominent example modeling language is UML [1]. Actually, it is a family
of languages used to model various aspects of a software system. While UML
is widely used, domain specific modeling languages emerged recently that allow
developers and even customers to express solutions to well-defined problems in
a concise way.

A complete definition of a modeling language consists of the description of
its syntax, including well-formedness rules and its semantics (meaning) [2]. It
is widely accepted that a commonly agreed formal semantics of a language is
advantageous because it avoids problems like misunderstandings between peo-
ple and lack of interoperability between tools. Additionally, semantics can also
be used to formally reason about system properties for verification purposes.
However, many languages are often specified through their syntax only and lack
a precise semantics beyond informal explanations. UML is again a prominent
example which has been standardized without a formal semantics, even though
debate has started more than ten years ago [3,4].

Various efforts for the definition of a formal semantics for a modeling language
like UML have shown that this really is a difficult task for the following reasons:

D. Lee et al. (Eds.): FMOODS/FORTE 2009, LNCS 5522, pp. 152–166, 2009.
c© IFIP International Federation for Information Processing 2009
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– Multiple views and multiple models describe overlapping parts of the system.
Thus, fundamentally different modelling concepts for structure, behavior and
interaction have to be given an integrated semantics.

– As opposed to programming language semantics, modeling languages are
used for specification. In particular high-level, abstract models are not nec-
essarily executable. Instead, models tend to be incomplete and underspecified
and thus their semantics must allow underspecification. A semantic defini-
tion has to provide a meaning for those models that cannot be described as
an execution.

– The semantics has to be precise but not completely fixed. In UML terms,
it should support semantic variation points that allow different stakeholders
to provide a specialized interpretation for certain constructs.

Although UML is currently one of our main targets, the approach presented in
this paper is not restricted to UML. Instead, the process of defining the semantics
of a modeling language might even be more important for newly defined domain
specific languages since it guides developers through the task of developing a
formal semantics.

This paper presents our approach to define the semantics of object-oriented
modeling languages which explicitly addresses the challenges mentioned above.
The rest of the paper is structured as follows. Sect. 2 discusses our approach in
general and motivates the usage of a single semantic domain that was carefully
defined to capture the most important concepts of object-oriented systems. This
domain is introduced in greater detail in Sect. 3 which also presents an imple-
mentation in the theorem prover Isabelle/HOL [5] as part of the proposed tool
support. Sect. 4 is concerned with the precise definition of the syntax of a lan-
guage using the framework MontiCore [6]. Furthermore, an automatic derivation
of the abstract syntax as an Isabelle/HOL data type is outlined. With syntax
and semantic domain specified and implemented in Isabelle/HOL, the process
of defining the semantic mapping is described in Sect. 5. The mapping again is
formalized in Isabelle/HOL. A running example is used throughout the paper
for which a short verification application is also presented in Sect. 5. Related
work is discussed in Sect. 6 and conclusions are drawn in Sect. 7.

2 General Approach

As indicated in Fig. 1, the semantics of a modeling language consists of the
following basic parts [7]:

Fig. 1. Basic parts of a semantics definition
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– the syntax of the language in question L – be it graphical or textual,
– the semantic domain S, a domain well-known and understood based on a

well-defined mathematical theory, and
– the semantic mapping: a functional or relational definition that connects

both, the elements of the syntax and the elements of the semantic domain.

This technique of giving meaning to a language is the basic principle of denota-
tional semantics: every syntactic construct is mapped onto a semantic construct.
As explained in [2] the semantic mapping has the form:

Sem : L → P(S)

and thus functionally relates any item in the syntactic domain to a set of con-
structs of the semantic domain. The semantics of a model m ∈ L is therefore
Sem(m) denoting a set of elements in the domain S.

Given any two models m, n ∈ L combined into a complex one m ⊕ n (for
any composition operator ⊕ of the syntactic domain), the semantics of m⊕n is
defined by Sem(m⊕n) = Sem(m)∩Sem(n). This definition also works for sets
of documents which allows an easy treatment of views on a system specified by
multiple diagrams. The semantics of several views, e.g., several UML documents
is given as Sem({doc1, . . . , docn}) = Sem(doc1)∩. . .∩Sem(docn). A set of models
docs is consistent if elements of S exist that are described by the models, so
Sem(docs) �= ∅. As a consequence, the approach supports both view integration
and model consistency verification.

In the same way, n ∈ L is a (structural or behavioral) refinement of m ∈ L,
exactly if Sem(n) ⊆ Sem(m). Hence, refinement is nothing else than “n is
providing at least the information about the system that m does”. These general
mechanisms provide a great advantage, as they simplify any reasoning about
composition and refinement operators and also work for incomplete models.

Semantic Domain. We identify a single semantic domain S used as a target
for the semantic mapping of various kinds of modeling languages. Since we are
interested in object-oriented modeling languages, the domain should provide
concepts commonly found in object-oriented systems. The system model, first
defined in [8] and extended in [9], defines these concepts. Generally, the system
model characterizes object-oriented systems using basic mathematical theories.
The semantics of a model M is hence given as a set of all systems of the system
model that are possible realizations of the model M . This way, we obtain an
adequate and relatively easy to understand semantic domain which is crucial for
the acceptance of a semantics definition.

To capture and integrate all the orthogonal aspects of a system modeled in,
e.g., UML, the semantic domain necessarily has to have a certain complexity.
Related approaches to UML semantics very often define a relatively small and
specialized semantic domain and can therefore not capture the multitude of
concepts typically found in a complex modeling language. More details on the
system model are presented in Sect. 3.
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Tool Support. Having the system model at hand, we could define the semantics
of a language using pencil and paper. This was done for UML class diagrams [10]
and Statecharts [11]. Tool support, however, is beneficial in two ways. First, we
specify a machine-readable, checkable semantics that can directly be used for
verification purposes. Second, the different artifacts can be better controlled
and quality checked by using standard tools, e.g., version control.

Fig. 2 gives an overview of the default approach when defining the semantics
of a language with tool support. First, the (domain specific) modeling language
concepts are specified using a MontiCore grammar. MontiCore [6] is a frame-
work for the textual definition of languages based on an extended context-free
grammar format. This format enables a modular development of the syntax of
a language by providing modularity concepts like language inheritance. Frame-
work functionality helps developers also to define well-formedness rules and, for
example, the implementation of generators.

Fig. 2. Default Approach with Tool Support

To provide the semantics developer with maximum flexibility but also with
some machine-checking (i.e., type checking) of the semantics and the potential
for real verification applications, we use the theorem prover Isabelle/HOL for

– the formalization of the system model as a hierarchy of theories,
– the representation of the abstract syntax of the language as a deep embed-

ding, and
– the semantic mapping which maps the generated abstract syntax to predi-

cates over systems of the formalized system model.

The formalization of the system model as theories in Isabelle/HOL has to
be done once and is described in Sect. 3. We have implemented a generator in
MontiCore that produces an Isabelle/HOL data type representing the abstract
syntax of the language, given a MontiCore grammar as input. Details on the
derivation of the abstract syntax are explained in Sect. 4. The semantic mapping
is also contained in Isabelle/HOL theories, an example is given in Sect. 5.
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This approach of using a deep embedding has mainly two advantages over a
shallow embedding. First, we can benefit from the sophisticated mathematical
notation in Isabelle/HOL for defining the semantic mapping. Second, since both,
the syntax and the mapping are formalized, we are able to reason about syn-
tactic properties of concrete models and, more importantly, about properties of
the mapping itself. This is in contrast to a shallow embedding where we would
generate predicates directly from concrete models. This approach has some ad-
vantages when reasoning about concrete model properties but does not allow
reasoning about the syntax or the mapping at all. Furthermore, we would have
needed to invent another mathematical language to express the predicates out-
side Isabelle/HOL. As an extension to this approach (not shown in the figure),
not only the abstract syntax data type is generated but also another generator
that is able to translate concrete models to the abstract syntax representation
as an instance of the generated data type. This is very useful when verifying
properties of models and will be shown with the help of an example in Sect. 4.

Handling Semantic Variations. As mentioned in the introduction, the se-
mantics of a modeling language should not be fixed but there should be explicit
points where the interpretation of constructs can be specialized. These semantic
variation points can be found in the system model but also in the semantic map-
ping or syntax. Variation points do not necessarily contradict interoperability:
A comprehensive list of realization choices may serve tool builders as a definite
reference when stating compliance to a given language.

In the system model [9] a large number of variation points has already been
made explicit and different alternative configurations for variation points have
been defined. Examples are the existence of multiple inheritance between classes,
different realization strategies for associations, or different notions of type-safe
overriding of methods. These semantic variations can be constrained prior to the
semantic mapping but can also be left open.

For handling semantic variations in the syntax or in the mapping we propose
to model these variations as stereotypes known from UML and to explicitly con-
sider these stereotypes in the semantic mapping. The decisions of how particular
syntactic elements should be interpreted can then be made by the modeler and
need not be fixed beforehand. Additionally, there are dependencies between se-
mantic variation points that have to be considered. A more complete account on
how to handle semantic variations is however outside the scope of this paper.

3 System Model and Its Formalization

The system model is the universe of all possible object systems that can be mod-
eled using an object-oriented modeling language like UML. It describes amongst
other aspects the structural part of such systems, i.e., types, values, classes,
objects and associations. Besides reasoning about the structure of systems it
is also possible to specify or analyze behavior. The control part of the system
model covers events and flow of information as well as execution of methods.
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All systems are interpreted as timed or untimed global state machines (STS).
Using the power of underspecification and variation points, the system model
becomes very comprehensive but versatile in use. Due to space restrictions, we
only present a small portion of structural definitions. To get a more complete
picture of the system model features, the reader is referred to [9].

Main concepts of object-oriented modeling languages like types or classes
appear in the system model grouped in corresponding universes, e.g., UTYPE or
UCLASS. The universes contain only abstract identifiers. For example, classes are
identified by elements of UCLASS and are only described by functions that yield
information about their attributes, methods, or super-classes. They are never
constructed from records or constructively represented in similar structures.

The system model itself is built in a modular and hierarchical way starting
with a base theory about simple types and values. On top of this theory fur-
ther theories define classes and objects as well as formalizations of the state of
systems. The basic theories of the system model can be seen in Fig. 3.

Fig. 3. Theories that constitute the system model

To support reasoning in the system model and the construction of the semantic
mapping by tools, the proof assistant Isabelle is used for an implementation
based on Isabelle/HOL. Isabelle’s logic HOL [5] offers an implementation of
functional programming and set theory.

Universes of the system model are implemented by corresponding data types
since functions in Isabelle/HOL operate on data types. All introduced universes
are universes of specific instances (systems) of the system model. They are
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retrieved from an instance of the system model with functions similar to selection
functions on records [12]. For example, the function

consts UTYPE :: "SystemModel ⇒ iTYPE set"

maps systems to their universe UTYPE which is a set of type names from iType.
Universes can comprise different sets of data type elements for concrete sys-
tems. An underlying data type (here iTYPE), is necessary since HOL sets have
to be typed. Some universes contain others (e.g., UCLASS ⊆ UTYPE) which is
modeled using wrapping constructors in the underlying type:

datatype iType = ...| TClass iClass | ...

The elements and sub-universes of a universe are defined as parametrized
data type constructors yielding concrete values. This makes it possible to create
and identify certain instances by names (here lists of characters). A class name
in the system model can be created using the constructor Class Name of type
iClass (with Name = "char list"). When reasoning about concrete instances this
facilitates the creation and referencing of explicit names for elements.

All functions in Isabelle/HOL have to be total. Partial functions can be mim-
icked via the special type a’ option = Some a’ | None where a’ is a type vari-
able. Underspecified functions of the system model are introduced as constants
of corresponding function types in Isabelle/HOL. Properties of functions or uni-
verses are given in definitions or predicates over systems. As an example, the
underspecified function CAR is introduced as

consts CAR :: "SystemModel ⇒ (iTYPE ⇒ iVAL set)"

For every type name in UTYPE the function CAR yields all possible values an entity
of the type can have in an instance of the system model. In its mathematical
definition the function CAR fulfills the property

∀u ∈ UTYPE : CAR(u) �= ∅
This is realized by the predicate pCAR Type1 that needs to hold for all valid
systems sm of the system model:

pCAR Type1 sm = (∀ u ∈ UTYPE sm . CAR sm u �= {})

The Isabelle implementation of the system model is split up in theories ac-
cording to the structure in Fig. 3. Properties of system model instances as well
as additional properties imposed by, e.g., variation points are declared in cor-
responding theories. These declarations have to be included as predicates when
reasoning about instances. Predicates for elements of systems always have the
signature "SystemModel ⇒ bool" (see Fig. 4 for a transitivity definition of the
sub class relation) and thus are predicates on systems rather than on single
functions or elements. This makes the combination and reuse of predicates much
simpler.



System Model-Based Definition of Modeling Language Semantics 159

1 constdefs pSubTrans :: "SystemModel ⇒ bool"

2 "pSubTrans sm == (

3 ∀ a b c . the (sub sm a b) −→ the (sub sm b c)

4 −→ the (sub sm a c))"

Fig. 4. Definition of a predicate about transitive sub class relations

To capture all systems sm ∈ SystemModel with non-empty universes UTYPE
and a transitive sub class relation sub one has to write:

{sm. pCAR Type1 sm ∧ pSubTrans sm}

The use and combination of theories and variation points is thus a partially
manual composition task. This may be improved in the future when focusing
more on the usability part of our implementation.

4 Concrete Syntax and Derivation of Abstract Syntax

In this section we briefly introduce MontiCore grammars to specify the syntax
of a modeling language, explain its modularity concepts, and show how to derive
the Isabelle/HOL abstract syntax data type. We present matters with the help
of UML-like class diagrams as a shortened example sufficient to show the main
concepts. Please note that the general idea can also be transferred to other tools
that process context-free grammars or even metamodels.

In MontiCore, modeling languages are syntactically defined with context-free
grammars like the one in Fig. 5. By language inheritance, the grammar re-uses
productions of a super-grammar Common (l. 1) where, e.g., the commonly used
non-terminals IDENT or Type are defined. The keyword external (l. 4) indicates
that a second language for invariants is embedded. Later, this production can
be mapped to any invariant language. Interface productions (l. 3) state that any
implementing production (lines 10 and 18) can be parsed when the interface
is expected (l. 8). Enumerations (l. 14) list possible alternative terminal sym-
bols. Other than that, MontiCore grammars have terminal symbols enclosed in
quotes (e.g., l. 7), alternatives (|), iteration (*), and optional elements (?). Fig. 6
contains two simple concrete models that conform to the grammar of Fig. 5.

The MontiCore generator basically derives a set of Java classes representing
the abstract syntax and an ANTLR-based parser that can process the models
from Fig. 6. For our purpose, an additional generator has been implemented
that produces an Isabelle/HOL theory that holds the abstract syntax as a set of
data type definitions, see Fig. 7. The theory imports data types generated from
super-grammars and the theory that fills the language parameters for externals
(l. 2). Recursively dependent types are computed and generated as a single data
type (not shown in this example). Iteration is translated to the built-in type
list, optional elements to type option. The interface CDElement leads to a
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1 grammar CDSimp extends mc.umlp.common.Common {

2

3 interface CDElement;

4 external Invariant;

5

6 CDDefinition =

7 "classdiagram" Name:IDENT

8 "{" ( CDElement | Invariant ";")* "}";

9

10 CDClass implements CDElement =

11 "class" Name:IDENT ("extends" scl:IDENT ("," scl:IDENT)*)?

12 ("{" (CDAttribute)* "}" | ";");

13

14 enum CDModifier = "public" | "private";

15

16 CDAttribute = CDModifier? Type Name:IDENT ";";

17

18 CDAssociation implements CDElement =

19 "association" Left:IDENT "--" Right:IDENT ";";

20 }

Fig. 5. MontiCore grammar of class diagrams

1 classdiagram ABC { classdiagram CA {

2 class A; class C;

3 class B extends A; class A extends C;

4 class C extends B; }

5 }

Fig. 6. Two simple class models

data type with alternative constructors, one for each implementing type (l. 18).
Enumerations become types with an alternative constructor for each possible
value (l. 5).

The generated theory now holds a deep embedding of the syntax in Isabelle/
HOL and can be used to define the semantic mapping. Since we also want to be
able to reason about concrete models, we also have to translate these to instances
of the data type. For that purpose, our MontiCore generator additionally pro-
duces a specific generator that translates concrete models. Applied to the model
ABC we obtain the theory shown in Fig. 8. The constant abc (l. 4) is a class
diagram that has name ABC, an empty list of invariants, and three class diagram
elements which are all classes. All classes have no attributes but some have a
super-class, e.g., CDClass ’’C’’ has super-class ’’B’’.

Please note that the generator actually produces separate constants for each
data type. It has been in-lined here for the sake of brevity.
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1 theory CDSimpAS

2 imports "$UMLP/abstractSyntax/external/ExternalCDSimpAS" CommonAS

3 begin

4

5 datatype CDModifier =

6 CDModifierPRIVATE

7 | CDModifierPUBLIC

8

9 datatype CDAttribute =

10 CDAttribute "CDModifier option" Type IDENT

11

12 datatype CDClass =

13 CDClass IDENT "IDENT list" "CDAttribute list"

14

15 datatype CDAssociation =

16 CDAssociation IDENT IDENT

17

18 datatype CDElement =

19 CDElementCDClass CDClass

20 | CDElementCDAssociation CDAssociation

21

22 datatype CDDefinition =

23 CDDefinition IDENT "Invariant list" "CDElement list"

24

25 end

Fig. 7. Abstract syntax data type in Isabelle/HOL

1 theory ABC

2 imports "$UMLP/abstractSyntax/gen/CDSimpAS"

3 begin

4 constdefs "abc == CDDefinition ’’ABC’’ []

5 [CDElementCDClass (CDClass ’’C’’ [’’B’’] []),

6 CDElementCDClass (CDClass ’’B’’ [’’A’’] []),

7 CDElementCDClass (CDClass ’’A’’ [] []) ]"

8 end

Fig. 8. Concrete model representation

5 Semantic Mapping and Its Formalization

All necessary components for semantic mappings are now available for the use
in Isabelle: the language itself as a data type and a formalization of the system
model. Functions in Isabelle/HOL can be used to define mapping functions from
the implementation of the abstract syntax to the system model implementation.
Features like recursion, constructor pattern matching and functional decompo-
sition can be incorporated. The domain of the mapping function is the gener-
ated top-level data type of the language to be mapped. Its range is the power
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set of systems of the system model. Instances of systems are of the data type
SystemModel in the Isabelle implementation.

From the UML class diagram grammar the data type CDDefinition in Fig. 7
is generated. The corresponding mapping function has the signature

mCDDefinition :: "CDDefinition ⇒ SystemModel set"

What the mapping function basically does is adding constraints to a set of
systems. I.e., the mapping describes properties of the elements in its returned set
of systems. Essential constraints are that every system has to fulfill a set of basic
predicates like pCAR Type1 and pSubTrans from Sect. 3. This way the mapping only
renders valid instances of the system model. Further constraints depend on the
mapped modeling language. The mapping function can be decomposed to many
short and compact functions each mapping one aspect of the abstract syntax.
The function to map the data type CDClass (l. 15, Fig. 7) is shown in Fig. 9.

1 fun mCDClass :: "CDClass ⇒ SystemModel ⇒ bool"

2 where

3 "mCDClass (CDClass name supers attrs) sm = (

4 ∃ c ∈ UCLASS sm .

5 c = Class (mIDENT name) ∧
6 gall supers (mSuperClass c sm) ∧
7 gall attrs (mCDAttribute c sm)

8 )"

Fig. 9. Mapping of data type CDClass

This predicate on systems enforces that a class exists in UCLASS which has the
specified class name and also fulfills further constraints given by the mapping of
the super-classes mSuperClass and the mapping of the attributes mCDAttribute.
The function gall feeds all elements of the list supers as a third parameter to
the function mSuperClass which is called with the current class and system as
parameters. These functional decompositions of the mapping make it easier to
write comprehensible and maintainable code.

5.1 Example: Cyclic Inheritance Problem

To demonstrate the use of our implementation of the system model and the
generation of instances from concrete models we present a short example. The
textual models for this example were already given in Fig. 6. The semantic map-
ping renders a set of systems that fulfill the specifications given by the textual
class diagrams. If a system complies to both specifications it is contained in the
intersection of both mappings. Following the paradigm convention over configu-
ration classes with same names in different systems share the same identity. Thus
all systems in the intersection of the mappings contain a circular inheritance,
i.e., A extends C extends B extends A.
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1 constdefs pSubNonCirc :: "SystemModel ⇒ bool"

2 "pSubNonCirc sm ==

3 (∀ c1 c2 . (the (sub sm c2 c1) ∧ the (sub sm c1 c2)

4 −→ c1 = c2))"

Fig. 10. Definition of a predicate for non-circular inheritance of classes

1 lemma SubNonCirc:

2 "�pSubNonCirc sm;the (sub sm c2 c1);the (sub sm c1 c2)�
3 =⇒ c1 = c2"

4 by (unfold pSubNonCirc-def, auto)

Fig. 11. Rule to apply the predicate for non-circular inheritance

In this example we show a proof in our system model implementation that
no system from the combined specification in Fig. 6 is compatible with the
specification of non-circular inheritances given in Fig. 10. The lemma and the
corresponding proof can be found in Fig. 12. The additional lemma in Fig. 11
is used to utilize the definition of pSubNonCirc in a more convenient way. The
same is done for the definition pSubTrans from Fig. 4 in a corresponding lemma
SubTrans.

1 lemma ABC-CA-circ: "mCDDefinition ABC.abc ∩ mCDDefinition CA.ca

2 ∩ {sm . pSubNonCirc sm} = {}"
3 apply(unfold abc-def ca-def,auto)

4 apply(frule SubTrans, auto)

5 by(frule SubNonCirc,auto)

Fig. 12. Lemma and proof using generated UML models

First the definitions ABC.abc def and CA.ac def are unfolded replacing ABC.abc

and CA.ac by their values (shown in Fig. 8 for the first model). To complete the
proof the transitivity of the sub class relation (lemma SubTrans) is employed
yielding that Class ’’A’’ is a sub class of Class ’’B’’. Afterwards the rule
SubNonCirc leads to Class ’’B’’ = Class ’’C’’ which is an obvious contradiction
here. Automatic simplification is done by the proof command auto throughout
the proof.

In the example, two models of the same language are used. However, handling
models of different languages is done in exactly the same way, since the semantics
of a model is always given as predicates over the same type SystemModel.

6 Related Work

Quite a number of approaches to define a formal semantics for programming
and modeling languages exist; a survey is given in [13,14]. These works deal with
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formalisms and mathematical frameworks that tend to be too complex or cum-
bersome to use for industrial applications. Efforts to bridge this gap led to rea-
soning tools to support using these formal/mathematical frameworks. Prominent
works have shown that proof assistants can be used to define and verify se-
mantics of programming languages [15,16,17,18]. But as discussed the execution
semantics of programming languages is not directly suitable for underspecified
modeling techniques.

Works around Java compilers [19] and virtual machines [20] show that the
embedding of languages and the derivation of a proof environment are a tedious
but crucial task. We automate the task of embedding modeling languages in a
proof environment and offers the system model as a reasoning framework.

One of the earliest frameworks for designing and analyzing domain specific
programming languages (DSPLs) is the CENTAUR system [21]. It is a combi-
nation of different tools to define the syntax, transformations and an expression
evaluation and reasoning framework using Prolog and Coq [15].

Semantic anchoring is a more recent approach for defining semantics of mod-
eling languages [22]. The semantics is defined based on semantic units which are
minimal languages with well-defined semantics for models of computations. The
abstract syntax of domain-specific modeling languages is transformed to the ab-
stract syntax of a semantic unit. In [22] an example of semantic anchoring with
tool support for defining and transforming models is given. The work also covers
similar topics and tool support addressed in this paper but is primarily about
giving operational semantics through generated AsmL [23] sources. Other ap-
proaches, e.g, [24] are based on MOF [25] for which formal semantics exist [26].
In [27] the authors propose a composition of semantic units when modeling het-
erogeneous systems that do not match a single semantic unit. The composition
is not supported by tools yet. Heterogeneous UML semantics approaches such
as [28] also use a posteriori composition of semantics. In our approach we cir-
cumvented this problem by starting with a powerful enough system model.

A completely integrated approach to define a formal language and its se-
mantics is shown in [29]. The abstract syntax and static semantics of modeling
languages can both be expressed in one Alloy [30] model. A major advantage is
the integrated development of all parts of the language using only one formalism.
Alloy relies on the small scope hypothesis and uses only a bounded search space
to find counterexamples.

7 Conclusion and Future Work

The main contribution of this work is the provision of a flexible tool support
for system model-based semantics definitions. The predicative semantic map-
ping helps us to cope with underspecified models. We provide the system model
as a predefined and rather general semantic domain that can be reused in var-
ious semantics definitions for structural, behavioral and interaction concepts.
Furthermore, the form of semantics definition based on sets allows for an easy
explanation of composition and refinement of models.



System Model-Based Definition of Modeling Language Semantics 165

The syntax and semantics can fully be defined using the tools MontiCore
and Isabelle/HOL. Using a theorem prover allows us to define semantics in a
very flexible and modular, yet machine-readable way. A MontiCore generator is
used to deeply embed the abstract syntax of a language defined in MontiCore
into Isabelle/HOL. Based thereon, also concrete models can be translated into
Isabelle theories that provide means to directly use the semantics for verification
purposes. The whole approach was shown for a simple example.

Using a theorem prover gives us great power and flexibility to handle all kinds
of verification problems. But clearly, automation is rather poor compared to, e.g.,
model checking, since proofs have to be conducted manually. Future work will
therefore be concerned with the question how to improve automation, e.g., by
generating a set of helpful auxiliary lemmas and definitions. The identification,
management, and consistent configuration of variation points has not been dis-
cussed in detail, this will be a matter of future work, too. Finally, we plan to
further investigate which conclusions we can draw from the integrated semantics
of languages, hoping to find new insights of how different languages interact with
each other.
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Abstract. Building complex component-based software systems, for in-
stance communication systems based on the Click, Coyote, Appia, or
Dream frameworks, can lead to subtle assemblage errors. We present a
novel type system and type inference algorithm that prevent intercon-
nection and message-handling errors when assembling component-based
communication systems. These errors are typically not captured by clas-
sical type systems of host programming languages such as Java or ML.
We have implemented our approach by extending the architecture de-
scription language (ADL) toolset used by the Dream framework, and
used it to check Dream-based communication systems.

1 Introduction

Building software systems from components has many benefits [33], including
easier maintenance and evolution. However, component-based systems are not
exempt from subtle assemblage errors that are not captured by the type systems
provided with the implementation languages. These errors are hard to catch
because they may be purely an artifact of a faulty assemblage, and thus may arise
even if individual components and their interconnections are correct. As noted
in [24], this is for instance the case with data manipulation errors. These errors
may occur when handling protocol data units in a communication stack built
from components or micro-protocols with frameworks like Appia [27], Click [18],
Coyote [5], Dream [20], or Ensemble [34].

Dealing with assemblage errors in system software and communication sys-
tems has already been approached in five main ways. The first one uses theorem
proving to check the expected properties of an assemblage on a formal speci-
fication of the behavior of individual components and of the assemblage, as in
Ensemble [24]. The second approach uses an architecture description language
(ADL) to specify component behaviors and assemblage constraints, typically
component dependencies, and to automatically verify the assemblage consis-
tency, as in Aster [15], Knit [30], or Plastik [16]. The third approach relies on
type systems for interaction contracts, as in the Singularity system [11] or in
web service workflows [14]. The fourth approach uses model checking to verify
the expected properties of a formally specified assemblage, as in the Vercors sys-
tem [3]. A fifth approach relies on property-preserving composition, as described
in [4], where it is applied to deadlock-free assemblages.
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c© IFIP International Federation for Information Processing 2009



168 M. Lienhardt et al.

The theorem-proving approach is comprehensive and can address arbitrary
properties, but it requires theorem-proving expertise, which is not readily avail-
able for systems programmers. The ADL approach is more automatic, but it
typically supports a limited set of architectural constraints, and a limited set
of behavioral checks that fail to address subtler run-time errors such as data
manipulation errors. The type-system approach can be made entirely automatic
if type inference is decidable, but the type systems devised so far fail to deal
with the data handling errors we consider in this paper. The model-checking
approach is automatic, but may require considerable expertise in the property
language used, again not necessarily available for systems programmers. The
property-preserving composition approach also can be made entirely automatic,
for instance using model checking techniques, but to this date does not readily
apply to the data handling errors we consider.

We thus propose an extension of the ADL approach with a type analysis de-
vised to deal with a class of data manipulation errors that occur in ill-formed
communication systems assemblages. More specifically, our approach involves:
(i) the definition of a simple process calculus that allows to specify an opera-
tional model of a component assemblage (where program execution is abstracted
by a reduction relation); (ii) the definition of a type system, that operates on
programs abstracted as terms of the process calculus, and that ensures that ty-
pable assemblages do not exhibit the targeted class of errors; (iii) an extension
of the target ADL to allow architecture descriptions with process annotations
characterizing the abstract behavior of selected components; (iv) the addition of
a type analyzer in the ADL assembly toolchain to statically verify component as-
semblages. Technically, the paper makes two main contributions: (i) we define a
novel type system, which combines rows [31] with process types [36,25], to track
message flows in component assemblages; (ii) we define a total type inference
algorithm for automatically checking annotated component assemblages.

Outline. The paper is organized as follows. Section 2 details the assemblage
verification we target. Section 3 presents the calculus and Section 4 the type
system that we use to abstract the behavior of communication components and
to characterize them. Section 5 discusses type inference and its implementation
in actual assemblage tool chains. Section 6 discusses related work and Section 7
concludes the paper.

2 Assemblages in Dream

To explain the assemblage verifications we target in this paper, we use the
example of the Dream framework, which we now briefly present. Dream is a
component-based framework, written in Java, designed for the construction of
communication systems (protocol stacks, communication subsystems of middle-
ware for distributed execution). It is built on top of the Java implementation of
the Fractal component model [6].
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The primary data structure in Dream is called a message. Messages are used
to implement protocol data units (i.e. the data that communication protocols
exchange during their execution). Messages are exchanged between Dream com-
ponents through input and output channels. A message is a list of labeled chunks,
which can be any Java objects including messages. Within a component, mes-
sages can be freely manipulated. Basic operations, like removing, adding, or
accessing chunks are provided. The Dream framework comprises a library of
components that encapsulate functions and behaviors commonly found in com-
munication subsystems. These include: message queues that are used to store
messages, transformers that transform a message received on their single input
channel and deliver the result to their single output channel, routers that for-
ward messages received on their single input channel to one or several output
channels, multiplexers that forward messages received on their input channels
to their single output channel, aggregators that aggregate messages received on
one or several input channels and deliver the aggregated message on their single
output channel, deaggregators that are dual to aggregators, and conduits that
allow messages to be exchanged between different address spaces.

Gen1 Gen2

M

Handler
1

R

Handler
2

Conduit

Fig. 1. A Dream Assemblage

Figure 1 shows a simple assemblage of Dream components that corresponds
to two communicating sites, Site A sending different kinds of messages to Site
B. The assemblage comprises two generator components, Gen1 and Gen2, that
emit different messages. These messages are then sent to a multiplexer, then han-
dled by the Conduit component and transferred to Site B. On Site B, router
R forwards messages to the Handler 1 or Handler 2 component, based on the
structure of the incoming messages. Verifying the correctness of the assemblage
implies verifying structural constraints to guarantee that input and output chan-
nels are properly matched, and ensuring that a component does not receive a
message it is not able to handle (typically, a message with missing or unexpected
chunks). In our simple example above, this could be the case if the component
Conduit could not handle messages generated by the two components Gen1 and
Gen2 (e.g. because of a missing chunk), or if one handler could not process the
messages forwarded to it. In the presence of complex assemblages, such an anal-
ysis can quickly become difficult.
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3 Calculus

Our process calculus aims to capture the abstract behavior of components ap-
pearing in communication frameworks. It is at the same level of abstraction
than an architecture description language (ADL). Alternatively, it can be un-
derstood as a simple ADL. This allows us to apply our approach to different
communication frameworks, written in different programming languages.

Syntax. The syntax of the calculus is given below. It is parameterized by the set
of primitive components (noted p) which can be used in assemblages.

D ::= Assemblage δ ::= Tag list
p Primitive ∅ Empty tag
| c[I / O][D] Composite | ↓r; δ down tag
| e〈M〉 Message | ↑r; δ up tag
| D1 | D2 Parallel

v ::= Value
M ::= vδ Routed value c Base value

{a1 = v1; . . . ; an = vn} Record

An assemblage is a parallel composition of components and messages. Compo-
nents can be primitive or composite. A composite takes the form c[I / O][D],
where c is a name, I is the set of input channels of the composite, O is the set
of output channels of the composite, and D is its inner assemblage. The specifi-
cation of input and output channels I and O in a composite may hide input or
output channels of its inner assemblage, by not mentioning them. Messages take
the form e〈M〉, where e is a channel name, and M is a routed value. In the follow-
ing we write J for a parallel composition of messages. A routed value is a record
or a base value decorated with a list of routing tags. We always assume that each
tag occur at most once in a list. Intuitively, a list of routing tags δ encodes a
particular message flow in a component assemblage. Primitive components can
act on these flows, as illustrated by the router and multiplexer primitive com-
ponents described below. Although each tag is unique in a tag list, component
assemblages can contain loops (e.g., through a combination of routers and mul-
tiplexers), and record fields can contain records. These two features allow the
modeling of complex communication stacks, including ones featuring protocol
tunneling, such as IP over IP.

The set of primitive components is a parameter of the calculus, and can be
extended as required. It is assumed to contain at least the following primitive
components: components Add, Sub, and Select provide classical basic opera-
tions on extensible records; components Router and Mult provide elementary
routing and multiplexing capabilities; component Conn corresponds to a simple
unidirectional connector.

Operational semantics. The operational semantics of the calculus is defined clas-
sically by a reduction relation between terms that operates modulo a struc-
tural equivalence. The structural equivalence is not given here for lack of space
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(see [22] for details), but it essentially states that the parallel operator is associa-
tive, commutative, and that the order of fields in a record does not matter. The
reduction relation is defined as a binary relation on assemblages that satisfies
the rules given below. In the rules, a statement of the form “D1 � D2” can be
read “D1 reduces to D2”.

R:Ctx

D � D′

E[D] � E[D′]

R:In

e ∈ I

e〈M〉 | c[I / O][D] � c[I / O][e〈M〉 | D]

R:Out

s ∈ O

c[I / O][s〈M〉 | D] � c[I / O][D] | s〈M〉

R:Prim

match(p, J)
J | p � p | γ(p, J)

Rule R:Ctx stipulates that reduction is possible inside an evaluation context
E (composite environment or other assemblages in parallel, see [22] for details).
Rules R:In and R:Out stipulate how messages flow in and out of composite
components. Rule R:Prim is actually a rule schema describing the evolution of
primitive components. Informally, it states that if a set of messages J matches
the input schema of primitive component p (premise match(p, J)), then p can
consume input messages J and produce output messages described by γ(p, J).
The relation match and the function γ must be defined for all primitive compo-
nents of interest. For instance, they are defined as follows for Add, Select, Mult,
and Router. Let M = {a1 = v1; . . . ; an = vn}δ1 , R = {a = v; a1 = v1; . . . ; an =
vn}δ1 , and a, ai all distinct. We set:

match(Add[e1 e2/s](a), e1〈M〉 | e2〈vδ2〉) γ(Add[e1 e2/s](a), e1〈M〉 | e2〈vδ2〉) = s〈R〉

match(Select[e/s](a), e〈R〉) γ(Select[e/s](a), e〈R〉) = s〈vδ1〉

match(Mult[e1 e2/s](r), e1〈vδ〉) match(Mult[e1 e2/s](r), e2〈vδ〉) if r �∈ δ

γ(Mult[e1 e2/s](r), e1〈vδ〉) = s〈v↑r;δ〉 γ(Mult[e1 e2/s](r), e2〈vδ〉) = s〈v↓r;δ〉

match(Router[e/s1 s2](r), e〈vδ〉) if r ∈ δ

γ(Router[e/s1 s2](r), e〈vδ1;↑r;δ2〉) = s1〈vδ1;δ2〉
γ(Router[e/s1 s2](r), e〈vδ1;↓r;δ2〉) = s2〈vδ1;δ2〉

Add and Select provide usual record manipulation. Mult adds a tag to a
routed value to signal the input channel on which it received it. Router checks
the tags of the received routed values to send them on the appropriate channel.

Errors. We say that an assemblage D cannot process a message e〈M〉 if a primi-
tive component p in D may accept a message on e but cannot process the message
e〈M〉: there are some N and J such that match(p, e〈N〉 | J) but for every J ′

we don’t have match(p, e〈M〉 | J ′). We then define an assemblage D to be in
error if D = E[e〈M〉 | D′] and e〈M〉 cannot be processed by D′. Intuitively,
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an assemblage is correct if no message manipulation error may occur, i.e., every
primitive component that may accept a message can process it.

4 Types

4.1 Type System

Syntax. Our type system is based on two main ideas: (i) the type of values ex-
changed on channels are routed types : rows (extensible record) or base types,
decorated with routing information; (ii) the type of an assemblage is an assem-
blage type, presented as a function from its input channel types to its output
channels types. The syntax of types is defined below.

E ::= Value type T ::= Routed type
η Variable ξ[E] Value flow

| {W} Row | r(T1, T2) Tagged pair
| τ Base type

S ::= Channel type
W ::= Row definition ∅ Empty declaration

ρ Row variable | e : (T ) Channel declaration
| a : Pre(E);W Used Field | S ∪ S Union
| a : Abs; W Unused Field
| Abs Empty Row

The type of an assemblage, written F in the following, takes the form of a type
scheme ∀α1 . . . αn.SI → SO where αi are type variables (standing for arbitrary
types), SI collects the types of input channels in the assemblage, and SO collects
the types of output channels in the assemblage. We write dc(S) for the channel
names that appear in S. A channel type takes the form e : (T ), where e is a
channel name, and T is a routed type. A routed type is either a value flow ξ[E],
where the value type E is carried by the data flow ξ, or a tagged pair of the
form r(T1, T2), where r is a tag, and T1, T2 are routed types. Rows are defined
classically [31] with presence and absence information: a : Pre(E) stands for a
field named a that is present in a record, with type E; a : Abs indicates that
field a is not present. Base types, i.e., types associated with base values, are a
parameter of the type system (base types typically include integers, strings, or
concrete data types).

Informally, a routed type is a binary tree where each leaf corresponds to a
value type carried by a data flow, and the branch leading to it defines the rout-
ing annotation carried by the value (a given routing tag appears at most once
on each branch). For instance, the type r1(ξ1[int], r2(ξ2[string], ξ2[η])) consists
of three branches corresponding to three different values. The second branch
r1( , r2(ξ2[string], )) corresponds to a flow accepting only strings tagged with at
least the tags ↓ r1 and ↑ r2. This tree structure uses explicit references to data
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flows as they enable type duplication, which is a requirement to properly deal
with routing and multiplexing. Type duplication allows two multiplexers in a
row to type check correctly and is the main innovation of this type system
(see the discussion in Section 4.2).

Typing. Types for primitive components are given by a function Υ that maps
primitive components to assemblage types. Just as the set of primitive com-
ponents is a parameter of our calculus, function Υ is a parameter of our type
system and needs to be defined for every primitive component to be typed. To
ensure that these assemblage types correspond to the operational semantics of
the primitive components, the function Υ must obey two constraints: (i) for each
primitive component p, the input channel type of Υ (p) should only allow valid
patterns; (ii) the output type of the parallel composition of a primitive compo-
nent p with one of its valid input pattern J must contain the type of γ(p, J).
Formally, for all primitive component p and all J with match(p, J), there exists
an assemblage type S1 → S2 such that p | J : S1 → S2 holds, and there exists
S′

2 with S′
2 ⊂ S2 such that p | γ(p, J) : S1 → S′

2 holds. These constraints ensure
that the type of a primitive component is consistent with its behavior (defined
by relation match and function γ). For instance, the types associated with the
primitive components introduced before, and of a simple connector Conn[e/s]
(that forward any value received on its input channel e to its output channel s),
can be defined as follows:

Υ (Add[e1e2/s](a)) = ∀α, ρ, ξ. e1 : (ξ1[{a : Abs; ρ}]) ∪ e2 : (ξ2[α]) → s : (ξ1[{a : Pre(α); ρ}])
Υ (Select[e/s](a)) = ∀α, ρ, ξ. e : (ξ[{a : Pre(α); ρ}]) → s : (ξ[α])
Υ (Router[e/s1 s2](r)) = ∀α, β, ξ, ξ′. e : (r(ξ[α], ξ′[β])) → s1 : (ξ[α]) ∪ s2 : (ξ′[β])
Υ (Mult[e1 e2/s](r)) = ∀α, β, ξ, ξ′. e1 : (ξ[α]) ∪ e2 : (ξ′[β]) → s : (r(ξ[α], ξ′[β]))
Υ (Conn[e/s]) = ∀α, ξ. e : (ξ[α]) → s : (ξ[α])

The type system is equipped with a (classical) subtyping relation ≤, which we
do not detail fully here, for lack of space. For instance, the subtyping rules for
assemblage types T:Func and T:Gen, and tagged pairs T:TagPair, are given
below (note the contravariance in T:Func, which is as expected):

T:Func

S1 ≤ S′
1 S2 ≤ S′

2

S′
1 → S2 ≤ S1 → S′

2

T:Gen

F ≤ F ′

∀α.F ≤ ∀α.F ′

T:TagPair

T1 ≤ T ′
1 T2 ≤ T ′

2

r(T1, T2) ≤ r(T ′
1, T

′
2)

The typing rules in our type system comprise rules for assemblages and rules
for routed values. Typing judgements take the form D : F for assemblages, v : E
for simple values, and R $ R : T for routed values. The environment R is a set of
routing tags. The typing rules make use of the � binary relation between channel
types, which is defined as follows: given two channel types S �

⋃
i∈I ei : (Ti)

and S′ �
⋃

j∈J e′j : (T ′
j), we note S � S′ iff for all i ∈ I, j ∈ J , ei = e′j implies

Ti ≤ T ′
j.
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Typing rules for assemblages are given below:

T:Prim

Υ (p) = F

p : F

T:Subst

D : F

D : σ(F )

T:Inst

D : ∀α.F

D : F

T:Gen

D : F

D : ∀α.F

T:Channel

∅ �M : T

e〈M〉 : ∅ → e : (T )

T:Sub

D : F F ≤ F ′

D : F ′

T:Par

D : S1 → S2 D′ : S′
1 → S′

2

S2 � S′
1 S′

2 � S1 dc(S1) ∩ dc(S′
1) = ∅

D | D′ : (S1 ∪ S′
1)→ (S2 ∪ S′

2)

T:Box

D : S1 → S2 S′
1 � S1 S2 � S′

2 S′
2 � S′

1 dc(S′
1) = I ∧ dc(S′

2) = O

c[I / O][D] : S′
1 → S′

2

Rule T:Prim states that the type of a primitive component is given by func-
tion Υ . Rules T:Subst, T:Inst, and T:Gen are classical rules for substitution,
instantiation, and generalization, respectively. Since type duplication is inte-
grated into substitutions, because of the different forms of type variables and
their associated constraints (e.g., unique occurrence of tags in routing anno-
tations), our notion of substitution σ in rule T:Subst is slightly more com-
plex than usual. It mostly behaves as expected, replacing variables with terms
(see discussion in Section 4.2; formal details can be found in [22]).

The parallel composition D1 of two assemblages D and D′ yields a function
having the capacity of both assemblages, i.e. , that accepts as input any mes-
sage either D or D′ accepts, and that can generate any message either D or D′

can generate. Rule T:Par has three side conditions: the first two (S2 � S′
1 and

S′
2 � S1) ensure that all values (S2 and S′

2) sent on input channels for D | D′

are indeed valid inputs for this program; the third one (dc(S1) ∩ dc(S′
1) = ∅)

states that D and D′ must have distinct input channels to avoid the possibility
of implicit routing, i.e. , of distinct components listening on the same channel,
thus doing a routing operation without an explicit router to support it. Rule
T:Box specifies the constraints that apply to obtain the type S′

1 → S′
2 of a

composite. The sets S′
1 and S′

2 must give a type to every channel mentioned
in I and O. If a channel is mentioned in both, then the output type must be
a subtype of the input type (S′

2 � S′
1) as this corresponds to a loop We also

impose that the valid inputs of the component must be valid ones for the com-
ponent’s inner process (stated by the constraint S′

1 � S1), and that all outputs
of this process must be valid output of the component (stated by the constraint
S2 � S′

2).
Typing rules for routed values are given below (we have left out rules and

conditions that apply to base values and base types):
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T:Record

∀1 ≤ i ≤ n, vi : Ei ∀1 ≤ i �= j ≤ n, ai �= aj

{a1 = v1; . . . ; an = vn} : {a1 : Pre(E1); . . . ; an : Pre(En); Abs}

T:Empty

v : E

R � v∅ : ξ[E]

T:Up

R� {r} � vδ : T R� {r} � Tk

R � v↑r;δ : r(T, Tk)

T:Down

R � {r} � vδ : T R� {r} � Tk

R � v↓r;δ : r(Tk, T )

Rule T:Record is the standard typing rule for extensible record, using rows.
The three typing rules T:Empty, T:Up and T:Down, construct a routed type
by induction on the cardinality of the routing annotation. Rule T:Empty is
used when the routing annotation is empty: the routing type is in such case
just a leaf representing the value’s type. Rules T:Up and T:Down define how
we construct the routing type tree when one or more elements are present in
the routing annotation. We write R% {r} for the disjoint union of the tow sets.
Generic flows that are built in a routing type derivation will then be instantiated
during the exploration of the rest of the program with the typing rule T:Inst.
The use of routing tags environments R in these three rules ensures the validity
of the constructed routed type.

Example assemblage. Assume that the generators, handlers, multiplexer, router
and conduit components in Figure 1 are primitive components, and their types
are as given in the following table. We can type the assemblages SiteA and
SiteB as indicated in the last two lines of the same table.

Component Types
Gen1 ∀ξ.∅ → s1 : (ξ[E1])
Gen2 ∀ξ.∅ → s2 : (ξ[E2])
Handler1 ∀ξ.e1 : (ξ[E3]) → ∅
Handler2 ∀ξ.e2 : (ξ[E4]) → ∅
M same type as Mult[s1 s2/tA](r)
R same type as Router[tB/e1 e2](r)
Conduit same type as Conn[tA/tB]
SiteA ∀ξ.∅ → tA : (r(ξ[E1], ξ′[E2]))
SiteB ∀ξ.tB : (r(ξ[E3], ξ′[E4])) → ∅

If we assume further that E3 can be transformed using sub-typing and sub-
stitution into E1, and similarly for E4 into E2, then we can type the (closed)
assemblage

c[∅ / ∅][SiteA | Conduit | SiteB]
with the type: ∅ → ∅.

Properties of the type system. The type system is sound with respect to reduc-
tion and guarantees correct execution, as shown by the subject reduction and
correction theorems, and type inference is decidable (see proofs in [22]):
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Theorem 1 (Subject Reduction). Let D and D′ be two assemblages such
that D � D′, and F an assemblage type such that D : F holds. Then there
exists F ′ such that D′ : F ′.

Theorem 2 (Correction). Let D be an assemblage and F a process type such
that D : F holds. Then D has no error.

Theorem 3 (Inference). Type inference is decidable.

4.2 Discussion

Type duplication. In our presentation of the type system, we have, for lack of
space, glossed over several details (which can be found in [22]). In particular,
our notion of substitution is more complex than the usual one because of type
duplication. Let us explain this by way of an example. One of the objectives of
this type system was to allow flexible data flows in programs, using a routing tree
structure to type our channels. Let us consider a program where a component Rem
that remove a a field follows a multiplexer. The output type of the multiplexer
is of the form r(ξ1[η1], ξ2[η2]), whereas the input type of Rem is of the form
ξ3[{a : Pre(η3); ρ}]. The difficulty here is that we need to be able to unify these
two types to get a valid type system. With our definition of substitution, this
unification is made in two steps. We first duplicate the type ξ3[{a : Pre(η3); ρ}]
into

T � r(ξ4[{a : Pre(η3); ρ}], ξ5[{a : Pre(η3); ρ}])
One can remark that the two branches of the resulting routing tree have the
same row and type variables. But because they are declared in different flows
(ξ4 and ξ5), they can be instantiated with different terms. We then have two
tree structures with the same form that we can simply unify into T .

Duplication allows to instantiate a leaf in a routing tree into a whole sub-
tree, while keeping the constraint of the leaf (here, the constraint being that
the message must have the field ‘a’ defined) and allowing the variables on the
fresh leaves to be instantiated independently. One can see duplication as a way
to enable polymorphism without using type schemes.

Routing on tags. One may notice that routing in our calculus is based on routing
tags, and not, as could be envisaged, on message values or on (the presence of)
fields in record values. Likewise, the type system could depend only on rows
for message types. In fact, an earlier version of our calculus and type system
did exactly that, and is described in [23]. Both calculus and type system in this
earlier version are more expressive than the ones presented here. For instance,
the type system in [23] allows types associated with a single channel to be union
types, in contrast to the type system in this paper. Unfortunately, for reasons
explained in [23], type inference in our earlier type system is undecidable. Our
calculus and type system in the present paper thus trade expressivity in favor
of the decidability of inference, which is ultimately due to the fact that routing
types are finite trees.
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Limitations. Our type system has a few limitations. We already pointed out
that there can only be a single type for channel and a set of tags (union types
are not supported). Also, since a routing type is a binary tree, one has to encode
router and multiplexer types with more than two output or input channels by
a combination of binary routers and multiplexers. Another consequence is the
complexity of encoding routers that route on fields into our calculus, as is the
case in the Dream framework. Typically, we encode the presence of a field a in
a message with a pair of tags ↑a (when the field a is present) and ↓a (when a is
absent from the message). This simple encoding is difficult to apply in complex
assemblages involving loops with multiple routers and multiplexers. An encoding
can be found in most cases, but can be tricky to define and manipulate. However,
based on our experience with the Dream and Click frameworks (see below), these
limitations are not show-stoppers, and we have not in practice encountered the
difficult cases mentioned above.

5 Type Inference and Its Implementation

A key property of our type system (in contrast to our previous work [23]) is that
type inference is decidable. We have devised and proved correct a constraint-
based algorithm, along the lines of [28,9]. We do not have the space to present
the type inference algorithm: its definition and proof can be found in [22]. The
algorithm comprises a constraint generator that computes from a given program
a set of constraints a type must satisfy to type the input program, and a con-
straint solver that decides whether the generated constraint set has a solution
(the program is typable) or not (the program is not typable). Technically, our
type inference is based on the one defined in [9], extended to deal with routing
types, channel types, and type duplication.

We have implemented the type inference algorithm in OCaml, and used it
to extend the assemblage tool chains used by the Dream and Click frame-
works. In the case of Dream, we have extended the Fractal ADL toolchain
described in [19]. Figure 2 provides an overview of this toolchain. It is orga-
nized as a component-based framework, that comprises essentially a front-end,
realized by the Loader component in Figure 2, and a back-end, that comprises
the ASTProcessingOrganizer and the Scheduler components in Figure 2. The
back-end is responsible for the generation and execution of tasks such as code
generation, code installation, code deployment, etc. The Loader component
reads a set of input files and produces an Abstract Syntax Tree (AST). This
tree provides a unified representation of the system architecture that can be
described through a combination of description languages, such as ADL, IDL,
or DSL. The Loader is organized essentially as a pipeline comprising parsers
for the various possible input languages, and semantic analyzers. We have in-
tegrated our type analyzer as a specific semantic analyzer component in this
pipeline. We have also devised an extension to the XML-based Fractal ADL to
take into account our type annotations for primitive components, and added its
associated parser component in the Loader pipeline.
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Fig. 2. Fractal ADL toolchain

In the case of Click, a C++ software framework dedicated to the component-
based construction of configurable routers [18], assemblages are specified by con-
figuration files written in a simple scripting language [17]. We found it simpler
to just document type annotations for Click in a separate, additional configura-
tion file. This way, our type analyzer remains an entirely separate and external
analysis tool for Click, and its use does not require any change to the Click
toolset.

We also conducted several experiments to check the correctness of non-trivial
assemblages built using both frameworks. We have no space to report fully on
these experiments but they demonstrate that our approach is practical, requir-
ing minimal extensions to existing assemblage toolsets, and that it can indeed
be applied to different component-based frameworks, implemented in different
programming languages. The following table provides an indication of the time
taken to check (correct) Dream and Click assemblages. The Dream assemblage
originates from the Cosmos project, which develops protocols for roaming mo-
bile devices. The Click assemblages are examples taken from the Click website.
The performance of our type analyzer appears quite reasonable, bearing in mind
that the complexity of type inference in our system is non-polynomial.

Assemblage Components Primitive Channels Time (sec)
COSMOS (Dream) 439 340 662 180.428
dnsproxy (Click) 9 8 7 0.025

fromhost-tunnet (Click) 24 22 24 0.166
mazu-nat (Click) 60 56 54 4.489

6 Related Work

Type systems checking architectural constraints or component assemblages have
been the subject of several works in the past decade. For instance, the work done
on the Wright language [2] supports the verification of behavioral compatibility
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constraints in a software architecture. Work on Plastik [16] deals mostly with
structural constraints, although in a dynamical setting. Work on ArchJava [1]
uses ownership types to enforce communication integrity between components.
Another work develops behavioral types for component assembly [8], which is
close to the notion of session types as developed in [38]. None of these type sys-
tems capture the errors we deal with in this paper, namely incorrect message
manipulation operations. The type system we propose in this paper is more re-
lated to the ones defined for Pict [29], the π-calculus [25] or the λπv-calculus [37],
although with provision for extensible record types that these systems do not
have. We know of no type system that is capable of dealing with our notion of
message errors along with the complex data flows that are allowed in our calcu-
lus. Indeed, type systems such as [7,13,29,32] are too restrictive concerning data
flow manipulation, and cannot adequately deal with routers and multiplexers.
On the other hand, type systems which provide some means to handle data flows
by way of session types and process types [8,25,36,38] do not take in account
structured mutable messages.

Type inference for distributed calculi has been studied in the setting of the
Join-calculus [10], Mobile Ambients-like calculi [26], Dπ [21], which have an
inference algorithm, and Pict, which has not. In our earlier work [23], type
inference was undecidable. Undecidability was caused by channels being mapped
to a finite set whose cardinality is not constrained, thus allowing a form of
polymorphic recursion in loops [12]. In the present work, because of the use
of tags, we only allow a kind of finite polymorphism in loops, thus obtaining
decidable type inference. Finally, one can consider the routing process present in
the calculus as a weak form of type analysis [35] on rows.

7 Conclusion

We have presented in this paper an approach and a novel type system to deal
with data handling errors that may occur in communication systems built with
component-based communication frameworks. Our approach, which can be char-
acterized as a domain-specific type analysis, extends previous approaches based
on architecture descriptions analysis, to deal with both structural and behavioral
errors. It complements structural verifications that are the traditional remit of
ADL-based approaches, and can as well be an interesting complement to be-
havior verification tools based on model-checking. We have implemented a type
analyzer tool that comprises a total type inference algorithm for component as-
semblages, and applied it to the checking of several configurations built with
two different communication frameworks. These experiments demonstrate, in
our view, that our approach is indeed promising and practical.

We plan to extend this work in several directions. We are currently trying to
generalize the notion of tagged types in order to apply to concurrent functional
languages, and to extend our approach to deal with reconfiguration errors in
dynamically evolving assemblages.
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31. Rémy, D.: Type inference for records in a natural extension of ML. In: Theoret-
ical Aspects Of Object-Oriented Programming. Types, Semantics and Language
Design. MIT Press, Cambridge (1993)

32. Simonet, V., Pottier, F.: A constraint-based approach to guarded algebraic data
types. ACM Trans. Program. Lang. Syst. 29(1), 1 (2007)

33. Szyperski, C.: Component Software., 2nd edn. Addison-Wesley, Reading (2002)
34. van Renesse, R., Birman, K., Hayden, M., Vaysburd, A., Karr, D.: Building Adap-

tive Systems Using Ensemble. Software – Practice and Experience 28(9) (1998)
35. Weirich, S.: Higher-order intensional type analysis. In: Le Métayer, D. (ed.) ESOP

2002. LNCS, vol. 2305, pp. 98–114. Springer, Heidelberg (2002)
36. Yoshida, N., Hennessy, M.: Assigning types to processes. In: 15th Annual IEEE

Symposium on Logic in Computer Science, LICS (2000)
37. Yoshida, N., Hennessy, M.: Assigning types to processes. Inf. Comput. 174(2)

(2002)
38. Yoshida, N., Vasconcelos, V.: Language primitives and type discipline for struc-

tured communication-based programming revisited: Two systems for higher-order
session communication. Electr. Notes Theor. Comput. Sci. 171(4) (2007)

http://sardes.inrialpes.fr/papers/dtv2.pdf


Epistemic Logic for the Applied Pi Calculus�
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Abstract. We propose an epistemic logic for the applied pi calculus, which is
a variant of the pi calculus with extensions for modeling cryptographic proto-
cols. In such a calculus, the security guarantees are usually stated as equiva-
lences. While process calculi provide a natural means to describe the protocols
themselves, epistemic logics are often better suited for expressing certain security
properties such as secrecy and anonymity.

We intend to bridge the gap between these two approaches: using the set of
traces generated by a process as models, we define a logic which has constructs
for reasoning about both intruder’s epistemic knowledge and the set of messages
in possession of the intruder. As an example we consider two formalizations of
privacy in electronic voting and study the relationship between them.

1 Introduction

The applied pi calculus [2] is an extension of the pi calculus designed for specifying
and verifying cryptographic protocols. The main difference from the pi calculus is that
it allows one to manipulate complex data, instead of just names. The data is gener-
ated by an arbitrary abstract term algebra and interpreted modulo an equational theory.
This allows one to abstractly specify cryptographic functions. For instance the equa-
tion dec(enc(x, k), k) = x models that decryption cancels out encryption if the same
key k is used. As the calculus is parametrized by an arbitrary equational theory, several
complex cryptographic primitives have been conveniently modeled in literature. For
example, blind signatures were modeled in [14] and non-interactive zero-knowledge
proofs were modeled in [3]. This calculus has been successfully used to study a variety
of security protocols, e.g. the direct anonymous attestation protocol [3], some electronic
voting protocols [14]. Moreover, there exists tool support [5] for assisting the verifica-
tion of protocols in the applied pi calculus.

As argued above the applied pi calculus is a convenient and flexible formalism for
describing the processes which model the protocol. However, security properties are
more difficult to specify. Some properties may directly be specified using observational
equivalence, but this is generally not very natural and convenient. A more natural ap-
proach to verify protocols for correctness would be to define a suitable logic interpreted
over the terms of the calculus and express the desired security goal in that logic.

Our main contribution is the definition of an epistemic logic for the applied pi cal-
culus suitable for expressing important security goals. The logic itself is an LTL like
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temporal logic with a special predicate Has that models deducibility of messages by
an intruder and an epistemic knowledge operator K which allows us to reason about
the intruder’s epistemic knowledge. Other predicates of the logic are defined by events
which annotate the protocol. Similar annotations have already been used for specifying
authentication properties, initially by Woo and Lam [21] and more specifically in the
applied pi calculus by Blanchet [6]. We emphasize here that our main motivation behind
designing this logic is to express important security goals and not to study observational
equivalence. In particular, a Hennessy-Milner theorem will not hold: observationally
equivalent processes may satisfy different security goals.

Epistemic logics, going back to the BAN logic [8], are well-suited to express com-
plex security properties. At that time, the logic was used to reason about authentication
protocols. However, epistemic knowledge is particularly useful when reasoning about
anonymity properties (e.g., see [19]). Intuitively, an intruder (epistemically) knows that
a property φ is true, if φ is true on every run which is indistinguishable for the intruder
from the current one. In general epistemic logics this is modeled by an arbitrary equiva-
lence relation on runs. In the context of security protocols, equivalence of runs is tightly
related to the cryptographic functions used: an intruder which does not know k, should
regard the runs outputting respectively enc(0, k) and enc(1, k) as equivalent. We for-
malize equivalence of runs by lifting the notion of static equivalence to protocol runs.
We emphasize here that our logic contains the epistemic modality only for the intruder
and not for other participants. This is primarily because the processes only keep track
of messages in possession of the intruder.

We illustrate the expressiveness of our logic by expressing a range of security prop-
erties: secrecy, authentication as well as fairness in contract signing protocols. We then
specify privacy in voting protocols, which relies on the epistemic knowledge of the in-
truder. We show that a definition of vote privacy in terms of process equivalence as de-
fined in [14] implies vote privacy in terms of epistemic logic, as defined in [4]. Then we
slightly weaken the equivalence based definition, replacing observational equivalence
with trace equivalence. In that case, under reasonable assumptions, we show that the
converse implication, i.e. epistemic privacy implies privacy as equivalence, also holds.
This result is important in that it clarifies the relationship between two definitions of
privacy employed in the literature. Furthermore, the result suggests that trace equiva-
lence is more appropriate to model voter privacy even though observational equivalence
is convenient to use because of the available tool support.

For the rest of the paper we reserve the phrase “intruder’s knowledge” for his epis-
temic knowledge. We use the word “intruder’s possession” for the set of messages that
an intruder possesses (which is sometimes referred to as knowledge in security).

2 The Applied Pi Calculus

We present here the syntax and semantics of a slightly enriched applied pi calculus [2].

2.1 Syntax

The syntax of the applied pi-calculus assumes an order-sorted vocabulary consisting of
a denumerable set of names of each sort, a denumerable set of variables of each sort
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and a signature Σ consisting of a finite set of function symbols with their arity. The
details of the sort system are unimportant, as long as it differs base types and channel
types. We always suppose that function symbols only operate on and return terms of
base type. The grammar of the set of terms is defined as:

M, N, T := terms
a, b, . . . , . . . k, m, n, . . . names
x, y, z, . . . variables
f(M1, M2, . . .Mk) function application

Of course function symbol application must respect sorts and arities. We shall use
u, v, . . . to range over both names and variables. We write vars(T ) for the set of vari-
ables occurring in T . T is said to be a ground term if vars(T ) = ∅.

Example 1. Let Σ = {enc/2, dec/2, pair/2, proj1/1, proj2/1} be a signature contain-
ing function symbols for encryption, decryption and pairing, each of arity 2, as well as
left and right projection symbols of arity 1. The term enc(a, k) is ground.

There are two kinds of processes in the applied pi calculus– plain processes built up in a
similar way to processes in the pi calculus except that messages can contain terms rather
than just names, and extended processes which add active substitutions (explained be-
low) and restriction on variables. Furthermore, we enrich plain processes with non-
deterministic choice and a set of events e, e1, . . . (parametrized by a sequence of terms
of the correct sort). These events are “annotations” which are useful in formalizing se-
curity properties and (as we shall see later) play no part in observational equivalence.
Extended processes are also enriched with event stores, which record the events that
happen along an execution. We do not have replication in our calculus.

P, Q, R := plain processes
0 null process
P | Q parallel composition
P + Q non-det. choice
νn.P name restriction
if M = N then P else Q conditional
in(u, x).P message input
out(u, N).P message output
e(M̃).P event

A, B, C := extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution
[e(M̃)] event store

{M/x} is the active substitution that replaces the variable x with the term M . Active
substitutions generalize the “let” construct: νx.({M/x} | P ) corresponds exactly to “let
x = M in P ”. An event store [e(M̃)] memorizes that the event e(M̃) happened. As
usual, names and variables have scopes, which are delimited by restrictions and by
inputs. Please note that the “event” construct is not a binding construct. We write fv(A),
bv(A), fn(A) and bn(A) for the sets of free and bound variables and free and bound
names of A, respectively. We say that an extended process is closed if all its variables
are either bound or defined by an active substitution. An evaluation context C[ ] is an
extended process with a hole instead of an extended process.

Active substitutions are useful because they allow us to map an extended process A to
its frame, denoted fr(A), by replacing every plain process and event store in A with 0.
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A frame is an extended process built up from 0 and active substitutions by parallel
composition and restriction. The frame fr (A) accounts for the set of terms statically
possessed by the intruder (but does not account for A’s dynamic behavior). The domain
of a frame ϕ, dom(ϕ), is the set of variables for which ϕ defines a substitution (i.e.
variables x for which ϕ contains a substitution {M/x} not under a restriction on x). In
such a case, i.e. when x ∈ dom(ϕ), x allows the intruder to refer to the term M .

2.2 Semantics

The semantics is defined in terms of a LTS which records the interaction of an extended
process with the intruder. We associate an equational theory E to the signature Σ. E is
defined by a set of equations M = N and induces an equivalence relation over terms:
=E is the smallest equivalence relation on terms, which contain all equations in E and
is closed under substitution of terms for variables and bijective renaming of names.

Example 2. Considering the signature Σ of Example 1 we define the equational the-
ory Eenc by the equations dec(enc(x, y), y) = x and proji(x1, x2) = xi for i ∈ {1, 2}.
We have that dec(enc(a, k), k) =Eenc a.

We define the relation ∼= to be the smallest equivalence relation on extended processes
that is closed under application of evaluation contexts and such that

PAR-0 A | 0 ∼= A
PAR-A A | (B | C) ∼= (A | B) | C
PAR-C A | B ∼= B | A
NEW-C νu.νv.A ∼= νv.νu.A
NEW-PAR A | νu.B ∼= νu.(A | B)

if u �∈ fn(A) ∪ fv(A)

CHOICE-A P + (Q + R) ∼= (P + Q) + R
CHOICE-C P + Q ∼= Q + R
ALIAS νx.{M/x} ∼= 0
SUBST {M/x} | A ∼= {M/x} | A{M/x}
REWRITE {M/x} ∼= {N/x}

if M =E N

We define structural equivalence, ≡, to be ∼= closed under α-conversion on names and
variables. In comparison to the original applied pi calculus we dropped the structural
equivalence νn.0 ≡ 0 which will be important for deduction.

Example 3. Consider the following process P :

νs, k.(out(c1, enc(s, k)) | in(c1, y).out(c2, dec(y, k))).

The first component publishes the message enc(s, k) by sending it on c1. The second
receives a message on c1, uses the secret key k to decrypt it, and forwards the resulting
plaintext on c2. P is structurally equivalent to the following extended process A:

A = νs, k, x1.(out(c1, x1) | in(c1, y).out(c2, dec(y, k)) | {enc(s,k)/x1})
We have fr(A) = νs, k, x1.{enc(s,k)/x1} ∼= νs, k.0 (since x1 is under a restriction).

Internal reduction → is the smallest relation on extended processes closed under struc-
tural equivalence and application of evaluation contexts such that

COMM out(a, M).P | in(a, x).Q → P | Q{M/x}
EVENT e(M̃).P → P | [e(M̃)]

CHOICE P + Q → P

THEN if M = N then P else Q → P
where M =E N

ELSE if M = N then P else Q → Q
where M, N are ground and M �=E N .

As usual →∗ denotes the reflexive transitive closure of →.
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The operational semantics is extended by a labeled operational semantics enabling
us to reason about processes that interact with their environment. Below, a and c are
channel names, x is a variable of base type and y is a variable of any type.

IN in(a, y).P
in(a,M)
−−−−−→ P{M/y}

OUT-CH out(a, c).P
out(a,c)
−−−−−→ P

OPEN-CH
A

out(a,c)
−−−−−→ A′ c �= a

νc.A
νc.out(a,c)
−−−−−−−→ A′

OUT-T out(a, M).P
νx.out(a,x)
−−−−−−−→ P | {M/x}

x �∈ fv(P ) ∪ fv (M)

SCOPE
A

�
−→ A′ u does not occur in �

νu.A
�
−→ νu.A′

bn(�) ∩ fn(B) = ∅

PAR
A

�
−→ A′ bv (�) ∩ fv (B) = ∅

A | B
�
−→ A′ | B

STRUCT
A ≡ B B

�
−→ B′ A′ ≡ B′

A
�
−→ A′

Example 4. Continuing Example 3, we have that

A
νx1.out(c1,x1)−−−−−−−−−→ in(c1,x1)−−−−−−→ νs, k.(out(c2, s) | {enc(s,k)/x1}) def= A′.

The frame associated to A′ is fr (A′) = νs, k.{enc(s,k)/x1}.

2.3 Equivalences

In this section we introduce two notions of process equivalences: trace equivalence and
labeled bisimulation. These definitions are based on static equivalence, an equivalence
on frames, and static equivalence of traces, which lifts static equivalence from frames to
traces. Static equivalence is a notion of intruder’s possession that has been extensively
studied (e.g. [1]). Another notion, namely deducibility will be discussed in Section 3.
The notion of static equivalence is useful to define labeled bisimilarity.

Definition 1 (static equivalence). We say that two terms M and N are equal in
the frame φ, and write (M =E N)φ, if there exists ñ and a substitution σ such
that φ ≡ νñ.σ, ñ ∩ (fn(M) ∪ fn(N)) = ∅, and Mσ =E Nσ. We say that two closed
frames φ1 and φ2 are statically equivalent, φ1 ∼ φ2, when:

– dom(φ1) = dom(φ2), and
– for all terms M, N we have that (M =E N)φ1 if and only if (M =E N)φ2.

Example 5. Let φ = νk, s.({enc(s,k)/x1} | {k/x2}), φ′ = νk.({enc(s′,k)/x1} | {k/x2})
where s, s′, k are names. We have (dec(x1, x2) =Eenc s′)φ′ but (dec(x1, x2) �=Eenc s′)φ,
thus φ �∼ φ′ (for Eenc). However, νk, s.{enc(s, k)/x1} ∼ νk.{enc(s′, k)/x1}.

We now define two notions of indistinguishability in the presence of an active intruder.
The first one is trace equivalence, the second one labeled bisimulation. As we are inter-
ested in the interactions of a process with the intruder (and not just the internal actions),
we use the labeled transition system to define the possible “runs” of a process:

Definition 2 (trace). A trace tr is a finite derivation tr = A0

1−→ A1 . . .


n−→ An such
that each Ai is a closed extended process where each �i is either empty (and represents
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an internal action) or is a labeled action �i with fv (�i+1) ⊆ dom(Ai). The trace tr is

said to be maximal if An � 
−→ for any �.

We write tr[i] for the process Ai and tr[i, j] for the trace Ai

i+1−−−→ Ai+1 . . .


j−→ Aj .
We shall say that |tr| = n.

We say that the trace tr is of the form A0 −→∗ 
i1−−→ Ai1 −→∗ 
i2−−→ Aij+1 . . . −→∗ 
ir−−→
Ar −→∗ An if �k is a labeled action for all k = ij , 1 ≤ j ≤ r and the internal action
otherwise.

Given a process A we define tr(A) to be the set of all traces tr such that tr[0] = A
and trmax(A) to be the set of all the maximal traces tr such that tr[0] = A.

In order to define trace equivalence we lift static equivalence from frames to traces. In
order to ensure that bisimilar processes are also trace equivalent we need to define α-
equivalence of traces. Intuitively, we say that a labeled action � in a trace tr binds n in
the subsequent trace if n occurs as a bound name in �. A trace tr can be α-renamed to tr′

if tr′ can be obtained by an α-renaming of the bound name n. The formal definition is
given in the long version of this paper [9] where its motivation is also discussed. We
write tr −→α tr′ if tr′ is obtained from tr by an α-renaming of a bound name. The
relation ∼α is defined to be the reflexive, symmetric and transitive closure of −→α .

Intuitively, we say that two traces are statically equivalent to the intruder if the in-
truder performed the same actions in the trace and the intruder could not “statically”
distinguish the processes resulting from these actions. Formally,

Definition 3 (static equivalence of traces (∼t)). Let tr be a trace of the form

A0 −→∗ 
1−→ A1 −→∗ 
2−→ Aj+1 . . . −→∗ 
r−→ Ar −→∗ B. Let tr′ be a trace of the form

A′
0 −→∗ 
′1−→ A′

1 −→∗ 
′2−→ A′
j+1 . . . −→∗ 
′l−→ A′

l −→∗ B′. Then tr ↔t tr′ if r = l, and

– for all 1 ≤ i ≤ r, �i = �′i.
– for all 0 ≤ i ≤ r, fr(Ai) ∼ fr (A′

i) (static equivalence).

The relation ∼t is the transitive closure of ∼α ∪ ↔t .

We can now define trace equivalence.

Definition 4 (trace equivalence (≈t)). Let A and B be two closed extended processes.
We say that A is trace included in B, written A ⊆t B if for each trace trA ∈ tr(A) there
exists trB ∈ tr(B) such that trA ∼t trB . The processes A and B are trace equivalent,
written A ≈t B, if A ⊆t B and B ⊆t A.

Trace equivalence is an appealing notion for modeling indistinguishability in presence
of an active intruder and can be used to formalize many security properties (e.g. strong
secrecy, anonymity properties, . . . ). However, bisimulation is often considered as it has
better proof techniques and is easier to manipulate.

Definition 5 (labeled bisimilarity (≈)). Labeled bisimilarity is the largest symmetric
relation R on closed extended processes, such that A R B implies

1. fr(A) ∼ fr(B);
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2. if A → A′, then B →∗ B′ and A′ R B′ for some B′;

3. if A

→ A′ and fv(�) ⊆ dom(A) and bn(�) ∩ fn(B) = ∅ then B →∗ 
→→∗ B′ and

A′ R B′ for some B′.

As expected labeled bisimulation implies trace equivalence, i.e. ≈⊂≈t. Hence bisim-
ulation can be used as a proof technique to show trace equivalence.

3 Epistemic Logic

We shall now present the epistemic logic which allows us to reason about intruder’s
epistemic knowledge and the set of facts in its possession.

3.1 Syntax

The formulas of our logic consist of two levels. Static formulas are used to reason about
a “snapshot” of the process. They include predicates for events that may have occurred
in the past and a predicate for a set of terms that the intruder statically possesses. Epis-
temic formulas allow us to reason about the dynamic behavior of the process and the
epistemic knowledge that the intruder can deduce from its past interactions with the
process. The formulas use a term language which denotes the set of messages. The
syntax of the logic is given in BNF form in Table 1 and discussed below.

Table 1. Syntax of the Epistemic Logic

Terms.
T̂ ::= n̂ � z � f̂(T̂ , . . . , T̂ )

Static formulas.
δ ::= � � Has(T̂ ) � êvt(T̂ , . . . , T̂ ) � ¬δ � δ ∨ δ � ∃z.δ

Epistemic formulas (with the proviso δ is a closed formula and has no free names).
φ ::= δ � ¬φ � φ ∨ φ � Kφ � �φ � �φ

Term language. For the term language of our logic we shall assume that for each name n
in the vocabulary of the applied pi calculus, there is a unique name n̂ in the logic. Simi-
larly for each function symbol f in the vocabulary of the applied pi calculus, we have a
unique function symbol f̂ in the logic. However, there is no particular correspondence
between the set of variables in the logic and the applied pi calculus. We use z, z1, . . . to
range over the variables of the logic. The set of terms of the logic now consist of names,
variables and function application (the usual restriction on sorts and arity apply here).

Static formulas. Static formulas assume a unary predicate Has whose argument is of
base sort. This predicate is used to reason about the set of terms that the intruder pos-
sesses. It also assumes that for each event evt in the set of events for the calculus there
is predicate êvt (of the correct sort and arity). These predicates are used to reason about
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events that may have occurred in the past. The static formulas are built from these pred-
icates using the connectives �, negation ¬, disjunction ∨ and existential quantification
∃z. The usual connectives ∧ ⊥ and ⇒ and the universal quantification ∀ can be derived
from these connectives. We also assume the standard definitions of free and bound vari-
ables and substitution. A static formula is closed if it does not contain any free variable.

Epistemic formulas. Epistemic formulas reason about dynamic behavior of a process
and are constructed from closed static formulas with no free names using the connec-
tives conjunction ∧, negation ¬, disjunction ∨, existential quantification ∃z and the
modalities �, �, K. The reason for using only closed formulas will become clear in Sec-
tion 3.2. Disallowing names is not restrictive, as events can be used to refer to names.
The formulas are interpreted over the possible “runs” of the process. The formula �φ is
true at some point in a run if φ is true for all possible future points whereas the formula
�φ is true if φ is true for all past points. The formula Kφ is true if the intruder knows
(in the epistemic sense) φ to be true based upon its interaction with the process in the
past. The connectives ⊥ and ⇒ and the modality ♦ can be derived.

3.2 Semantics

We now define the semantics of the logic. We start by the denotation of terms.

Denotation of Terms. The terms of the logic are interpreted as ground terms of the
applied pi calculus and use the concept of an assignment. An assignment ρ is a map
which maps each logic variable z ∈ Z to a ground term of the applied pi calculus.
Using the assignment ρ, the denotation of terms is defined inductively as

[[n̂]]ρ = n [[ẑ]]ρ = ρ(z) [[f̂(T̂1, . . . , T̂r)]]ρ = f([[T̂1]]ρ, . . . , ([[T̂r]]ρ)

Satisfaction of static formulas. The models of static formulas are pairs- one part of
which is a name distinct closed extended process A term, i.e. a process such that
bn(A) ∩ fn(A) = ∅ and no name is bound twice; and the other part an assignment.

We need another definition for our semantics which formalizes a second notion of
intruder’s possession (e.g. [1]).

Definition 6 (Deducibility). Let φ ∼= νñ.σ be a closed name-distinct frame and M be
a term. We say that M is deducible from φ, denoted by φ $ M if there exists a term N
such that fn(N) ∩ ñ = ∅ and Nσ =E M . Such a term N is a recipe of the term M .

Note that when νñ.σ $ M , any occurrence of names from ñ in M is bound by νñ. It is
for this reason that we introduce the relation ∼= (cf. Example in Remark 1, item 3).

Example 6. Consider the two frames φ and φ′ given in Example 5. We have that φ $ k,
φ $ s and φ $ s′. Indeed x2, dec(x1, x2) and s′ are recipes of the terms k, s and s′.

The interpretation of the static formulas given a name-distinct process term A and an
assignment ρ is defined in Table 2. The interesting cases are the satisfaction of the pred-
icates Has and êvt. Intuitively, the formula Has(T̂ ) is satisfied if the intruder can deduce
the denotation of T̂ . The formula êvt(T̂1, . . . , T̂r) is satisfied if the corresponding event
evt([[T̂1]]ρ, . . . , [[T̂r]]ρ) has occurred. The other definitions are standard. Note that the
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Table 2. Satisfaction of static formulas

A, ρ |= � always
A, ρ |= êvt(T̂1, . . . , T̂r) iff A ∼= νñ.(A | [evt(M1, . . . , Mr)]) ∧Mi =E [[T̂i]]ρ 1 ≤ i ≤ r

A, ρ |= Has(T̂ ) iff fr(A) � [[T̂ ]]ρ
A, ρ |= ¬δ iff A,ρ �|= δ
A, ρ |= δ1 ∨ δ2 iff A,ρ |= δ1 or A, ρ |= δ2

A, ρ |= ∃z.δ iff ∃ a ground term M such that A, ρ[z �→ M ] |= δ[M/z]

assignment ρ[z �→ M ] is the same as ρ except that on z it takes the value M and the
formula δ[M/z] is the formula obtained from δ by substituting the free occurrences of z
by M .

Remark 1

1. If the formula δ is closed, i.e., does not contain any free variables, then the satis-
faction of δ depends only on the process and is independent of the assignment. For
such formulas we can drop the assignment in the satisfaction relation.

2. Note that name-distinctness is crucial for the definition of satisfaction of the static
formulas. The name distinctness allows us to uniquely identify the bound names
and interpret them. Otherwise, the process A = (νn.[evt1(n)]) | (νn.[evt2(n)])
will satisfy êvt1(n̂) ∧ êvt2(n̂) which is clearly wrong as the two bound names refer
to different nonces.

3. For a similar reason, we need to forbid α-renaming when evaluating predicates evt.
Otherwise, (if we replace ∼= with ≡ in the above semantics) we have that

νn1, n2.([evt1(n1)] | [evt2(n2)]) |= ∃z. (êvt1(z) ∧ êvt2(z)).
4. It can be checked that for any name-distinct closed frame φ, if φ ∼= νñ.σ and

φ ∼= νñ′.σ′ then ñ and ñ′ are the same (upto ordering) and for any N such that
fn(N) ∩ ñ = ∅, Nσ =E Nσ′. Hence, if A1 ∼= A2, we get that A1 and A2 satisfy
the same set of static formulas.

5. The previous observation would not have been true if we had allowed the equiv-
alence νn.0 ≡ 0. In particular, the intruder can deduce all ground terms in the
process 0 while it cannot deduce the term n in the process νn.0.

Please note that even name-distinct processes which are equal modulo α-conversion
may satisfy different static formula. However, if we limit ourselves to closed formulas
with no free names, α-renaming does not affect the satisfaction.

Lemma 1. Let δ be a closed static formula with no free names and A1 and A2 be two
name distinct extended processes such that A1 ≡ A2. Then A1 |= δ iff A2 |= δ.

The above Lemma allows us to define the semantics of the epistemic formulas.

Satisfaction of epistemic formulas. We shall now define the satisfaction relation for
epistemic formulas. As in the case of epistemic logic for distributed systems [15,16], the
epistemic formulas will be interpreted over the possible “runs” of a process, i.e. the set
of maximal traces (Definition 2). Please note that since we do not have replication in our
process terms, all traces of a process are finite and our definition of maximal traces does
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capture all possible “runs”. The traces are enough to interpret the temporal modalities �
and �. In order to interpret the modality K, we need to consider an equivalence relation
on the set of traces which identifies traces that are indistinguishable to the intruder:
static equivalence on traces (Definition 3). An epistemic formula φ is interpreted over
a triple - a closed extended process A, a maximal trace tr ∈ trmax(A) and a position
0 ≤ j ≤ |tr| in tr as described in Table 3.

Table 3. Satisfaction of epistemic formulas

A, tr, i |= δ iff there is a name-distinct extended process A′

such that tr[i] ≡ A′ and A′ |= δ
A, tr, i |= �φ iff ∀i ≤ j ≤ |tr|. A, tr, j |= φ
A, tr, i |= �φ iff ∀0 ≤ j ≤ i. A, tr, j |= φ
A, tr, i |= Kφ iff ∀tr′ ∈ trmax(A),∀0 ≤ j ≤ |tr′|

such that tr[0, i] ∼t tr′[0, j] ⇒ A, tr′, j |= φ
A, tr, i |= ¬φ iff A, tr, i �|= φ
A, tr, i |= φ1 ∨ φ2 iff A, tr, i |= φ1 or A, tr, i |= φ2

Remark 2. Our use of static equivalent traces as indistinguishable traces is reminiscent
of what is often called perfect recall in distributed systems- the intruder distinguishes
traces based upon the complete history of its interaction with the process. We could
have, of course, chosen to define coarser equivalence relations. For example, we could
have declared two traces to be equivalent if the intruder cannot “statically” distinguish
the last processes in the respective traces.1 However, a coarser relation would result in
intruder “knowing” a smaller set of formulas to be true which may lead to declaring
a protocol secure which otherwise will be insecure. Besides, an all powerful intruder
should be able to record its history of interaction with the protocol.

Definition 7. We say that A |= φ if for all tr ∈ trmax(A) we have A, tr, 0 |= φ.

Not that Lemma 1 will not be true if we replace structural equivalence with static equiv-
alence. One reason is the presence of the predicates êvt as static equivalence does not
depend on presence/absence of such formulas. However, even if we were to consider
the fragment of the logic without these predicates, statically equivalent processes may
satisfy different static formulas (and thus Hennessy-Milner Theorem does not hold).

Lemma 2. There are closed extended processes A1 and A2 and an epistemic formula φ
such that A1 ≈ A2 and A1 |= φ but A2 �|= φ.

Proof. Consider the two processes A1 = νn.{hash(n)/x} and A2 = νn.{n/x} where
hash is unary function symbol which models a cryptographic hash function and hence
cannot be inverted. We assume that the set of equations E is empty. We have that
A1 ≈ A2. We have also that A1 |= ∃z.(Has(hash(z)) ∧ ¬Has(z)) (the intruder has
the hash of the nonce n but cannot invert it) while A2 �|= ∃z.(Has(hash(z))∧¬Has(z))
(the intruder has every free name and can create its hash). ��

1 This is similar in spirit to what is commonly called “knowledge” in security.



192 R. Chadha, S. Delaune, and S. Kremer

3.3 Examples

We now give some simple examples of security protocols that can be modeled in our
logic. These examples do not use the knowledge operator. We refer to Section 4 for
such an example. We only consider closed formulas (no free variables) and formulas
without names. The idea is to annotate the process and to use the parametric events to
refer to bound names. Specifically, we will show how to specify secrecy, authentication
and fairness in exchange protocols in our formalism.

Example 7. This is a way to express the secret (in the sense of deducibility) of the
name s in P = νs.evt(s).out(c, s). Let φ = �∀z.(evt(z) ⇒ ¬Has(z)). Obviously,

we have P �|= φ as P → A1
νx.out(c,x)−−−−−−−→ A2 is a trace in trmax(P ) where A1 =

νs.(out(c, s) | [evt(s)]), A2 = νs.({s/x} | [evt(s)]) and (P, tr, 2) |= evt(s) ∧ Has(s).

Another classical example is authentication modeled as an agreement property.

Example 8. Consider the following simple handshake protocol where k is a shared key
and f any free symbol:

A → B : enc(n, k)
B → A : enc(f(n), k)

The goal of this protocol is to authenticate B from A’s point of view. In the applied
pi calculus this protocol is modeled by νk.(A | B) where

A = νn. out(enc(n, k)). in(x). if dec(x, k) = f(n) then end(n)
B = in(y). begin(dec(y, k)). out(enc(f(dec(y, k)), k))

The events begin and end are used to annotate the protocol. The authentication of B
to A is then modeled by φ = �∀z.(end(z) ⇒ begin(z)).

Yet another, less classical example of property is fairness in contract signing protocols.

Example 9. In a fair contract signing protocols two agents want to exchange their cor-
responding signatures on a given contract in such a way that at the end of the protocol
either both participants obtain the signed contract or none of them does so. Describing
a complete example of such a protocol would be out of the scope of this paper and we
refer the reader to [10] for more details. These protocols either terminate in a final state
where the exchange has been aborted or in a final state where the exchange did succeed.
For the purpose of our example, we suppose that the process modeling the participant P
(either A or B) is annotated as follows: the event Pend(c) indicates that P is in a final
state for some contract c; the event Pcontract(c) indicates that P successfully received
the signed contract. Then, fairness for A can be modeled as

φ = �∀c.(Aend(c) ⇒ (¬Bcontract(c) ∨ Acontract(c))).
The formula says that for any contract whenever A is in a final state (Aend(c)), either

B did not obtain the contract signed by A (¬Bcontract(c)) or A did obtain the contract
signed by B (Acontract(c)). Fairness for B can be modeled in a similar way.

4 Privacy in Electronic Voting Protocols

Many electronic voting protocols have been proposed in the literature and their for-
mal analysis has received considerable attention [14,4]. One important security goal is
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privacy of votes– an intruder should not be able to learn (by its interaction with the
protocol) how an honest voter Alice voted. This property has been formulated both
as an observational equivalence, e.g. in [14], and as an epistemic property, e.g. in [4],
although never within the same formalism. Our formalism allows us to consider both
the formalizations and compare them within the same framework. For the sake of sim-
plicity, we only consider single protocol instances in which two voters Alice and Bob
participate and we assume that there are only two voting options available to Alice and
Bob and we represent these options by 0 and 1.

Electronic voting protocols in applied pi calculus. We refer the reader to [14] for a
detailed formal definition of electronic voting protocols in applied pi calculus. Herein,
we state the salient points of the definition. We assume that there is a sort voteoption in
our signature which contains at least two constants (0-ary function symbols), denoted
by 0 and 1, that do not occur in E. Furthermore, we assume that the protocol can be
expressed as a parametric plain process V (xa, xb) with two free variables xa and xb

of the sort voteoption.2 For va, vb ∈ {0,1}, the voter process V (va, vb) represents the
process in which Alice and Bob vote for options va and vb respectively. Although these
assumptions are sufficient to model privacy as observational equivalence, the definition
in terms of epistemic logic requires us to introduce events to annotate the individual
voter preferences and consider all possible traces within a single process.

Towards this end we introduce a parametric event votes( , ) with two arguments of
the sort voteoption which is not present in the voting process V (xa, xb). From now on,
we consider the following voting process which considers all voting scenarios:

V =
∑

va,vb∈{0,1} votes(va, vb).V (va, vb).

The process V shall henceforth be called a voting process.

Privacy as observational equivalence. We are ready to state the formalization of pri-
vacy as proposed in [14], which we shall call strong privacy for the rest of this sec-
tion. Intuitively, the voting protocol represented as V respects strong privacy if the
intruder cannot distinguish the two protocol instances in which Alice and Bob’s votes
are swapped.

Definition 8. The voting process V respects strong privacy if V (0,1) ≈ V (1,0).

Privacy as epistemic formula. We need a few definitions to state privacy as an epistemic
formula. An inspection of the construction of V shows that since the events votes do
not occur in V , any maximal trace of V consists of only one event votes(va, vb) in the
store and corresponds to Alice and Bob voting for option va and vb respectively. Also
(from construction of the epistemic logic in Section 3), we assume that there is a binary
predicate in our logic corresponding to the event votes which we shall (again in the
interest of keeping the syntax simple) denote by votes. We also assume that there are
two 0-ary function symbols corresponding to the two voting options which shall again
denote by 0 and 1. Now, given v ∈ {0,1} consider the formula

Avote(v) = votes(v,0) ∨ votes(v,1).

2 V being a plain process is a simplification and we could have started with a non-empty frame.
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Intuitively the formula is true in a state reachable from V if Alice votes for option v.
Similarly we can define formula Bvote(v).

Now, according to [4], a protocol respects privacy for Alice if the intruder cannot
(epistemically) know which voting option Alice exercised. A protocol respects privacy
if it respects privacy for both Alice and Bob. Please note that this definition does not
usually hold for voting protocols in which the final tally of the votes are announced–
a unanimous election always reveals each individual’s vote. Hence, a more appropriate
formulation is that whenever Alice and Bob vote differently, the intruder cannot learn
how each of them voted. This gives us the following definition which states that intruder
can learn how a voter voted only if the other voter voted the same option.

Definition 9 (privacy). The voting process V respects privacy if V |= Aprivacy ∧
Bprivacy where

– Aprivacy
def= ∧v∈{0,1}�(K(Avote(v)) → Bvote(v)), and

– Bprivacy
def= ∧v∈{0,1}�(K(Bvote(v)) → Avote(v)).

Strong privacy implies privacy. We now show that privacy in terms of observational
equivalence implies privacy in terms of epistemic formulas. In fact we show a stronger
statement, namely, that if V (0,1) ≈t V (1,0) then the protocol will respect privacy.
The proof of the statement is given in the long version of this paper [9].

Theorem 1. If V (0,1) ≈t V (1,0) then the voting process V respects privacy. Hence,
if V respects strong privacy then it respects privacy.

Now, privacy in terms of epistemic formulas does not imply strong privacy. One can
construct examples which respect privacy but not strong privacy, based on the fact that
bisimulation is a finer relation than trace equivalence. However, a partial converse of
Theorem 1 holds– under reasonable assumptions privacy implies V (0,1) ≈t V (1,0).

Privacy implies trace equivalence. In order to state these assumptions, we need a few
definitions. First we need the definition of a publishing trace. Intuitively, we say that a
maximal trace tr is a publishing trace if the intruder learns which votes were cast (but
not the link between the voters and individual votes) and can distinguish it from any
other trace when the set of votes cast are different. For example, a publishing trace in
which Alice and Bob vote 0 and 1 is distinguishable from one in which they cast 0
and 0 but not necessarily from one in which they cast 1 and 0 respectively. A maximal
trace that is not publishing is said to be an abort trace. Intuitively, this says that the
protocol could not be completed and hence votes are not published.3

Definition 10 (publishing and abort traces). Given va, vb ∈ {0,1}, a maximal trace
tr ∈ trmax(V (va, vb)) is said to be a publishing trace if for any v′

a, v′
b ∈ {0,1} such

that {va, vb} �= {v′
a, v

′
b}, there is no tr′ ∈ tr(V (v′

a, v′
b)) such that tr ∼t tr′. Otherwise

tr is an abort trace.

3 We believe that a good electronic voting protocol should not have abort traces. However, this
property has not been studied in literature.
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We say that a protocol is equivalent for aborts if an abort trace can be mimicked irre-
spective of how Alice and Bob decided to vote.

Definition 11 (equivalent for aborts). Given va, vb ∈ {0,1} and tr ∈
trmax(V (va, vb)) an abort trace. We say that V is equivalent for aborts if for any
v′

a, v′
b ∈ {0,1} there is a tr′ ∈ trmax(V (v′

a, v′
b)) such that tr ∼t tr′.

We have the partial converse of Theorem 1. The proof is given in [9].

Theorem 2. Let V =
∑

va,vb∈{0,1} votes(va, vb).V (va, vb) be a voting process such
that V is equivalent for aborts and respects privacy. Then V (0,1) ≈t V (1,0).

Theorem 1 and Theorem 2 suggest that trace-equivalence is the more appropriate notion
for defining privacy of votes in electronic voting even though the bisimulation-based
definition (which implies privacy) has better proof techniques.

5 Related and Future Work

Related work. Several authors (e.g. [17,13,20]) have recognized the complementary
nature of the process algebraic and epistemic approaches and the benefit to combine
them. Different approaches have been proposed to bridge this gap. In [17], function
views are used to represent partial information and make the interface between protocol
and properties. In order to get epistemic specifications closer to a behavioral specifica-
tion, van Eijck and Orzan [20] propose a dynamic epistemic logic. However, it seems
that no mediation is necessary [16,13] and it is possible to bridge this gap by proposing
a combined framework as it is also suggested in this paper. However, in the works cited
above, the authors study abstract versions of protocols which do not take into account
cryptographic primitives (e.g. encryption, signature, . . . ) and their specific properties.

Some recent works [18,11] have been devoted to designing a logic to characterize
static equivalence. In [18], they build upon the logic for frames and extend it with
Hennessy-Milner modalities, yielding a logic for applied pi processes which charac-
terizes labeled bisimilarity. However, as we already pointed out in the Introduction, our
goal is different and we want to define a logic that is expressive enough to state a variety
of security properties in a natural way. The advantage of this approach is evident in our
example of formalizing privacy in e-voting protocols in which we were able to establish
the exact relationship between two formal definitions of privacy in e-voting protocols.

Another similarity between our work and the work in [11] is that they also have
epistemic modalities. The work in [11] has another advantage in that they reason about
multiple agents and hence their logic has epistemic modalities for multiple agents and
not just the intruder. This is however achieved by interpreting the logic over an agent-
indexed family of frames with a frame representing the set of messages in an agent’s
possessions. Since they are mostly interested in studying static equivalence, they do not
mention how these frames are obtained. An applied pi-calculus process only keeps track
of the messages in intruder’s possession and thus we have only one epistemic modality.

The problem of having a suitable language which allows for an expressive property
logic is a well-known problem in the context of cryptographic protocols verification.
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In [7,12], such a language and logic is proposed and allows specification of a large
class of security properties. However, none of the underlying protocol languages is as
expressive as the applied pi calculus. We are able to model a large class of protocols
which may use less classical cryptographic primitives, specified by an equational the-
ory, in an intuitive way. Therefore, our framework can be used for protocols such as
electronic voting protocols, contract signing protocols, . . .

Future Work. The formalism presented in this paper is a starting point, and we intend
to study stronger anonymity properties such as coercion-resistance that arise in security
protocols. Another line of investigation is to extend the formalism to allow for reasoning
about epistemic knowledge of multiple agents, and this would involve extension of both
the calculus and the logic. We also intend to study model-checking algorithms to verify
whether a process satisfies a given formula. Finally, we also intend to investigate an
axiomatization of the logic presented in the paper.
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Abstract. Distributed Algorithms are hard to prove correct. In settings
with process failures, things get worse. Among the proof methods pro-
posed in this context, we focus on process calculi, which offer a tight con-
nection of proof concepts to the actual code representing the algorithm.
We use Distributed Consensus as a case study to evaluate recent devel-
opments in this field. Along the way, we find that the classical assertional
style for proofs on distributed algorithms can be used to structure bisim-
ulation relations. For this, we propose the definition of uniform syntactic
descriptions of reachable states, on which state-based assertions can be
conveniently formulated. As a result, we get the best of both worlds: on
the one hand invariant-style representation of proof knowledge; on the
other hand the bisimulation-based formal connection to the code.

1 Introduction

Proof Methods for Distributed Algorithms. The wide-spread technique to de-
scribe algorithms in this field is using pseudo code, which is supposed to be self-
explanatory, although it usually lacks a precise semantics; this also holds for the
underlying communication network that connects distributed participants of the
algorithm. Specifications of desired properties are usually expressed in natural
language that often refers to terminology and concepts that are well-understood
in temporal logics. Proofs in this area usually are in semi-formal style, omitting
many details and reasoning steps; often, the involved proof structures are only
very loosely connected to the pseudo code that describes the algorithm. Another
technique to describe distributed algorithms employs automata (especially I/O-
automata [Lyn96]). Here, the setting is more formal, although the behavior of
the involved automata is still often only described via pseudo code. Proofs are
carried out by induction that preserve (global) invariants along system runs;
structured and hierarchical proofs are then realized through composition and
hierarchical simulation methods.

The loose connection of proofs to the algorithm’s description was the starting
point for us to try out more syntactic methods, in our case process algebras and
process calculi1. These come with a large set of compositional proof techniques
and a powerful coinductive proof method, known as bisimulation.
1 We prefer to use the term process calculus instead of process algebra, when we do

not use proper algebraic laws. However, many people use the terms as synonyms.
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Proof Methods in Process Algebra. In the context of process calculi, verification
usually boils down to prove an equation of the form

System ≈ Specification

where System represents a (much) more detailed description of what is prescribed
by the Specification, but where both are described within the same conceptual
and linguistic framework. The symbol ≈ denotes some kind of meaningful equiv-
alence or, better, congruence relation; often, notions of bisimilarity are chosen
due to their distinctive power and accompanying co-algebraic proof method.

Since System usually contains far too many observable details, one often hides
those implementation details from the outside observer to make it directly com-
parable to the Specification. The standard restriction operator, usually denoted
by P\a, hides observations on channel a, which might occur within P , and keeps
them internal. Sometimes, even this simple hiding method is not good enough.
Then, it may come in handy to have an additional so-called wrapper code sit next
to the System that filters the behavior of the latter more intelligently before it
is rendered observable. Equations get the form

( System ‖ Wrapper )\{a1, . . . , an}︸ ︷︷ ︸
WrappedSystem

≈ SimpleSpecification

where ‖ means that Wrapper is run in parallel with System, communicating
with it, translating its outcome, such that it becomes comparable to the Speci-
fication. In fact, the actual specification may often be fully encoded within the
Wrapper such that the SimpleSpecification term may become trivial, e.g., just
checking for a success signal emanating from the Wrapper. While the complex-
ity of the specification seems to be only moved into the wrapper, without gain,
one may actually profit from this transfer, because the resulting equation shows
much less externally observable behavior; the remaining internal behavior of the
WrappedSystem is often much easier to deal with. The verification method via
wrappers is more or less standard [BH00] and proved helpful in the context of
security [SV00] and studies on the expressive power of process calculi [Fou98],
where wrappers are called relays and even firewalls.

A Proof Method for Fault Tolerance. Francalanza and Hennessy have recently
proposed a method based on the above approach that, in addition, applies to the
domain of fault-tolerant distributed algorithms [FH07]. Concretely, they work
in a setting where processes may fail-stop, i.e., without recovery, augmented
with so-called perfect failure detectors. The challenge in this setting is to verify
the correctness of distributed algorithms in the context of crashes. Let Γk �
Sys represent a system configuration; the environment Γk allows for k different
process crashes. Interesting instances of k are n−1 or �n−1

2 �, where n is the given
number of processes in the distributed system. Then, one contribution of [FH07]
is that a typical equation to be verified would be of the form:

(Γk � WrappedSystem) ≈ (Γ0 � SimpleSpecification)
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with the side-condition that the WrappedSystem is to be composed using a non-
crashable wrapper code, while the SimpleSpecification is not subject to failures at
all. Based on this representation, an essential contribution of [FH07] concerning
proof methods is the discovery of a decomposition principle, which allows them
to split the right-above equation into two more easily provable parts:

(Γk � WrappedSystem)
(1)≈ (Γ0 � WrappedSystem)

(2)≈ (Γ0 � SimpleSpecification)

Here, (1) proves the fault tolerance of the WrappedSystem, while (2) does the ac-
tual verification w.r.t. the SimpleSpecification. This approach is appealing since
it allows to prove (2), called basic correctness, without having to consider process
failures. The authors exhibited this method on an arguably simple case study of
a round-based Distributed Consensus algorithm in the context of perfect failure
detectors (P , in the terminology of [CT96]).

A non-trivial case study in the context of imperfect failure detectors. Our own
previous work [NFM03] has been in the context of much weaker imperfect (or:
unreliable) failure detectors (♦S, as of [CT96]). Therefore we had to deal with a
much more complicated round-based Distributed Consensus algorithm. For its
verification, we used a tailor-made distributed process calculus, similar to the one
in [FH07], but at that time lacking a bisimulation theory. Moreover, to remain
close and comparable to the informal proofs of Chandra and Toueg in [CT96],
we did not use the traditional proof method sketched above, but followed the
track of reachability analysis, based on inductions as in [Lyn96].

Thus, inspired by Francalanza and Hennessy, we set out to see in how far
their bisimulation-based decomposition method also carries over to less trivial
algorithms in an imperfect setting. For this, we chose the setting with imperfect
failure detector S, whose imperfection lies just between2 the above-mentioned P
and ♦S. As a result, also the required algorithm to solve Distributed Consensus
has a complexity in between the ones mentioned above. To verify this algorithm,
we had to adapt the calculus of [FH07], mainly to incorporate imperfect failure
detection. Then, we tried the proof method of [FH07] on this case study. The
results of this undertaking is what the current paper is about.

Contributions. The main insights gained through this work are: (i) with imper-
fect failure detectors, the decomposition into equations (1) and (2) of [FH07]
does not seem to simplify proofs; (ii) to tame the complexity of non-trivial
state spaces, syntactic standard forms help characterizing the shape of reach-
able states3; (iii) we observe that invariants, as they are commonly used in tra-
ditional proofs on distributed algorithms, can be succinctly defined on the basis
of standard forms; (iv) those invariants can be used to conveniently define the
bisimulation relations that are used as witnesses in the respective proof method.

2 S requires the existence of some non-suspectable process from the beginning, while
♦S just needs to guarantee this eventually, after a phase of uncertainty.

3 This idea is already more or less visible in the Scheduler example of [Mil89].
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Other Proof Methods. Fokkink et.al. [FGR04] pointed out that process algebras
need proof methodology, not just methods. Over the years, they developed such
a methodology centered on the notions of cones and foci, whose main use is
to tame complicated process behavior by the identification of states where the
specification and the system more directly “coincide”. This methodology also
includes assertional techniques and invariant proofs. However, their methodology
has not yet been carried over to contexts with process failure.

On the model-checking side, we just mention two closely related examples.
Kühnrich [Küh08] applies model-checking in the context of a model-driven deve-
lopment of an extension of the algorithm studied in the current paper. Tsuchiya
and Schiper [TS08] use the model checker Spin to verify asynchronous round-
based consensus algorithms. By abstraction, they manage to reduce the state
space (with infinite runs) to a finite one that can be model checked. However,
they can still only check correctness for fixed network sizes.

2 Distributed Process Calculi for Fault Tolerance

In this section, we introduce a distributed process calculus with process crashes
and failure detection, inspired by [NFM03, NF03, FH07, Hen07]. The process
model is standard, equipped with the following properties: (i) channel-based
synchronous passing of values, (ii) user defined functions, (iii) recursion through
parameterized process constants. Since there is no name-passing, the calculus
is more like CCS than the Pi Calculus. As a novelty, it incorporates both per-
fect (P) and imperfect (S) failure detectors, as defined by Chandra and Toueg
[CT96].

2.1 Syntax

We use four layers of the syntax (cf. Table 1): data values, guarded processes,
processes, and networks. We assume the existence of a countably infinite set of
channel, variable, and function names A = {a, b, c, ...} and a finite set Loc of
location names that contains the special name �.

Data values and expressions. ⊥ denotes unknown values; integers are standard.
Values can be paired and grouped into sets. V is the set of values derivable from
the non-terminal v in the grammar and A is disjoint with V. As a consequence
there is no name-passing within the calculus. The expression language is com-
posed of data values, variable patterns, pairing, and function application. The
meaning of function symbols f ∈ A is defined via a total Turing computable
function apply : A× V → V that assigns meaning to function symbols f ∈ A.

Guarded processes. A message e is sent via the synchronous channel c by c〈e〉.P
with continuation P . Message reception on channel c is written c(X).P . If a
message v is sent on c then c(X).P becomes P with all instances of variables in
X instantiated with values from v. Pattern X must be linear. Process P(|k|).P
contacts a perfect failure detector and may only proceed as P when location k is
detected to be dead. Process S(|k|).P contacts an imperfect failure detector and
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Table 1. Syntax

Data values V
v ::= ⊥, 0, 1, 2, 3, . . . | (v, v) | {v, . . . , v}

Variable pattern

X ::= x | (X, X), with x ∈ A

Expressions

e ::= v | X | (e, e) | f(e), with f ∈ A

Guarded processes G
G ::= 0 | c〈e〉.P | c(X).P | S(|k|).P | P(|k|).P

| G + G | if e then G else G

Processes P
P, Q ::= τ.P | G | K(e) | P ‖ P | P \ a

Networks N
M, N ::= 0 | � [P ] | N ‖ N | N \ a

Process equations

D def= {Kj(X) = Pj}j∈J a finite set of process definitions

may proceed as P when location k is suspected to have crashed. Since failure
detection is unreliable in this case, the process might incorrectly suspect location
k and proceed as P , even though k is actually live. Guarded choice G + G′ is
the choice between guarded processes G or G′. Branching if e then G else G′

evolves to G if e evaluates to an integer greater than zero, otherwise to G′.

Processes. The process 0 models inaction; process τ.P can perform a silent tran-
sition and become P . Parallel composition P ‖ P ′ runs processes P and P ′ in
parallel. Parameterized process constants have the form K(X); are defined w.r.t.
to a finite set of process equations D of the form {Kj(X) def= Pj}j∈J .

Networks. The network � [P ] is a process running at a location �; it has the
property that it can never crash. The intention is to use this location for wrapper
code. The location � [P ] , � �= � may however fail. An action a may be restricted
to N by N \ a. Networks can be put in parallel N ‖ N ; we write

∏
φ N for the

parallel composition of a finite set of networks satisfying the logical predicate φ.
The substitution of value v for a variable pattern X in expression e or process

P is written e{v/X} and P{v/X} respectively. The operator fn(·) defined on
processes and networks is defined as usual. Notice that only data values can
be substituted for names and that all variables of the pattern X must be free
in P . We write c〈e〉 for c〈e〉.0 and c.P for c(x).P , x /∈ fn(P ) and c for c〈⊥〉.
Restriction is generalized to sets of names in the obvious way. Lists are defined
via right-recursive pairing and we write let X = e in P for the local binding of
X to e in P , formally defined by a process constant (K(X) def= P ) ∈ D. Finally
define a@i(x).P to denote a(x).P + S(|i|).P{⊥/x}, x ∈ fn(P ) meaning: either
receive a value on channel a or suspect location i.
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Some notational conventions: R1R2 is the composition of relations R1 and
R2; R∗ is the transitive closure of a relation R. |M | is the cardinality of the
finite multiset M . We occasionally omit binders e.g. if (x, y) ∈ S where S is a
set and y is unused we write (x, ·) ∈ S.

2.2 Semantics

The semantics (see Table 2) of our calculus is mostly standard. It is based on
configurations consisting of a book-keeping environment and process networks.
The terminology of trusted immortals was introduced in [NF03, NFM03] to sup-
port a simple and direct definition of the failure detector properties of [CT96].
The essence is that the process ti ∈ Loc, ti �= � can neither crash (immortal)
nor be suspected by any other process (trusted).

Definition 1 (Configurations). Configurations C have either of the two forms
(L, n) � M or (L, n) �ti M , where L ⊆ Loc is a finite set of locations, n ∈ N and
M is a network. We define C as the set of all configurations.

We define the projection dead(·) by dead((L, n)) = Loc \ L and a predicate
live(·, ·) in the following way: live(�, Γ ) is true for all Γ ; live(�, (L, n)) is true if
� ∈ L. Let �e� denote the evaluation of expression e, defined in the standard way.

Definition 2 (Evaluation of networks). Let > be the evaluation relation
defined on configurations (assuming live(�, Γ ) everywhere), closed under restric-
tion, parallel composition, reflexivity, transitivity and the following rules:

Γ �ti � [c〈e〉.P ] > Γ �ti � [c〈�e�〉.P ]
Γ �ti � [K(e)] > Γ �ti � [P{�e�/X}] , (K(X) def= P ) ∈ D
Γ �ti � [if e then P else Q] > Γ �ti � [P ] , �e� > 0
Γ �ti � [if e then P else Q] > Γ �ti � [Q] , �e� = 0.

Definition 3. Structural congruence ≡ is the least equivalence relation defined
on configurations, satisfying commutative monoid laws for (N, |,0), closed under
restriction and parallel composition and the rules:

(Nil) Γ �ti � [0] ≡ Γ �ti 0 (New) Γ �ti � [P \ a] ≡ Γ �ti � [P ] \ a
(Location) Γ �ti � [P ‖ Q] ≡ Γ �ti � [P ] ‖ � [Q]
(Scope) Γ �ti M ‖ (N \ a) ≡ Γ �ti (M ‖ N) \ a, a /∈ fn(M)

Let 
 denote the relation >≡.
We write C 
ᵀ C′, if C 
∗ C′ and � ∃C′′ �≡C′ : C′ > C′′.

Actions α ∈ Act are of the form α ::= τ | cv | cv. The transition relation
−→ ⊆ C × Act × C is the smallest relation generated by the rules of Table 2.
Rule (TI) non-deterministically selects a trusted immortal. It is the rule that must
be applied initially; this is necessary in interplay with (Susp) (see below). Rule
(Stop) stops a live process from running if the total number of allowed failures
is not zero. Rule (PSusp) models perfect failure detection. Rule (Susp) models
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Table 2. Structural Operational Semantics

(TI) ti ∈ L \ {�}
(L, n) � M

τ−→ (L, n) �ti M

(Stop) � �= ti ∧ � ∈ L
(L, n+1) �ti M

τ−→ (L\{�}, n) �ti M

(PSusp) live(�, Γ ) ∧ ¬live(k, Γ )
Γ �ti � [P(|k|).P ] τ−→ Γ �ti � [P ]

(Susp) live(�, Γ ) ∧ k �= ti ∧ k �= �

Γ �ti � [S(|k|).P ] τ−→ Γ �ti � [P ]

(Tau) live(�, Γ )
Γ �ti �[τ.P ] τ−→ Γ �ti �[P ]

(SumL) live(l, Γ ) ∧ Γ �ti � [G1]
α−→ Γ ′ �ti � [P ]

Γ �ti � [G1 + G2]
α−→ Γ ′ �ti � [P ]

(Par) Γ �ti M
α−→ Γ ′ �ti M

′

Γ �ti M ‖ N
α−→ Γ ′ �ti M

′ ‖ N

(SumR) live(l, Γ ) ∧ Γ �ti � [G2]
α−→ Γ ′ �ti � [P ]

Γ �ti � [G1 + G2]
α−→ Γ ′ �ti � [P ]

(Snd) live(�, Γ )

Γ �ti � [c〈v〉] cv−→ Γ �ti 0

(Rcv) live(�, Γ )
Γ �ti � [c(X).P ] cv−→ Γ �ti � [P{v/X}]

(Com) Γ �ti M
α−→ Γ �ti M

′ Γ �ti N
α−→ Γ �ti N

′

Γ �ti M ‖ N
τ−→ Γ �ti M

′ ‖ N ′ , α, α �= τ

(Red) C 
 C1
α−→ C2 
 s′

C
α−→ C′

(Res) Γ �ti M
α−→ Γ ′ �ti M

′

Γ �ti M \ a
α−→ Γ ′ �ti M

′ \ a
, α �= av, av

imperfect failure detection: processes never suspect themselves, nor the trusted
immortal; every other process may be suspected at any time (see [CT96, NF03]).
Rules for communication, sum and parallel composition are all standard. Rule
(Red) describes the one way reduction of terms using value evaluations.

On the set of configurations, we define weak bisimilarity “up to”. For this, let
=⇒def= τ−→∗

. Then, C
α̂=⇒ C′ is C =⇒ C′, if α = τ , otherwise C =⇒ α−→=⇒ C′.

Definition 4. Let U and R be binary relations over C. We call R a weak
bisimulation up to U if, whenever C1 R C2 then

– if C1
α−→ C′

1 then there is C′
2 with C2

α̂=⇒ C′
2 and C′

1 (URU) C′
2.

– if C2
α−→ C′

2 then there is C′
1 with C1

α̂=⇒ C′
1 and C′

1 (URU) C′
2.

Two configurations C1 and C2 are said to be weakly bisimilar up to U , written
C1 ≈U C2, if there is a weak bisimulation (up to U) R such that C1 R C2.

If U is the identity, then we get the standard bisimilarity ≈. If U = ≡, then we
get a well-known proof technique for the standard bisimilarity.

2.3 Proof Methods and Methodology

Referring to the Introduction, the environment Γk would be represented in our
calculus as (L, k) for some L ⊆ Loc; likewise (L, 0) represents a (from now on)
failure-free environment. Francalanza and Hennessy [FH07] managed to set up
wrapper codes (one for each property to prove) such that SimpleSpecification
boiled down to the trivial process ok running at the immortal location �, the
location of the wrapper code. The two equations in their methodology are then:
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(Loc, 0) � (Sys ‖ Wrapper ) \ R ≈ (Loc, 0) � �[ok] (1)
(Loc, 0) � (Sys ‖ Wrapper ) \ R ≈ (Loc, n−1) � (Sys ‖ Wrapper ) \ R (2)

Using transitivity of weak bisimilarity, they may be composed into:

(Loc, n−1) � (Sys ‖ Wrapper ) \ R ≈ (Loc, 0) � �[ok] (3)

In the context of the chosen case study of [FH07], proving Equation 1 and 2
was easier than proving Equation 3 directly. That context was mainly corre-
sponding to our calculus—except that only perfect failure detection was around.
The difference, though, is crucial. With perfect failure detectors (P), there is a
gain when the correctness proof is split, as showed above. The proof of basic
correctness (i.e., of Equation 1) is much simpler, because all its sub-expressions
of the form P(|k|).P + Q are then equivalent to Q: no crash failures may occur,
which means that no suspicion can be carried out at all. The proof of basic
correctness hence eliminates all code after P(|k|) prefixes for any k ∈ L. With
imperfect failure detectors (S), this is no longer the case. Expressions of the
form S(|i|).P + Q cannot simply be rewritten to Q since the failure detector can
make mistakes, even if no process crashes may occur! This has the implication
that basic correctness (i.e., Equation 1) is hard to prove. We claim that, in the
context of imperfect failure detectors, proving Equation 1 is even just as hard as
proving Equation 3. So, in the remainder of this paper, we thus tackle Equation
3 directly for our case study.

3 Applying the Methodology to the Case Study

Distributed consensus is the following well-known problem: a fixed number n of
agents each initially propose a value vi, 1 ≤ i ≤ n; then, eventually, the agents
must agree on a common value vi ∈ {v1, . . . , vn}. The precise specification of
the problem comprises three properties with temporal logic flavor: Termination:
Every live process eventually decides some value. Agreement: No two processes
decide differently. Validity: If a process decides value v, then v was proposed by
some process. Table 3 presents an algorithm by Chandra and Toueg [CT96] that
is supposed to solve Distributed Consensus in the context of failure detector S.

Definition 5 (Vectors). A n-vector is a map from set {1, . . . , n} to set V. Let
⊥̃ denote the n-vector (⊥,⊥, . . . ,⊥). Define an order ≤ on n-vectors by V ≤ V ′

if for every ∀1 ≤ i ≤ n : V (i) = ⊥ ∨ V (i) = V ′(i). We read V ≤ V as: V ′ holds
at least the knowledge of V .

The algorithm proceeds in three phases, during which it manipulates two partic-
ular vectors of each process. The vector Vp holds the current knowledge of agent
p (the knowledge vector). If Vp(i) = v then agent p knows that agent i proposed
value v. The vector Δp is used to relay knowledge from the previous round (the
relay vector). Each agent has a round variable r which allows agents to order
messages. Variable q is used to iterate through all agent 1 . . . n. Variable Mp is a
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Table 3. Distributed Consensus [CT96]

1: Pseudo code for agent p
2: Vp ← ⊥̃, Vp(p)← vp

3: Δp ← Vp, Mp ← ∅
4:
5: Phase 1:
6: for all rp ← 1 to n−1 do
7: send P1(p, rp, Δp) to all
8: Δp ← ⊥̃
9: block until

10: for all 1 ≤ q ≤ n
11: receive m = P1(q, rp, Δ)
12: Mp ← Mp ∪ {m}
13: or suspect S(|q|)
14: for all q ← 1 to n do
15: if Vp(q) = ⊥ and ∃Δ′ ∈Mp

16: with Δ′(q) �= ⊥ then

17: Vp(q)← Δ′(q)
18: Δp(q)← Δ′(q)
19:
20: Phase 2:
21: send P2(Vp) to all
22: block until
23: for all 1 ≤ q ≤ n do
24: receive m = P2(V )
25: Mp ← Mp ∪ {m}
26: or suspect S(|q|)
27: for all q ← 1 to n do
28: if ∃V ′ ∈Mp : V ′(q) = ⊥
29: then Vp(q)← ⊥
30:
31: Phase 3:
32: decide = min {q | Vp(q) �= ⊥}

multiset which serves as a store for all received messages. Initially, every agent
p knows its own value, i.e. Vp(p) = vp, Δp equals Vp and store Mp is empty.

Phase 1 — obtaining knowledge. The agents broadcast and update their knowl-
edge during n−1 rounds. When a received message contains a previously un-
known value then both knowledge and relay vector will be updated. Newly
learned values are relayed once because of the boolean predicate in line 15 and
the fact that the relay vector is reset in the start of each round. It can be proven
that every agent p that completes Phase 1 at least has the same knowledge as ti
(the trusted immortal, that is the live and never wrongly suspected agent).

Phase 2 — correcting knowledge. If Vi(j) = ⊥ for some agent i and j then either
agent i has suspected agent j to have crashed or j stopped before sending mes-
sages to i. Such “not-known” values are distributed among all the participants.
An agent k that receives knowledge vector Vi corrects coordinate j to ⊥, i.e.
Vk(j) = ⊥. Destruction of knowledge in this fashion happens in line 29. It can
be proved that every agent p that reaches the end of Phase 2 has the same ⊥’s
as ti. As an effect it holds that Vti = Vp for any such p at the end of Phase 2.

Phase 3 — selecting the final value. The two phases above ensure that the knowl-
edge vector of every live agent is equal to Vti. The first non-zero value in the
knowledge vector is chosen. Since process ti knows it’s own value i.e. Vti(ti) = vti

this value cannot be ⊥. So, every agent will agree on some number in the end.

3.1 Encoding the Case Study

In Table 5, we formulate system Sys in our calculus with a formalization of (i) the
behavior of each agent, (ii) the communication between agents and (iii) failure
detection. We identify agents via numbers, i.e. Loc def= {�, 1, . . . , n}. Agents and
each phase of the algorithm are modeled via parameterized process constants.
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Table 4. Auxiliary function declarations

apply(data, (r, M)) def= {Δ | (Δ, r′, i) ∈M ∧ r = r′}
apply(data, M) def= {V | (V, i) ∈ M}.
apply(senders, (r, M)) def= {i | (Δ, r′, i) ∈M ∧ r = r′}
apply(senders, M) def= {i | (V, i) ∈M}.
apply(update, (r,M, V, W )) def= W ′

where W ′(j) =

⎧
⎪⎨

⎪⎩

Δr , Δ ∈ data(r,M) and
V (j) = ⊥0 �= Δ(j),

W (j) , otherwise
apply(correct, (M, V )) def= W

where W (i) =

⎧
⎪⎨

⎪⎩

⊥ , V ′ ∈ data(M) and
V ′(i) = ⊥0

V (i) , otherwise

To ease the correctness proof we need a way of expressing that a value vi

was learned in round ri. Without changing the algorithm we extend the knowl-
edge vector with round numbers: (vr1

1 , . . . , vrn
n ) where vr is shorthand for (v, r).

We still compare vectors V ≤ V ′ by comparing the unannotated versions of V
and V ′. The initial knowledge vector I0

i for agent i is a map defined by I0
i (i) = v0

i

and I0
i (j) = ⊥0 for j �= i. The initial relay vector Ii(i) for agent i is a map defined

by Ii(i) = vi and Ii(j) = ⊥ for j �= i.
We define functions for the internal computation at each agent. First there are

simple functions supporting primitive operations such as multiset manipulation,
manipulation of vectors, and operations related to integers such as compari-
son and addition. The maximum of a finite multiset M of numbers is written
max(M). Function getfst(V ) returns first non-zero component of V . If no such
entry exists the value ⊥ is returned. In Table 4 we define more advanced func-
tions. The functions data and senders are used to project information on sent
data and sender identities from a given multiset of messages M . We may call the
function with a round number r as filter. The function update updates vector
W with respect to current knowledge V , round number r and received messages
M corresponding to Phase 1, lines 14–18 in Table 3. Function correct corrects
the knowledge vector V with respect to received messages M , corresponding to
Phase 2 in lines 27–29 in Table 3. The process constant P1p(r, V, Δ, M) corre-
sponds to an agent p in Phase 1 which broadcasts its current knowledge and
waits for incoming messages by process constant C1p(r, V, M) (that defines the
gathering of answers and updates of knowledge in Phase 1). Symbol r is the
current round number, V is the current knowledge vector and Δ is the current
communication vector and M is the (possibly empty) multiset of received mes-
sages for round r. Phase 2 is modeled by P2p(V ) and C2p(V, M) corresponds to
the gathering of information in Phase 2 analogously. Phase 3 is modeled by the
process constant P3p(V ).
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Table 5. Encoding of the algorithm of Table 3

1: Sys def=
2:

(∏n
i=1 i

[
P1i(1, I0

i , Ii, ∅)
])

3: P1p(r, V, Δ, M) def=
4: if (r < n) then
5:

∏
1≤i≤n ap,i,r〈Δ〉 ‖ C1p(r, V, M)

6: else P2p(V, M)

7: C1p(r, V, M) def=
8: let i = 1 + max(senders(r,M))) in
9: if i ≤ n then

10: ai,p,r@i(Δ).
11: C1p

(
r, update(r, M, V, V ),

12: M +(Δ, r, i)
)

13: else
14: P1p

(
r + 1, V,

15: update(r, M, V, ⊥̃), M
)

16: P2p(V, M) def=
17:

∏
1≤i≤n bp,i〈V 〉 ‖ C2p(V, M)

18: C2p(V, M) def=
19: let i = 1 + max(senders(M)) then
20: if i ≤ n then
21: bi,p@i(V ′).C2p(V, M + (V ′, i))
22: else
23: P3p(correct(M, V ), M)

24: P3p(V, M) def=
25: cp〈getfst(V ), V, M〉

26: Wrap(i, v) def=
27: if (i ≤ n) then
28: P(|i|).Wrap(i + 1, v) +
29: ci(v′, V, M).
30: if (v=⊥ ∨ v==v′) then
31: Wrap(i + 1, v′) else 0
32: else if (i == n + 1) then ok

Constant Wrap(i, v) is the wrapper code that checks for agreement. It collects
all the decision values agent by agent and checks that they agree. If they all agree,
then ok is released. Otherwise the checker becomes 0. The wrap code has to use
perfect failure detectors since unreliable failure detectors may cause incorrect
answers. For convenience, let R def= {ai,j,k, bi,j , ci}1≤i,j,k≤n.

Trying to formalize some intuitions about the algorithm, we quickly get to
the point where we need to formulate properties that refer to the respective
states of the processes, not their actions. Process calculi do not directly support
this, except when we refer to the process constants—and their parameters—
that we used to write down the code. To enable this kind of reasoning, we define
dedicated syntactic forms that also capture the complete message space.

Definition 6. A standard form Cξ is a configuration of the form:

Γ �
ti

(∏
(p,r,i)∈ Πout

1
p
[
ap,i,r〈Δp,r 〉

]
‖ ∏

(p,i)∈ Πout
2

p
[
bp,i〈 V P2

p 〉
]
‖

∏
p∈ Πout

3
p
[
cp〈 vp , V P3

p , MP3
p 〉

]
‖

∏
(p,r)∈ Πcol

1
p
[
C1p

(
r, V P1

p , MP1
p

)]
‖∏

p∈ Πcol
2

p
[
C2p

(
V P2

p , MP2
p

)]

∏
c∈dead(Γ ) c [Qc] ‖ Wrap

[
Wrap( j , w )

] ) \ R

where dead(Γ ) is disjoint with Πout
1 , Πout

2 , Πout
3 , Πcol

1 , Πcol
2 . Parameter ξ is a

data structure consisting of all the boxed values above. We refer to its entities
“by name”, ı.e., using boxed symbols. We will often write ξ instead of Cξ.
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Our standard form is defined w.r.t. process constants. By the semantics, they are
not necessarily fully unfolded. Since unfoldings may take place independently in
different parts of terms, different process constants may be unfolded at different
degrees, some too far, some too little. It requires a subtle definition to precisely
relate any reachable configuration to some standard form.

Definition 7. A configuration C with C 
ᵀ C′ has standard form Cξ if there
exist a vector family ξ such that Cξ 
 C′.

The connection of configurations to standard forms cannot be lost in transition.

Lemma 1 (Preservation of Standard Forms)
If C → C′ and C has a standard form, then C′ also has a standard form.

3.2 Weak Bisimulation Relations via Invariants

Definition 6 suggests that the reachable state space of Chandra and Touegs
algorithm is reasonably complex. Agents may be in different phases, have dif-
ferent knowledge and different sets of relay vectors. Learning from Chandra and
Toueg’s proof sketch [CT96], we capture this combinatorial space via invariants.

Definition 8. An invariant I is a boolean predicate defined on configurations
such that I(C) and C

α−→ C′ imply I(C′) for α ∈ {τ, ok}.
Invariants provide an abstraction from actual states to classes of states. It is this
characteristic that we use when we give witness relations for our weak bisimu-
lation relations. With the convention that Spec = Wrap[ok] we require that it
accepts the initial configuration and that success eventually is reached:

I

(
(Loc, n−1) � (Sys ‖ Wrap(1,⊥)) \ R

)
. (4)

If I(ξ) then ξ
ok=⇒ 0 (5)

That enables us to construct a witness relation R ⊆ C×C for Equation 3 (closed
under symmetry) of the form:

R =
{(

ξ, (Loc, 0) � Wrap[ok]
) | I(ξ)

}
(6)

Lemma 2. R is a weak bisimulation up to 
 if I satisfies Equation 4 and 5.

Equation 6 and the requirements to invariant I prepare for a proof of Equation 3.

Definition 9. Let predicate I be the conjunction of the predicates (all defined
below): control, validity, relay, receive1, learn, preknow, receive2 and know.

The predicate control defines control criteria to the algorithm, e.g. agent p can-
not be in Phase 1 and Phase 2 at the same time or agent p cannot be in two
different rounds at the same time in Phase 1 etc.
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Definition 10 (Control flow). Define the predicate control(ξ) as the conjunc-
tion of the expressions below:

1. if (p1, ·) ∈ Πcol
1 and p2 ∈ Πcol

2 and p3 ∈ Πout
3 then p1 �= p2 and p1 �= p3

and p2 �= p3.
2. if (p, r) ∈ Πcol

1 and (p′, r′) ∈ Πcol
1 and p = p′ then r = r′.

3. 1 ≤ j ≤ n + 1

4. ∀r : |senders(r, MP1
p )| = max

(
senders

(
r, MP1

p

))

5. |senders
(

MP2
p

)
| = max

(
senders

(
MP2

p

))

6. If ∃p : (p, ·) /∈ Πcol
1 and p /∈ Πcol

2 and p /∈ Πout
3 then p < j .

The next predicate formally describes what we mean by validity: all values in
knowledge and relay vectors have been proposed by someone.

Definition 11 (Validity). Let U be a vector which holds the initially proposed
value by participant i, i.e. U(i) = vi for 1 ≤ i ≤ n and define the predicate
validity(ξ) as the conjunction of the expressions below:
1. ∀p : V P1

p (p) = v0
p, 2. ∀(p, r, i) ∈ Πout

1 : Δp,r ≤ U

3. If (p, r) ∈ Πcol
1 or p ∈ Πcol

2 or (p, i) ∈ Πout
2 or p ∈ Πout

3 then

V P
p ≤ U for P ∈ {P1, P2, P3}.

4. ∀(Δ, r, i) ∈ MP1
p ∪ MP2

p ∪ MP3
p : Δ ≤ U

5. ∀(V, i) ∈ MP2
p ∪ MP3

p : V ≤ U , if V �= ⊥
6. If p ∈ Πout

3 then vp = getfst
(

V P3
p

)

7. 1 ≤ j ≤ n + 1 ∧ ∃i : w = vi ∨ w = ⊥, 8. If j = 1 then w = ⊥
The next predicate says that values learned in round r are relayed in round r+1.

Definition 12 (Relays of knowledge, Phase 1). Define the predicate
relay(ξ) by the following: If (p, ·) ∈ Πcol

1 and V P1
p (j) = vr′

, v �= ⊥ for some j

and r′ ≤ n − 2 then it holds that

1. if (p, r, ·) ∈ Πout
1 and r �= r′ + 1 then Δp,r (j) = ⊥

2. if (p, r, ·) ∈ Πout
1 and r = r′ + 1 then Δp,r (j) = v

Knowledge propagates from ti to all live agents of the protocol.

Definition 13 (Received messages, Phase 1). Define the predicate
receive1(ξ) by the following:

If (a) (ti, ·) ∈ Πcol
1 and (b) V P1

ti (j) = vr �= ⊥ for some j

then 0 ≤ r ≤ n − 2 and r′ = r + 1 implies (Δ, r′, ti) ∈ MP1
p and Δ(j) = v.

Maybe the most important property: all agents learn from the trusted immortal.
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Definition 14. Define the predicate learn(ξ) by the following:

If (a) (ti, ·) ∈ Πcol
1 , (b) V P1

ti (j) = vr �= ⊥ for some j, and (c) (p, r′) ∈ Πcol
1

then i. if 0 ≤ r ≤ n − 2 and r′ ≥ r + 1 then V P1
p (j) = vr′′

for some r′′.

ii. if r = n − 1 then V P1
p (j) = vr′′

for some r′′.

The property that all agents learn from the trusted immortal also holds at the
beginning of Phase 2 where every agent at least has the same knowledge as ti.

Definition 15. Define predicate preknow(ξ) by: ∀(p, ·) ∈ Πout
2 : V P2

ti ≤ V P2
p .

The predicate below states that all agents receive from ti in Phase 2.

Definition 16. Define the predicate receive2(ξ) as follows: if all of 1. p ∈ Πcol
2 ,

2. i := max(senders( MP2
p )), and 3. ti < i, then ∃V : (V, ti) ∈ MP2

p .

The effect is that everyone has the same knowledge as ti at the end of Phase 2
(or beginning of Phase 3), which is stated in the following predicate:

Definition 17. Define the predicate know(ξ) by 1. ∀p ∈ Πout
3 : V P3

ti = V P3
p

and 2. If p ∈ Πout
3 and 0 < j < n + 1 then w = vp .

The following important theorem tells that I is an invariant.

Theorem 1. I is an invariant which satisfies Equation 4.

The proof that “I(ξ) implies that ξ
ok=⇒ 0” uses a progress measure as temporal

distance of any agent i to termination. Our main theorem follows directly.

Theorem 2. The relation in Equation 6 is a weak bisimulation up to 
 with
invariant I defined as in Definition 9.

In summary, we have proved the required Consensus properties: Validity holds
since it is part of the global invariant; Termination follows from the above-
mentioned progress analysis ending up in a state where the wrapper code comes
to an end; from the argument that the wrapped system is weakly bisimilar to
ok, we get Agreement, obviously due to the design of the wrapper code.

4 Conclusion and Future Work

Our case study may offer several insights. The strategy, or: methodology, that
worked quite nicely in our case, may be summarized as follows. The usage of
a process calculus helps to keep a tight connection to the algorithm’s code,
so our proofs are meaningful. The formulation of the proof goal by wrappers
is, although not a new idea, very useful in the context of fault tolerance. A
novelty in our approach was the combination of imperfect failure detectors (as
necessarily assumed by the case study) and perfect failure detectors (as idealis-
tically assumed to have the wrapper code function properly). The introduction of
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standard forms to manage the complexity of state spaces is not a new idea either;
it has mostly been used implicitly and often only in toy examples, but it seems
to scale quite well. The reason we propose to turn standard forms explicitly
into a method is that they provide a well-suited means to express the typical
assertional state-based proof knowledge as invariants. Again, the mere use of
invariants is not at all a new idea. However, their systematic integration within
the bisimulation method seems novel.

Future work on this case study may involve confluence-oriented proof meth-
ods, as employed in [FH07, PM06], and to investigate in what flavor they appear
in our invariant-oriented method. Likewise, it might support our claims to also
carry out our proof case study on a non-wrapped equation, that is, to contrast
our approach of this paper with a bisimulation-based proof of an equation with-
out hiding that much external behavior in wrapper code.
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Abstract. We consider the following problem: For a system consisting of two 
components, the behavior of one component is known as well as the desired 
global behavior. What should be the behavior of the second component such 
that the behavior of the composition of the two conforms to the desired behav-
ior ? - This problem has been called "submodule construction" or "equation 
solving”. Solutions to this problem have been described in the context of vari-
ous specification formalisms and various conformance relations.  This paper 
presents a new formulation of this problem and its solution in first-order logic. 
It is also shown how the solutions for submodule construction in various speci-
fication formalisms can be derived from the solution in logic. The simple proof 
of correctness for the logic solution is then used to justify the particular forms 
of solutions in the different specification formalisms, such as (a) synchronous 
rendezvous at several interfaces, and (b) interleaved rendezvous (labeled transi-
tion systems). 

1   Introduction 

In automata theory, the notion of constructing a product machine S from two given 
finite state machines MA and MB , written M = MA x MB, is a well-known concept  
(see Figure 1(a)). This notion is very important in practice since complex systems are 
usually constructed as a composition of smaller subsystems, and the behavior of the 
overall system is in many cases equal to the composition obtained by calculating the 
product of the behaviors of the two subsystems. Here we consider the inverse opera-
tion, called “equation solving” or “submodule construction”: Given the composed 
system M and one of the components MA, what should be the behavior of the second 
component MB such that the composition of these two components MA and MB will 
exhibit a behavior equal to M. That is, we are looking for the value of X which is the 
solution to the equation MA x  X  = M (see Figure 1(b)). Actually, since equality often 
cannot be realized, we are looking for the most general machine X which composed 
with MA satisfies some conformance relation in respect to M. In this paper we con-
sider trace inclusion as conformance relation. 

A first paper of 1980 [1] (see also [2]) gives a solution to this problem for the  
case where the machine behavior is described in terms of LTS (communicating by 
                                                           
∗ This work was partly supported by a research grant from the Natural Sciences and Engineer-

ing Research Council of Canada. 



214 G.v. Bochmann 

 

interleaved rendezvous). This work was later extended to the cases where the behav-
ior of the machines is described by CSP, FSMs with queues, IOAs  and synchronous 
FSMs. The problem has also been formulated for databases using relational algebra 
(see [3] for pertinent references). The main applications of this work are in the design 
of communication protocols, the construction of protocol converters for communica-
tion gateways, the selection of test cases of testing a module in a context, and for 
finding a controller for discrete event control systems [4]. 

The purpose of this paper is to show that, in fact, the equation solving (or submod-
ule construction) problem can be formulated in logic. It turns out that (a) a solution 
with a structure similar to the solutions mentioned above exists, and (b) a proof of the 
correctness of this solution is quite simple, apparently much simpler than the existing 
proofs of correctness for the solutions in the contexts mentioned above. We show in 
this paper how the solutions for submodule construction in different contexts can be 
derived from the general solution in the logic context. The proof of correctness from 
the logic context can therefore be used to justify the particular forms of solutions in 
the contexts of different specification formalisms. In this paper we give an overview 
of the cases of (a) synchronous rendezvous at several interfaces, and (b) interleaved 
rendezvous (that is, labeled transition systems). A more detailed discussion, including 
examples, can be found in [3]. Other contexts are considered in [5], such as  synchro-
nous (I/O) automata with complete or partial behavior specifications, interleaving 
IOA with complete or partial behavior specifications, and finite state machines with 
queued communication, as well as relational algebra for databases. These contexts 
include much of the previous work mentioned above and also some not so common 
modeling approaches. 

2   Equation Solving in the Logic Context 

We use in this section first-order logic with typed variables. We consider a universe 
with three variables XA, XB, and XC that may take values from three domains DA , DB  
and DC , respectively. These domains may be infinite. Therefore, the set of possible 
value assignments to the variables is U = DA × DB × DC . We write xA, xB, and xC for 
possible values of the variables XA, XB, and XC , respectively. 

We are interested in relationships between values of different variables. For in-
stance, we may consider a relation R ⊂ DA × DB  which is a subset of pairs < xA, xB > 
of values of the variables XA and XB . We also use predicates to characterize sets. For 
instance, the relation R may be characterized by a predicate C(xA, xB) which is true 
exactly for those pairs < xA, xB > that are in R. 

 

The equation solving problem 

In the following, we are interested in three relations RA ⊂ DB × DC, RB ⊂ DA × DC and 
RC ⊂ DA × DB . We write CA(xB, xC) , CB(xA, xC) , and CC(xA, xB) for their respective 
characterizing predicates.  We now consider the following proposition: 

  ∀ < xA, xB, xC >∈U :  <xB, xC> ∈ RA  ∧  <xA, xC> ∈ RB  ⇒  <xA, xB> ∈ RC   (1Rel) 
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This proposition may be equivalently rewritten in terms of the predicates as follows:   

  ∀ < xA, xB, xC > ∈ U :   CA(xB, xC) ∧ CB(xA, xC)  ⇒  CC(xA, xB)      (1Pred) 

The problem of equation solving is the following: We assume that RA and RC are 
given. What are the properties of relation RB that ensure that proposition (1) is satis-
fied? – We would like to find a maximal solution RB

max to this problem, that is, RB
max 

together with RA and RC would satisfy (1), but any larger RB’ ⊃ RB
max would not sat-

isfy this proposition.  
 

The maximal solution 

Starting from (1Pred), it is easy to see that the following predicate characterizes the 
maximal solution: 

            CB
max(xA, xC)  =  ∀ xB ∈ DB :   CA(xB, xC)  ⇒  CC(xA, xB)                     (2) 

The right side of this definition can be equivalently transformed in several steps as 
follows: 

            ∀ xB ∈ DB :    ¬CA(xB, xC)  ∨  CC(xA, xB)    
            ∀ xB ∈ DB :    ¬ ( CA(xB, xC)  ∧  ¬CC(xA, xB)  )  
            ¬∃ xB ∈ DB :  CA(xB, xC)  ∧  ¬CC(xA, xB)   
which leads to the following equivalent expression for the maximal solution:  

           CB
max (xA, xC)  =  ¬∃  xB ∈ DB :   CA(xB, xC)  ∧  ¬CC(xA, xB)                 (3) 

 

The realized subset of RC 

We note that in general not all pairs <xA, xB> ∈ RC could be “realized” by RA and 
RB

max .  

Definition: We say that a pair <xA, xB> ∈ RC is realizable by RA and RB if there exist 
a value xC ∈ DC such that  <xB, xC> ∈ RA and <xA, xC>  ∈  RB .  

We call the subset of RC that is realisable by RA and RB
max the maximally realisable 

subset of RC (or “product”), written RC
prod . We therefore have 

<xA, xB> ∈ RC
prod   iff   ∃  xC ∈ DC :  <xB, xC> ∈ RA ∧ <xA, xC> ∈ RB

max         (4) 
 

The reduced maximal solution 

We consider the relation RB
incompatible characterized by the following predicate: 

              CB
incompatible(xA, xC) =  ¬∃  xB ∈ DB :  CA(xB, xC) ∧ CC(xA, xB)  

Lemma: There is no <xA, xB> ∈ RC that is realizable by RA and RB
incompatible . 

Proof: Let us assume that there is a pair  <xA, xB> ∈ RC that is realizable by RA and 
RB

incompatible . According to the definition of “realizable”, this implies that there is a xC 
∈ DC such that <xB, xC> ∈ RA and <xA, xC>  ∈  RB

incompatible . Now, the definition of  
RB

incompatible implies that there is no x’B ∈ DB such that  CA(x’B, xC) ∧ CC(xA, x’B). 
However, this is a contradiction, since xB satisfies this condition for x’B.  
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We conclude from the lemma above that those pairs <xA, xC> of RB
max that are in 

RB
incompatible do not contribute to the realization of RC

prod . We therefore may eliminate 
from the solution RB

max all pairs in RB
incompatible and still obtain the same set RC

prod of 
realizable pairs <xA, xB>. We call this the reduced maximal solution to the equation 
solving problem. It is characterized by the following predicate: 

  CB
red (xA, xC)  =  (  ∃  xB ∈ DB :   CA(xB, xC)  ∧  CC(xA, xB)  )   ∧ 

                              ( ¬∃  xB ∈ DB :   CA(xB, xC)  ∧  ¬CC(xA, xB)  )                          (5) 

3   Submodule Construction for Synchronous Systems and LTS 

State machines are often used as models for reactive systems that interact with their 
environment. Often one considers a system model which is the composition of several 
state machines. Therefore a state machine is normally a component within a system, it 
interacts with other components of the system and possibly also with the environment 
of the system; or the state machine represents the interactions of the whole system 
with its environment. Because of space limitations, this sections is much condensed. 
More details can be found in [3]. 

 

Fig. 1. (a) Two communicating components; (b) Submodule construction problem 

A system component has one or more interfaces where interactions with the envi-
ronment of the component take place. Each interface i is associated with a domain Ii ; 
the elements of Ii are the possible interactions that may take place at that interface. 
We write  xi

(t) for the interaction that takes place at interface i at time unit t. Clearly, 
xi

(t) ∈ Ii for all t. We write xi for a sequence of interactions at interface i over a certain 
time period. We write Ii* for the set of all sequences that can be formed by concate-
nating interactions from the domain Ii . We have xi ∈ Ii* . 

We assume trace semantics for the specification of the dynamic behaviour of a 
system, that is, the dynamic behavior of a system M is defined in terms of the set of 
possible execution histories that could occur during the execution of the component. 
For a system with n interfaces i (i = 1, …, n), an execution history consists of a tuplet 
< x1, x2, … xn > where xi (i = 1, …, n) is the sequence of interactions that occurred at 
interface i during the execution history. We therefore assume that the specification S 
of the behavior of M is given in the form of a (normally infinite) set of such tuplets. 
As in Section 2, instead of talking about the set S of tuplets, one may also talk about 
the predicate C that characterizes this set. 
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3.1   Submodule Construction for Synchronous Systems 

For synchronous systems, there is an interaction at each interface during each global 
time unit. Therefore, for a system as shown in Figure 1(b), the formula 

          ∀ < xA, xB, xC > ∈ U :   CA(xB, xC) ∧ CB(xA, xC)  ⇒  CC(xA, xB)              (1syn) 

states that the traces of the composition of machines MA and MB are included in the 
traces of MC . In order to compare this formula with what has been discussed previ-
ously in the literature, we have to introduce the hiding operator. When one of  
the interfaces (say i) is hidden, we obtain a visible behaviour which only involves the 
non-hidden interfaces. For a behavior C of a machine with n interfaces, we use the 
notation “hide(syn)

i (C(x1, x2, … xn)” to represent the predicate of the behaviour when 
interface i is hidden. As discussed by Abadi and Lamport, this predicate has the fol-
lowing form: 

           < x1, … , xi-1, xi+1, …, xn > ∈ hide(syn)
i (C(x1, x2, … xn) )                 

                     iff  ∃ xi ∈ Ii* :  < x1, … , xi-1, xi, xi+1, …, xn >  ∈ C(x1, x2, … xn) 

We note that (1syn) has the form of (1Pred) and we can follow the derivations of  
Sections 2.3 through 2.5. Using the above formula for hiding, we can rewrite Equa-
tion (5) of Section 2 for the reduced maximal solution as follows: 

    CB
red (xA, xC)  =  hide(syn)

B (CA(xB, xC)  ∧  CC(xA, xB) )  
                       \  hide(syn)

B ( (CA(xB, xC)  ∧  (IA* × IB* \ CC(xA, xB) ) )                 (5syn) 

3.2   Submodule Construction for Interleaving Semantics 

In this modeling framework, we also have rendezvous interactions at interfaces, but 
interleaving semantics is assumed, which means that at most one interaction (on a 
single interface) may occur during each time unit. We use in the following the same 
modelling framework as for synchronous machines, but introduce the following 
changes: 

− We allow an interface to have the value null during a given time unit, which means 
that no interaction takes place at this interface during this time unit. 

− In a system of several components with n interfaces, a possible execution history 
<x1, x2, … xn> must satisfy the following constraint, called interleaving constraint: 

           IC(x1, x2, … xn ) = for all t : xi
(t) ∈ Ii implies xj

(t) = null for all j ≠ i. 

We say that two execution histories are equivalent if they exhibit the same se-
quence of non-null interactions. This leads to the following formula of interface hiding: 

     < x1, …, xi-1, xi+1, …, xn > ∈ hide(LTS) 
i (C(x1, x2, … xn) )  

           iff  IC(x1, … , xi-1, xi+1, …, xn) 
          ∧   ∃ < x1‘, … , xi-1‘, xi‘, xi+1‘, …, xn‘ > :  ( IC(x1‘, … , xi-1‘, xi‘, xi+1‘, …, xn‘) 
                   ∧    < x1‘, … , xi-1‘, xi+1‘, …, xn‘ >  ≅  < x1, … , xi-1, xi+1, …, xn > 

∧ < x1‘, … , xi-1‘, xi‘, xi+1‘, …, xn‘ >  ∈ C(x1, x2, … xn)  ) 
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Because of the interleaving constraint, the formulas (1syn) and (2) become: 

  ∀ < xA, xB, xC > ∈ U : IC(xA, xB, xC) ∧ CA(xB, xC) ∧ CB(xA, xC) ⇒ CC(xA, xB)   (1LTS) 
CB

max(xA, xC)  = IC(xA, xC)  ∧ ∀ < xA‘, xB‘, xC‘ > ∈ U :  
   IC(xA‘, xB‘, xC‘)  ∧  <xA‘, xC‘>  ≅ <xA, xC>   ∧  CA(xB‘, xC‘) ⇒ CC(xA‘, xB‘)   (2LTS) 

And the reduced maximal solution becomes 

CB
red (xA, xC)  =  hide(LTS)

B ( CA(xB, xC)  ∧  CC(xA, xB)   
                        ∧  ¬ hide(LTS)

B ( CA(xB, xC)  ∧  ¬CC(xA, xB) )                             (5LTS) 

This solution was presented (using a different notation) in [1], which was the first 
paper on submodule construction to our knowledge. We note that this formula is the 
same as (5 syn), except that a different hiding operator is used. 

4   Conclusions 

We have shown in this paper that the problem of submodule construction can be for-
mulated in a general setting using first-order logic. It turns out that solutions to this 
problem in logic are quite simple, and they can be mapped (together with their proof 
of correctness) into the different specification formalisms considered in earlier work. 
Therefore this paper provides, in a sense, new proofs of correctness for the solutions 
of the submodule construction problem described earlier.  

We consider in this paper trace semantics, that is, the behaviour of the system, or 
of a component, is characterized by the set of possible execution histories. This is 
adequate for safety properties, but ignores issues of liveness, progress, absence of 
deadlocks and fairness.  

It is to be noted that the complexity of the algorithms for constructing the missing 
submodule depends on the specification formalism used. For state machines the com-
plexity is polynomial if the interactions at the interface IC in Figure 1(b) are visible by 
MC, however, if they are hidden, as we assume in this paper, the algorithms become 
exponential, because the hiding introduces non-determinism and the algorithm to find 
a deterministic automaton equivalent to a non-deterministic one is exponential. The 
problem becomes undecidable for behavior specifications in CSP. 
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Abstract. We present a strategy for model-checking the correctness of
service composition. We do so in the context of SRML, a formal mod-
elling framework for service-oriented computing being defined within the
SENSORIA project. We introduce a methodology for encoding patterns
of typical service interaction with UML state machines and present a
strategy for checking SRML specifications of service composition based
on such patterns. For that purpose, we use the action-state branching
time temporal logic UCTL and the model-checker UMC.

1 Specifying Service Composition with SRML

The SENSORIA Reference Modelling Language (SRML) [3,5] is a domain spe-
cific language for service-oriented architectures, inspired by the Service Compo-
nent Architecture [8]. SRML provides primitives for modelling composite services
whose business logic involves the orchestration of interactions among elementary
components and the invocation of services provided by external parties.

Fig.1 is an example of a service module – the primitive that SRML offers
for modelling service composition. A service module defines a distributed or-
chestration of a set of external services through a configuration of components
and wires. Each of these components, wires and external services is typed by a
specification of the interactions it can engage in or coordinate (in the case of
wires). Components are typed by stateful models of the behaviour of the ac-
tual components that will execute during service delivery. Requires-interfaces,
which represent the interfaces of the external services, are typed by what we
call business protocols — behavioural constraints defined with patterns of the
UCTL temporal logic [4] that need to be matched by the behaviour offered by
the external services. Every service module has a provides-interface that is also
typed by a business protocol advertizing the properties offered by the service at
its interface level — in the example, the provides-interface CR is typed by the
� This work was partially sponsored through the IST-2005-16004 Integrated Project
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business protocol Customer shown in Fig. 2. Finally, wires are typed by connec-
tors that coordinate the interactions between components and external services
[2]. A service module is said to be correct if the composition of components,
wires and external-services that it specifies entails the properties advertized by
its provides-interface.

Fig. 1. The service module TravelBooking. TravelBooking uses the components BA
and DB plus a set of wires to orchestrate three existing independent services — for
booking a flight, booking a hotel and processing the payment.

Interactions, which have a conversational nature, consist of an asynchronous
exchange of typed events between the parties that compose the service, where
each type of event has a particular meaning from the business point of view (like
requesting, replying, commiting, revoking, etc.). Service modules are interpreted
over a particular type of Doubly Labelled Transition Systems (L2TS) in which
transitions are labelled by the publication, execution and discard of events [3]
— UCTL logic is used to reason about such L2TSs.

2 Specifying Service Interfaces with SRML

In SRML, the properties that are required from the external services that form
the module, and also the properties that the module provides, are expressed
through a business protocol in two ways: by declaring a set of typed interactions
and by declaring a set of constraints that correlate the events of those inter-
actions. The type that is associated with each interaction defines not only the
set of events the service can engage in as part of that interaction, but also the
conversational protocol that the service follows to engage in those events. The
additional constraints that are specified in the business protocol – the behaviour
– are used to impose further restrictions on that conversation or to correlate
different interactions.
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BUSINESS PROTOCOL Customer is

INTERACTIONS

r&s login
usr:username, pwd:password

r&s bookTrip
from,to:airport,
out,in:date

 fconf:fcode,
hconf:hcode,
amount:moneyvalue

snd payNotify
status:boolean

snd refund
amount:moneyvalue

BEHAVIOUR

initiallyEnabled login ?
login !  login .Reply enables bookTrip ?
bookTrip ? ensures payNotify !
payNotify !  payNotify.status enables bookTrip ?
bookTrip ? ensures refund !

Fig. 2. The business protocol Customer, which types the provides-interface CR

In order to specify behaviour constraints, SRML relies on a set of pre-defined
patterns of behaviour that are encoded by abbreviations of UCTL formulas.
The following table presents the abbreviations that encode three of the most
commonly used patterns, which have been identified in a number of case studies:

initiallyEnabled e A
⎧
⎩true{¬e¿}W{e?}true

⎫
⎭

a enables e
⎧
⎩AG[a]¬EF < e¿ > true

⎫
⎭ ∧

⎧
⎩A[true{¬e?}W{a}true

⎫
⎭

a ensures e
⎧
⎩AG[a]AF [e!]true

⎫
⎭ ∧

⎧
⎩A[true{¬e!}W{a}true]

⎫
⎭

The abbreviation “initiallyEnabled e” states that the event e will never be
discarded (until it is actually executed) — this abbreviation is typically used
to define the first interaction to take place during a session with a service. For
instance Customer (shown in Fig. 2), which specifies the provides-interface of
TravelBooking, declares that the request-event login� is ready to be executed as
soon as a session is created. The abbreviation “a enables e” states that after
a happens the event e will not be discarded and that before a it will never be
executed. In Customer this pattern is used to declared that, after the login is
accepted (but not before), the service will be ready to execute a request to book
a trip. Finally the abbreviation “a ensures e” states that after a happens the
event e will for certain be published, but not before. This abbreviation is used
in Customer to declare that after a request to revoke a booking is executed (but
not before), a refund will be sent.

In the interaction declaration of a business protocol, two-way interactions can
be typed by s&r (send and receive) or r&s (receive and send) to define that
the service being specified engages in the interaction as the requester or as the
supplier, respectively. Each of these two roles, requester and supplier, has a set of
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properties associated with it. The following table presents the UCTL encoding
of two of the properties associated with an interaction i of type r&s.

A reply will be published after and only
after the request-event was executed. i�? ensures iB!
A revoke cannot be enabled before the
execution of the commit-event. A[true{¬i�?}W{i�?}true]

3 Encoding Service Composition with State Machines

In order to be able to model-check properties of service behaviour in the context
of SRML in general, and the correctness of service modules in particular, we
need to restrict ourselves to those modules in which state machines are used for
modelling the components, the wires and the behaviour required from external
services. This is because the UMC model-checker [7] takes as input a system
of UML communicating state machines, with which it associates a L2TS that
represents the possible computations of that system — model-checking is then
performed over this L2TS using UCTL logic. Using UML state machines for
defining workflows is quite standard. However, the case of wires and requires-
interfaces is not as simple. In the case of wires, we need to ensure that the SRML
computational model [3] is adhered to in what concerns event propagation and
related phenomena and in the case of requires-interfaces, we need to be able to
represent the patterns discussed in the previous section with state machines.

Encoding requires interfaces. A business protocol, which specifies the inter-
face behaviour of a service, defines not one particular service, but a family of
services that can be discovered, ranked and selected [6]. By associating a specific
state machine with a requires-interface we are choosing a canonical model of the
required behaviour.

As discussed in the previous section the specification of a requires-interface
consists of a typed declaration of the interactions that the selected service should
be ready to engage in and a set of behaviour constraints that correlate the events
of those interactions. Our strategy for encoding a requires-interface as a state
machine entails creating a concurrent region for each of the interactions that the
external service is required to be involved in – the interaction-regions – and a
concurrent region for all of the behaviour constraints – the constraint-regions –
except for the constraints defined with the pattern “initiallyEnabled e”: these
are modelled by the instantiation of a state attribute.

The role of each of the interaction regions is to guarantee that the conversa-
tional protocol that is associated with the type of the interaction is respected.
Events of a given interaction are published, executed and discarded exclusively
by the interaction-region that models it. The role of the constraint-regions is to
flag, through the use of special state attributes, when events become enabled
and when events should be published – the evolution of the interaction-regions,
and thus the actual execution, discard and publication of events, is guarded by
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the value of those flags. Constraint-regions cooperate with interaction-regions to
guarantee the correlation of events expressed by the behaviour constraints.

Following this methodology, each interaction declaration and each behaviour
constraint encodes part of the final state machine in a compositional way. Associ-
ated with each interaction type and each constraint pattern, there is a particular
statechart structure that encodes it. A complete mapping from interactions types
and behaviour patterns to their associated statechart structure can be found in
[1]. Naturally, the encoding we propose for specifications of requires-interfaces
is defined so that the transition system that is generated for a service module
satisfies the UCTL formulas associated the requires-interfaces of that module.

Encoding wires. In SRML, the coordination of interactions, which are de-
clared locally for each party of the module, is done by the wires. For each wire,
there is a connector that defines an interaction protocol with two roles and binds
the interactions declared in the roles with those of the parties at the two ends of
the wire [2]. With our methodology for encoding wires with UML state machines,
every connector defines a state machine for each interaction. This state machine
is responsible for transmitting the events of that interaction from the sending
party to the receiving co-party. Parties publish events by signalling them in the
state machine that corresponds to the appropriate connector; this state machine
in turn guarantees that these events are delivered by signalling them in the state
machine that is associated with the co-party. The relation between parameter
values that is specified by the interaction protocol of the connector is ensured
operationally by the state machine that encodes that connector – data can be
transformed before being forwarded. The statechart contains a single state and
as many loops as the number of events that the connector has to forward.

4 Model-Checking Service Modules: The TravelBooking
Example

In order to model-check that the composition specified by the module Travel-
Booking provides the properties specified in Customer, we have encoded each of
its external-required interfaces and each of its connectors using the methodology
described in the previous section. Adding the two components that orchestrate
the system, we ended up with a set of fifteen communicating UML state ma-
chines. Because every input source of a UMC model must also be modelled
via an active object, we had to define a machine that initiates the interactions
advertised in the provides-interface Customer, thus modelling a generic client
of the service. Using this system as input to the UMC model-checker, we can
verify if the doubly labelled transition system that is generated — we will refer
to it as T — does satisfy the formulas associated with the provides-interface
Customer, shown in Fig. 2. If T does not satisfy some of these formulas, than
there is something in the module TravelBooking that needs to be corrected.

Having used UMC to model-check TravelBooking, we found out that all the
constraints were satisfied by T except one: “payNotify�! ∧ payNotify.status en-



224 J. Abreu et al.

ables bookTrip✞?”. This is because there is a path in T on which the event book-
Trip✞ is discarded after the event payNotify� is published with a positive value
for the payNotify.status parameter. This means that the publication of event
payNotify� with a positive payNotify.status by the service does not guarantee
that the revoke event of interaction payNotify becomes enabled for execution. If
the composition was implemented as it is, it would be possible for a client to ask
for a booking to be revoked and have this request ignored by the service.

After analysing the path of T that leads to the failure of the property, we
understood that the problem is that, because PA interacts directly with the client
through the wire CP, it is possible for the payment notification (represented by
payNotify�) to be received by the client before BA receives the confirmation for
the payment (which is sent via another wire, BP). If the client tries to revoke
the booking immediately, BA will not accept it because it does not yet know
that the payment of the booking has been accepted by PA.

In order to fix this problem we have redesigned the architecture of the module
TravelBooking by removing the wire CP. In the new architecture, PA does not
interact directly with the client anymore. When the payment is executed by PA,
the component BA is notified and is in turn responsible for notifying the client.
Only then can the client choose to revoke the booking.
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Architecture. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 193–213. Springer, Heidelberg (2006)

6. Fiadeiro, J.L., Lopes, A., Bocchi, L.: An abstract model of service discovery and
binding (2008) (submitted), www.cs.le.ac.uk/people/jfiadeiro

7. Mazzanti, F.: UMC User Guide v3.3. Technical Report 2006-TR-33, Istituto di
Scienza e Tecnologie dell’Informazione A. Faedo, CNR,
http://fmt.isti.cnr.it/WEBPAPER/UMC-UG33.pdf (2006)

8. SCA Consortium. Service component architecture specifications (2007)

www.cs.le.ac.uk/people/jfiadeiro
http://fmt.isti.cnr.it/WEBPAPER/UMC-UG33.pdf


Dynamic Symbolic Execution
of Distributed Concurrent Objects�

Andreas Griesmayer1, Bernhard Aichernig1,2,
Einar Broch Johnsen3, and Rudolf Schlatte1,2

1 International Institute for Software Technology, United Nations University
(UNU-IIST), Macao S.A.R., China

{agriesma,bka,rschlatte}@iist.unu.edu
2 Institute for Software Technology, Graz University of Technology, Austria

{aichernig,rschlatte}@ist.tugraz.at
3 Department of Informatics, University of Oslo, Norway

einarj@ifi.uio.no

Abstract. This paper extends dynamic symbolic execution to distri-
buted and concurrent systems. Dynamic symbolic execution is used to
systematically identify equivalence classes of input values and has been
shown to scale well to large systems. Although mainly applied to se-
quential programs, this scalability makes it interesting to consider the
technique in the distributed and concurrent setting as well. In order to
extend the technique to concurrent systems, it is necessary to obtain
sufficient control over the scheduling of concurrent activities to avoid
race conditions. Creol, a modeling language for distributed concurrent
objects, solves this problem by abstracting from a particular scheduling
policy but explicitly defining scheduling points. This provides sufficient
control to apply the technique of dynamic symbolic of interleaved pro-
cesses. The technique has been formalized in rewriting logic and executes
in Maude.

1 Introduction

Distributed and concurrent systems, e.g. web services, are becoming increas-
ingly important for long-running infrastructure and applications. They typically
consist of loosely coupled components which communicate asynchronously, po-
tentially running on different hardware systems. For critical distributed systems,
the use of formal methods, both for design and verification, remains a challenge.
In the general case, the complexity of such systems makes full verification seem
impossible, even for medium sized examples.

The challenge is to find a verification technique that scales to the combina-
torial explosion in the number of possible runs in such models. A promising
technique that seems to scale well to large systems is dynamic symbolic execu-
tion [1,4,9]. The idea is to calculate a symbolic execution in parallel with the
� This research was carried out as part of the EU FP6 project Credo: Modeling and

analysis of evolutionary structures for distributed services (IST-33826).

D. Lee et al. (Eds.): FMOODS/FORTE 2009, LNCS 5522, pp. 225–230, 2009.
c© IFIP International Federation for Information Processing 2009



226 A. Griesmayer et al.

concrete test run of a given formal model. The result is a set of conditions over
symbolic input values representing the path of the last run.

The problem is that dynamic symbolic execution is of limited use with the
concurrency models of today’s programming languages. The reason is that dy-
namic symbolic execution does not work in settings where the execution of ex-
pressions is not atomic. Hence, its main application so far has been limited to
single-threaded programs and to client-server applications with simple serial-
ized communication flows. In this work we overcome this limitation by choosing
a modeling language that provides the appropriate level of concurrency con-
trol: Creol [6], an executable object oriented modeling language whose execution
model was designed to assist in the development of distributed systems.

We have implemented the dynamic symbolic execution technique in Maude [2],
which is the execution platform of Creol, allowing us to perform the symbolic
run dynamically while the concrete run is executed. The tool, and an application
to testing, is covered in more detail in [5].

1.1 Related Work

Symbolic execution is a widely used program analysis technique that represents
the values of variables as symbolic expressions instead of concrete data. An
execution of a program is performed by manipulating those expressions instead
of computing concrete values.

Application of symbolic execution to verification was already proposed in 1976
by King [7], who shows symbolic execution for a simple sequential language and
presents an interactive tool EFFIGY to traverse the execution tree. However,
there are limits to the feasibility of this technique, due to the sheer number
of possible execution paths induced by non-determinism. To make the process
feasible for large systems one can either reduce the amount of information that
is tracked, or the number of paths to search. An example for the first kind are
static analysis tools like ARCHER from Engler et al. [10], which concentrate
on certain properties of interest for the analysis. In this paper, we reduce the
number of paths that are searched at a time by dynamic symbolic execution. In
[1], Boyer et al. show the interactive tool SELECT that computes input values
for a run selected by the user. One of the first automated tools was DART
from Godefroid et al. [4], which automatically extracts a program’s interface
and generates a test driver to perform random testing. Several extensions to
these approaches exist, among the most notable the PEX tool from Tillmann et
al. [9] for creating parameterized unit tests for single-threaded .NET programs.
We extend dynamic symbolic execution to Creol’s concurrency model, including
the treatment of local scheduling points in the distributed objects.

2 The Modeling Language Creol

Creol is a high-level executable modeling language targeting distributed sys-
tems in which concurrent objects communicate asynchronously [6]. The lan-
guage decouples communication from synchronization. Furthermore, it allows
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local scheduling to be left underspecified but controlled through explicitly de-
clared process release points. The language has a formal semantics defined in
rewriting logic [8] and executes on the Maude platform [2]. In the remainder of
this section, we present Creol and point out its essential features for DSE.

A concurrent object in Creol executes a number of processes that have ac-
cess to its local state. Each process corresponds to the activation of one of the
object’s methods; a special method run is automatically activated at object cre-
ation time, if present, and captures the object’s active behavior. Objects execute
concurrently: each object has a processor dedicated to executing the processes
of that object, so processes in different objects execute in parallel. In contrast
to, e.g., Java, each Creol object strictly encapsulates its state; i.e., external ma-
nipulation of the object state happens via calls to the object’s methods only.
Only one process can be active in an object at a time; the other processes in the
object are suspended. A process can be released using Creol’s await statement,
in which case another proces may be activated.

Communication in Creol is based on method calls. These are a priori asyn-
chronous; method replies are assigned to labels (also called future variables,
see [3]). There is no synchronization associated with calling a method. Reading
a reply from a label, however, is a blocking operation and allows the calling ob-
ject to synchronize with the callee. A method call that is directly followed by a
read operation models a synchronous call. Thus, the calling process may decide
at runtime whether to call a method synchronously or asynchronously.

The language syntax of the subset of Creol used in this paper is presented in a
Java-like style. We omit some features of Creol, including interfaces, inheritance,
non-deterministic choice and many built-in data types and their operations. For
a full overview of Creol, see for example [6].

2.1 Representation of a Run

A run of a Creol system captures the parallel execution of processes in differ-
ent concurrent objects. Such a run may be perceived as a sequence of execution
steps where each step contains a set of local transitions on a subset of the sys-
tem’s objects. However, only one process may be active at a time in each object
and different objects operate on disjoint data. Therefore, the transitions in each
execution step may be performed in a truly concurrent manner or in any se-
quential order, as long as all transitions in one step are completed before the
next execution step commences. For the purposes of dynamic symbolic execution
the run is represented as a sequence of statements which manipulate the state
variables, together with the conditions which determine the control flow. Due
to space restrictions, we concentrate on statements for the concurrency model,
namely asymchronous method calls and await statements. The representation of
the other statements is straight forward and can be studied in more detail in [5].

An asynchronous method call in the run is reflected in four execution steps
(the label value l uniquely identifies the steps that belong to the same method
call): o1

l
⇀ o2.m(e) represents the call of method m in object o2 from object
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o1 with arguments e; o1
l

⇁ o2.m(v) represents when the called objects starts
execution, where v are the local names of the parameters for m; o1

l
↼ o2.m(e)

represents the emission of the return values from the method execution; and
o1

l
↽ o2.m(v) represents the corresponding reception of the values. These four

events fully describe method calling in Creol. In this execution model the events
reflecting a specific method call always appear in the same order, but they can
be interleaved with other statements.

Conditional statements in Creol are side effect free and therefore only rep-
resented in form of the statements of the branch that was actually executed.
For the sake of computing the input values, however, the condition of the taken
branch is recorded as 〈g〉. Remark that statements await g requires careful
treatment: if it evaluates to false, no code is executed. To reflect the information
that the interpreter failed to execute a process because the condition g of the
await statement evaluated to false, the negated condition 〈¬g〉 is recorded.

3 Dynamic Symbolic Execution of Distributed Objects

Conventional symbolic execution uses symbols to represent arbitrary values dur-
ing execution. When encountering a conditional branch statement, the run is
forked. This results in a tree covering all paths in the program. In contrast, dy-
namic symbolic execution calculates the symbolic execution in parallel with a
concrete run that is actually taken, avoiding the usual problem of eliminating
infeasible paths. Decisions on branch statements are recorded, resulting in a set
of conditions over the symbolic values that have to evaluate to true for the path
to be taken. We call the conjunction of these conditions the path condition; it
represents an equivalence class of concrete input values that could have taken
the same path. Note, in the case of non-determinism, there is no guarantee that
all inputs will take this path.

We extend this method to the concurrency model of Creol and define the
rules to actually compute the symbolic values for a given run. The formulas
given in this section very closely resemble the rewrite rules of Creol’s simulation
environment [6], defined in rewriting logic [8] and implemented in Maude [2]. The
rules are presented here in a slightly simplified manner to improve readability.

Denote by s the representation of program statements. Let σ = 〈v1 � e1, v2 �

e2, . . . vn �en〉 = 〈v�e〉 be a map which records key–value entries v�e, where a
variable v is bound to a symbolic value e. The value assigned to key v is accessed
by vσ. For an expression e and a map σ, define a parallel substitution operator
eσ which replaces all occurrences of every variable v in e with the expression vσ
(if v is in the domain of σ). For simplicity, let eσ denote the application of the
parallel substitution to every expression in the list e. Furthermore, let the oper-
ator σ1 �σ2 combine two maps σ1 and σ2 such that, when entries with the same
key exist in both maps, the entry in σ2 is taken. These operators are defined
as equations in rewriting logic and are evaluated in between the rewrite steps.
In the symbolic state σ, all expanded variable names are bound to symbolic ex-
pressions. However, operations for method calls do not change the value of the
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symbolic state, but generate or receive messages that are used to communicate
actual parameter values between the calling and receiving objects. Similar to the
expressions bound to variables in the symbolic state σ, the symbolic representa-
tions of these actual parameters are bound in a map Θ to the actual and unique
label value l provided for each method call by Creol’s operational semantics. Fi-
nally, the conditions of control statements along an execution path are collected
in a list C; the concatenation of a condition c to C is denoted by C ĉ.

The configurations of the rewrite system for dynamic symbolic execution are
given by s

[
Θ, σ, C], where s is a run represented as a sequence of statements, Θ

and σ are the maps for messages and symbolic variable assignments as described
above, and C is the list of conditions. The run s (as described in Section 2.1)
is generated on the fly by the concrete rewrite system for Creol. Again, we
concentrate on the statements for method calls and process release. A method
call emits a message with the expressions for the method:

o1
l

⇀ o2.m(e); s
[
Θ, σ, C] =⇒ s

[
Θ � 〈l � eσ〉, σ, C]

Because of the asynchronous behavior of Creol, the call might be received
at a later point in the run (or not at all if the execution terminates before the
method was selected for execution) by another rule, that handles the binding
of a call to a new process and assigns the symbolic representation of the actual
parameter values to the local variables in the new process (σ � 〈v � lΘ〉). The
emission and reception of return values are handled similarly to call statements
and call reception.

For conditionals, the local variables in the condition are replaced by their sym-
bolic values (〈g〉; s[Θ, σ, C] =⇒ s

[
Θ, σ, C 〈̂gσ〉]). This process is identical for the

different kinds of conditional statements (if, while, await). The statement
itself acts as a skip statement; it changes no variables and does not produce or
consume messages. The resulting expression gσ directly characterizes the equiv-
alence class of input values that reach and fulfill the condition.

3.1 Application to Testing

Approaches to test case generation for structural coverage intend to find test
sets that perform runs in the system for a specific coverage criterion. Two runs
that cover the same parts of a system can be considered equivalent. A good test
set should maximize the coverage, while minimizing the number of equivalent
runs in order to avoid superfluous efforts in executing the tests.

Dynamic symbolic execution on a run gives the set of conditions that are
combined to the path condition C =

∧
1≤i≤n ci (for n conditions), characterizing

exactly the equivalence class of tS that can repeat the same execution path.
Only one test case that fulfills C is required. A new test case is then chosen to
specifically avoid that a particular branch is taken by violating the respective ci.
To maximize decision coverage (DC), for instance, test cases have to be created
such that for each of the conditions ci, there is also a test case that violates this
condition. The process of generating new test cases ends after all combinations
required for the coverage criteria are explored.
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More details and examples on how to use DSE to generate test cases in dis-
tributed systems can be found in the technical report to this paper [5].

4 Conclusions

The main contribution of this work is the novel extension of dynamic symbolic
execution to non-trivial distributed and concurrent object models. This has been
achieved by exploiting the properties of the Creol modeling language; in particu-
lar local scheduling control of the processes and strict encapsulation of the object
state. This paper demonstrates how dynamic symbolic execution, combined with
the executable architectural models of Creol, can be used to systematically derive
equivalent input values, while avoiding the combinatorial explosion inherent in
distributed concurrent systems. Our approach has been formalized in rewriting
logic and implemented in Maude.
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Abstract. In this paper we present a formal model to represent orches-
trations and choreographies, and we provide some semantic relations to
detect their conformance, i.e., whether a set of orchestrations represent-
ing some web services leads to the overall communications described in
a choreography.

1 Introduction

We present a formal framework to define models of asynchronous web services
as well as to study them. Our main goal is allowing to define orchestrations and
choreographies as well as to compare them. That is, given the orchestration of
some web services and a choreography defining how these web services should in-
teract, we provide a diagnostic method to decide whether the interaction of these
web services necessarily leads to the required observable behavior, i.e. whether
the orchestration conforms to the choreography. Models of orchestrations and
choreographies are constructed by means of two different languages, and some
formal semantic relations define how the terms defined in both languages are
compared. Our modeling languages focus on accurately defining asynchronous
communication aspects. In particular, languages explicitly consider service iden-
tifiers, specific senders/addressees, message buffers, etc.

There are few related works that deal with the asynchronous communication
in contracts for web service context. In fact, we are only aware of three works from
van der Alst et al. [7], Kohei Honda et al. [4] and, Bravetti and Zavattaro [2]. In
particular, van der Alst et al. [7] present an approach for formalizing compliance
and refinement notions, which are applied to service systems specified using open
Workflow Nets (a type of Petri Nets) where the communication is asynchronous.
The authors show how the contract refinement can be done independently, and
they check whether contracts do not contain cycles. Kohei Honda et al. [4] present
a generalization of binary session types to multiparty sessions for π-calculus.
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They provide a new notion of types which can directly abstract the intended
conversation structure among n-parties as global scenarios, retaining an intuitive
type syntax. They also provide a consistency criteria for a conversation structure
with respect to the protocol specification (contract), and a type discipline for
individual processes by using a projection. Bravetti and Zavattaro [2] allow to
compare systems of orchestrations and choreographies by means of the testing
relation given by [1,3]. Systems are represented by using a process algebraic
notation, and operational semantics for this language are defined in terms of
labeled transitions systems. On the contrary, our framework uses an extension of
finite state machines to define orchestrations and choreographies, and a semantic
relation based on the conformance relation [5,6] is used to compare both models.
In addition, let us note that [2] considers the suitability of a service for a given
choreography regardless of the actual definition of the rest of services it will
interact with, i.e. the service must be valid for the considered role by its own.
This eases the task of finding a suitable service fitting into a choreography role:
Since the rest of services do not have to be considered, we can search for suitable
services for each role in parallel. However, let us note that sometimes this is not
realistic. In some situations, the suitability of a service actually depends on the
activities provided by the rest of services. For instance, let us consider that a
travel agency service requires that either the air company service or the hotel
service (or both) provide a transfer to take the client from the airport to the
hotel. A hotel providing a transfer is good regardless of whether the air company
provides a transfer as well or not. However, a hotel not providing a transfer is
valid for the travel agency only if the air company does provide the transfer. This
kind of subtle requirements and conditional dependencies is explicitly considered
in our framework. Thus, contrarily to [2], our framework considers that the
suitability of a service depends on what the rest of services actually do.

2 Formal Model

In this section we present our languages to define models of orchestrations and
choreographies. Some preliminary notation is presented next.

Definition 1. Given a type A and a1, . . . , an ∈ A with n ≥ 0, we denote by
[a1, . . . , an] the list of elements a1, . . . , an of A. We denote the empty list by [ ].

Given two lists σ = [a1, . . . , an] and σ′ = [b1, . . . , bm] of elements of type A
and some a ∈ A, we have σ·a = [a1, . . . , an, a] and σ·σ′ = [a1, . . . , an, b1, . . . , bm].

Given a set of lists L, a path-closure of L is any subset V ⊆ L such that for
all σ ∈ V we have

– either σ = [ ] or σ = σ′ · a for some σ′ with σ′ ∈ V .
– there do not exist σ′, σ′′ ∈ V such that σ · a = σ′ and σ · b = σ′′ with a �= b.

We say that a path-closure V of L is complete in L if it is maximal in L, that
is, if there does not exist a path-closure V ′ ⊆ L such that V ⊂ V ′. The set of all
complete path-closures of L is denoted by Complete(L). ��
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We present our model of web service orchestration. The internal behavior of a web
service in terms of its interaction with other web services is represented by a fi-
nite state machine where, at each state s, the machine can receive an input i and
produce an output o as response before moving to a new state s′. Moreover, each
transition explicitly defines which service must send i: A sender identifier snd is
attached to the transition denoting that, if i is sent by service snd, then the tran-
sition can be triggered. We assume that all web services are identified by a given
identifier belonging to a set ID. Moreover, transitions also denote the addressee of
the output o, which is denoted by an identifier adr. Let us note that web services
receive messages asynchronously. This is represented in the model by considering
an input buffer where all inputs received and not processed yet are cumulated.

Definition 2. Given a set of service identifiers ID, a service for ID is a tuple
(id, S, I, O, sin, T ) where id ∈ ID is the identifier of the service, S is the set of
states, I is the set of inputs, O is the set of outputs, sin ∈ S is the initial state,
and T is the set of transitions. Each transition t ∈ T is a tuple (s, i, snd, o, adr, s′)
where s, s′ ∈ S are the initial and final states respectively, i ∈ I is an input, snd ∈
ID is the required sender of i, o ∈ O is an output, and adr ∈ ID is the addressee

of o. A transition (s, i, snd, o, adr, s′) is also denoted by s
(snd,i)/(adr,o)−−−−−−−−−−−−→ s′.

Given a service M = (id, S, I, O, sin, T ), a configuration of M is a pair c =
(s, b) where s ∈ S is a state of M and b is an input buffer for M . An input buffer
for M is a list [(id1, i1), . . . , (idk, ik)] where id1, . . . , idk ∈ ID and i1, . . . , ik ∈ I.
The initial configuration of M is (sin, [ ]). The set of all input buffers is denoted
by B.

Let b = [(id1, i1), . . . , (idk, ik)] ∈ B with k ≥ 0 be an input buffer. We define
the following functions: exists(b, id, i) holds iff (id, i) ∈ {(id1, i1), . . . , (idk, ik)};
insert(b, id, i) = b · (id, i); remove(b, id, i) = [(id1, i1), . . . , (idj−1, ij−1), (idj+1,
ij+1), . . . , (idk, ik)] provided that j ∈ IN is the minimum value such that j ∈
[1..k], id = idj, and i = ij . ��
Once we have presented our model of web service orchestration, we provide a
way to compose services into systems. In formal terms, a system is a tuple of
services. The configuration of a system is given by the tuple of configurations of
each service in the system.

Definition 3. Let ID = {id1, . . . , idp}. In addition, for all 1 ≤ j ≤ p, let Mj =
(idj , Sj , Ij , Oj , sj,in, Tj) be a service for ID. We say that S = (M1, . . . , Mp) is a
system of services for ID.

For all 1 ≤ j ≤ p, let cj be a configuration of Mj. We say that c = (c1, . . . , cp)
is a configuration of S. Let c′1, . . . , c

′
p be the initial configurations of M1, . . . , Mp,

respectively. We say that (c′1, . . . , c
′
p) is the initial configuration of S. ��

Next we formally define how systems evolve, i.e. how a service of the system
triggers a transition and how this affects other services in the system. In fact,
the next definition presents the operational semantics of systems. In general,
outputs of services will be considered as inputs of the services these outputs are
sent to. Besides, we consider a special case of input/output that will be used to
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denote a null communication. In particular, if the input of a transition is null
then we are denoting that the service can take this transition without waiting
for any previous message from any other service, that is, we denote a proactive
action of the service. Similarly, a null output denotes that no message is sent to
other service after taking the corresponding transition. In both cases, the sender
and the addressee of the transition are irrelevant, respectively, so in these cases
they will also by denoted by a null symbol.

Definition 4. Let ID = {id1, . . . , idp} be a set of service identifiers and S =
(M1, . . . , Mp) be a system of services for ID where for all 1 ≤ j ≤ p we have
that Mj = (idj , Sj , Ij , Oj , sj,in, Tj). Let c = (c1, . . . , cp) be a configuration of S
where for all 1 ≤ j ≤ p we have cj = (sj , bj).

An evolution of S from the configuration c is a tuple (c, snd, i, proc, o, adr, c′)
where i ∈ I1 ∪ . . . ∪ Ip is the input of the evolution, o ∈ O1 ∪ . . . ∪ Op is the
output of the evolution, c′ = ((s′1, b

′
1), . . . , (s

′
p, b

′
p)) is the new configuration of S,

and snd, proc, adr ∈ ID are the sender, the processer, and the addressee of the
evolution, respectively. All these elements must be defined according to one of
the following choices:

(a) (evolution activated by some service by itself) For some 1 ≤ j ≤ p, let us

suppose sj
(null,null)/(adr′,o)−−−−−−−−−−−−−−−→ s′ ∈ Tj. Then, s′j = s′ and b′j = bj . Besides,

snd = null, proc = idj , adr = adr′;
(b) (evolution activated by processing a message from the input buffer of some

service) For some 1 ≤ j ≤ p, let sj
(snd′,i)/(adr′,o)−−−−−−−−−−−−−−→ s′ ∈ Tj and let us

suppose exists(bj , snd′, i) holds. Then, s′j = s′ and b′j = remove(bj , snd, i).
Besides, snd = snd′, proc = idj , and adr = adr′;

where, both in (a) and (b), the new configurations of the rest of services are
defined according to one of the following choices:

(1) (no message is sent to other service) If adr′ = null or o = null then for all
1 ≤ q ≤ k with q �= j we have s′q = sq and b′q = bq.

(2) (a message is sent to other service) Otherwise, let idg = adr′ for some
1 ≤ g ≤ k. Then, we have s′g = sg and b′g = insert(bg, idj , o). Besides, for
all 1 ≤ q ≤ k with q �= j and q �= g we have s′q = sq and b′q = bq. ��

We distinguish two kinds of traces. A sending trace is a sequence of outputs
ordered as they are sent by their corresponding senders. A processing trace is a
sequence of inputs ordered as they are processed by the services which receive
them, that is, they are ordered as they are taken from the input buffer of each
addressee service to trigger some of its transitions. Both traces attach some
information to explicitly denote the services involved in each operation.

Definition 5. Let S be a system and let c1 be the initial configuration of S. In
addition, let (c1, snd1, i1, proc1, o1, adr1, c2), (c2, snd2, i2, proc2, o2, adr2, c3), . . . ,
(ck, sndk, ik, prock, ok, adrk, ck+1) be k consecutive evolutions of S.

Let a1 ≤ . . . ≤ ar denote all indexes of non-null outputs in the previous se-
quence, i.e. we have j ∈ {a1, . . . , ar} iff oj �= null. Then, [(proca1 , oa1 , adra1), . . . ,
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(procar , oar , adrar )] is a sending trace of S. In addition, if there do not exist
snd′, i′, proc′, o′, adr′, c′ such that (ck+1, snd′, i′, proc′, o′, adr′, c′) is an evolution
of S then we also say that [(proca1 , oa1 , adra1), . . . , (procar , oar , adrar ), stop] is a
sending trace of S. The set of sending traces of S is denoted by sendTraces(S).

Let a1 ≤ . . . ≤ ar denote all indexes of non-null inputs in the previous se-
quence, i.e. we have j ∈ {a1, . . . , ar} iff ij �= null. Then, [(snda1 , ia1 , proca1), . . . ,
(sndar , iar , procar )] is a processing trace of S. In addition, if there do not exist
snd′, i′, proc′, o′, adr′, c′ such that (ck+1, snd′, i′, proc′, o′, adr′, c′) is an evolution
of S then we also say that [(snda1 , ia1 , proca1 ), . . . , (sndar , iar , procar ), stop]
is a processing trace of S. The set of all processing traces of S is denoted by
processTraces(S). ��
Next we introduce our formalism to represent choreographies. Contrarily to sys-
tems of orchestrations, this formalism focuses on representing the interaction of
services as a whole. Thus a single machine, instead of the composition of several
machines, is considered.

Definition 6. A choreography machine C is a tuple C = (S, M, ID, sin, T ) where
S denotes the set of states, M is the set of messages, ID is the set of service
identifiers, sin ∈ S is the initial state, and T is the set of transitions. A transition
t ∈ T is a tuple (s, m, snd, adr, s′) where s, s′ ∈ S are the initial and final states,
respectively, m ∈ M is the message, and snd, adr ∈ ID are the sender and
the addressee of the message, respectively. A transition (s, m, snd, adr, s′) is also

denoted by s
m/(snd→adr)−−−−−−−−−−−−→ s′. A configuration of C is any state s ∈ S. ��

The next definition presents the operational semantics of choreography machines.
Contrarily to systems of services, null inputs/outputs are not available, i.e, all
communications are effective. Evolutions are activated simply by taking any
transition from the current state.

Definition 7. Let C = (S, M, ID, sin, T ) be a choreography machine and s ∈ S
be a configuration of C.

An evolution of C from s is any transition (s, m, snd, adr, s′) ∈ T from state
s. The initial configuration of C is sin. ��
As we did before for systems of services, next we identify the sequences of mes-
sages that can be produced by a choreography machine.

Definition 8. Let c1 be the initial configuration of a choreography machine C.
Let (c1, m1, snd1, adr1, c2), . . . , (ck, mk, sndk, adrk, ck+1) be k ≥ 0 consecu-
tive evolutions of C. We say that σ = [(snd1, m1, adr1), . . . , (sndk, mk, adrk)]
is a trace of C. In addition, if there do not exist m′, snd′, adr′, c′ such that
(ck+1, m

′, snd′, adr′, c′) is an evolution of C then we also say that [(snd1, m1,
adr1), . . . , (sndk, mk, adrk), stop] is a trace of C. The set of all traces of C is
denoted by traces(C). ��
Now we are provided with all the required formal machinery to define our con-
formance relations between systems of orchestrations and choreographies.
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Definition 9. Let S be a system of services and C be a chorography machine.
We say that S conforms to C with respect to sending actions, denoted by

S confs C, if either ∅ ⊂ Complete(sendTraces(S)) ⊆ Complete(traces(C)) or
we have ∅ = Complete(sendTraces(S)) = Complete(traces(C)).

We say that S fully conforms to C with respect to sending actions, denoted by
S conff

s C, if Complete(sendTraces(S)) = Complete(traces(C)).
We say that S conforms to C with respect to processing actions, denoted by

S confp C, if ∅ ⊂ Complete(processTraces(S)) ⊆ Complete(traces(C)) or
∅ = Complete(processTraces(S)) = Complete(traces(C)).

We say that S fully conforms to C with respect to sending actions, denoted by
S conff

p C, if Complete(processTraces(S)) = Complete(traces(C)).
We say that S conforms to C, denoted by S conf C, if S confs C and

S confp C.
We say that S fully conforms to C (S conff C) if S conff

s C and S conff
p C.

��
3 Conclusions and Future Work

In this paper we have presented a formal framework for defining models of or-
chestrations and choreographies. We have defined some formal semantic relations
allowing to detect whether the behavior described by the orchestration of each
involved web service correctly leads to the behavior described by a choreogra-
phy. The suitability of a service for a given choreography may depend on the
activities of the rest of services it will be connected with, which contrasts with
previous works [2]. In order to take into account the effect of asynchrony, we have
separately considered the moments where messages are sent and the moments
where they are actually processed.
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Abstract. In this work we present a type graph that models all exe-
cutable constructs of the Java programming language. Such a model is
useful for any graph-based technique that relies on a representation of
Java programs as graphs. The model can be regarded as a common rep-
resentation to which all Java syntax graphs must adhere. We also present
the systematic approach that is being taken to generate syntax graphs
from Java code. Since the type graph model is comprehensive, i.e., covers
the whole language specification, the technique is guaranteed to gener-
ate a corresponding graph for any valid Java program. In particular, we
want to extract such syntax graphs in order to perform static analy-
sis and model checking of programs written in Java. Although we focus
on Java, this same approach could be adapted for other programming
languages.

1 Introduction

A graph is a flexible structure that is used to represent several different artifacts
in computer science. However, the mathematical definition of a graph alone does
not allow us to restrict a representation to a certain pattern or form. Such
restrictions can be enforced by means of a type graph, a model that describes
constraints over the sets of nodes and edges of a graph.

A program written in a certain language can be transformed into a syntax
tree by a parser. When additional information such as bindings are included in
the representation, the syntax tree is extended into a syntax graph. One main
contribution of our work is to define a type graph model for syntax graphs that
represent programs written in Java. The type graph model is complete, i.e., it
covers the entire language specification up to version 1.6 [10]. We believe that
this model can be of interest to any graph-based technique that relies on a
representation of Java programs as graphs. As one example, suppose a visual
programming/modeling tool that generates Java code from a graph; this could
for instance, be used in the context of graph transformation-based model trans-
formation [1] or code refactoring [3]. By enforcing the graph to be an instance
of this type graph model, the tool can generate syntactically correct code.

� The research reported herein was carried out as part of the GRAIL project, funded
by NWO (Grant 612.000.632).
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In our current research we aim to perform static analysis [7] and model check-
ing [2] of Java programs using GROOVE [8], a tool for state space exploration
where states are represented as graphs, and the transitions from one state to
another are given by graph transformation rules. A syntax graph is the static
representation of a program as a graph, and it is the required initial structure for
the subsequent elaboration of the states that constitute the dynamic behavior
of the program. Thus, the work here presented is the first, necessary step in our
planned method for the verification of code.

In this document we focus on the approach taken for the construction of the
type graph model. Due to space limitations, it is not possible to actually present
the model, and we refer the interested reader to the accompanying technical
report [9], where all the details are given.

2 Description of Approach Taken

The task of constructing syntax graphs from given source code consists of two
major steps, (i) the building of a type graph model to represent the syntactical
elements of the chosen programming language, and (ii) the development of a tool
that constructs a valid syntax graph from syntactically correct code. A syntax
graph is considered to be valid when it is an instance of the type graph model
developed in step (i). Essentially, the work to be done in (ii) boils down to
writing a compiler that produces a syntax graph as its target language, instead
of machine code.

We decided to adapt an open-source Java compiler for our purposes. In doing
so, the implementation effort is kept to a minimum, since we have only to mod-
ify the code generation phase of the compiler to construct the syntax graphs.
Also, by analysing the source code of the compiler we are able to elaborate the
type graph model in a very straightforward way. Thus, with this solution, the
definition of the type graph and the construction of the syntax graph generator
go hand in hand, and we have the guarantee that a syntax graph generated from
code is compliant with the type graph model.

2.1 Creating the Type Graph

In order to develop our chosen approach we decided to use the Eclipse Java Com-
piler [4]. This compiler is also written in Java, and its source code is available for
use under the Eclipse Public License. The compiler source is divided in several
packages, among which the package org.eclipse.jdt.internal.compiler.
ast1 is of particular interest, since it is where the classes that compose the
Abstract Syntax Tree (AST) built by the compiler are grouped. By analysing
the package contents we are able to construct the type graph model, which is
presented in [9].

1 Through the rest of the paper we adhere to the following convention: elements of
Java code are shown in typewriter font, while elements of the type graph or instance
graphs are shown in sans serif font.
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IfStmt Stmt {

// fields

Expr condition;

Stmt thenStmt;

Stmt elseStmt;

...

// AST traversal method

traverse(ASTVisitor v){

condition.traverse(v);

thenStmt.traverse(v);

(elseStmt != )

elseStmt.traverse(v);

...

}

...

}

Stmt

IfStmt

Expr

thenStmt

1

condition

1

elseStmt

0..1

Fig. 1. Example of the type graph elaboration from the compiler source code

The ast package contains, for example, classes like Expr and Stmt to repre-
sent expressions and statements of the Java language. In fact, every syntactical
element of the language has a corresponding class in the ast package and those
classes are grouped in a certain hierarchy. The top most class is ASTNode, which
defines a common super type for all elements of the AST. The ast package also
provides an AST visitor pattern interface [5], which has methods to navigate
over the nodes of the AST in a depth-first-like manner.

The way the type graph is elaborated from the elements of the ast package
can be best explained with an example. Figure 1 shows the relevant code of the
class that represents an “if” statement and the corresponding part of the type
graph constructed from this code. We start with the class name, IfStmt, that
gives rise to an homonymous node type in the type graph. Also, since IfStmt is
a subclass of Stmt we create another node type for the super class and we insert
an inheritance relation in the type graph, between the corresponding node types.
The class fields that are references to other classes of the AST become compo-
sitions (in some cases, ordered ones) in the type graph, with labels matching
the field names. In this example, the fields named condition, thenStmt, and
elseStmt give rise to three compositions in the type graph, with correspond-
ing labels. Additionally, the way the visitor pattern is implemented in the class
provides some guidance over the cardinalities of the compositions just created.
From the implementation of the traverse method we see that fields condition
and thenStmt are always visited. Therefore we can conclude that the IfStmt
node type must have mandatory condition and thenStmt compositions, a fact
that is illustrated by the cardinality 1 of those compositions in the type graph.
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On the other hand, the check for non-nullness of the elseStmt field indicates that
it may not always exists. Therefore we mark the cardinality of its composition
in the type graph as 0..1.

By analysing the classes of interest of the ast package in the same way as
described in the example above we can construct a large part of the type graph
model. However, there are some elements of the type graph that still need to be
manually created. As an example we can cite the associations that resolve name
and type references, which correspond to the binding edges on syntax graphs.
The intuition for identifying where these associations must be created is sim-
ple: any reference should have an association with a corresponding declaration.
However, the information needed to create these associations is not present in
the compiler source code in a uniform way, and therefore manual intervention is
necessary. The rationale behind our decisions over what does or does not have
to be manually inserted into the type graph comes from our intended purpose
for the syntax graphs. Thus, we insert only the elements that we deem necessary
for static analysis and simulation.

The resulting type graph obtained from the analysis described in this section
is formed by 75 node types, mapped directly from the compiler classes. The
complete type graph is presented and explained in our technical report [9].

2.2 Constructing Syntax Graphs from Code

To construct syntax graphs from Java code we must change the back end of
the Eclipse Java Compiler. By stopping the compiler after parsing and code
analysis but before machine code generation we are able to profit from the work
done by the compiler until this stage. Specifically, name and type references are
already resolved, simplifying the construction of the syntax graph. We developed
a syntax graph generator that implements the AST visitor interface provided by
the compiler and we plugged it in the compiler back end. To build the syntax
graph, our generator visits the AST, performing the following steps.

– For each node in the AST the generator creates a corresponding node in
the syntax graph. The types of a syntax graph node are obtained through
reflection. By using reflection in Java, one is able to query the virtual machine
for run-time information of objects. In our case we obtain the class hierarchy
of an AST node via reflection and store this information as a label of the
syntax graph node.

– For the construction of edges in the syntax graph we keep an auxiliary map-
ping of AST nodes into syntax graph nodes. This mapping, along with the
bindings produced by the compiler, is sufficient for creating the edges, in-
cluding the ones that resolve references.

For each node type of the type graph we created a test case input program.
With these test cases we can inspect the syntax graphs produced by our tool
and check for implementation errors. An example of such test case is given in
Fig. 2, along with the syntax graph generated. The complete set of input test
cases can be found in the corresponding technical report [9]. The syntax graph
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Fig. 2. Example of a syntax graph built from code. The dashed box represents a system
wide compilation unit where primitive types of the language are declared.

in Fig. 2 has a node labeled TypeDecl, which represents a class. The name of the
declared class is stored as an attribute of the node, which also has three outgoing
edges that correspond to the field and method compositions. It is important to
note that name and type reference nodes have an outgoing edge that binds
the reference to its corresponding declaration. We consider the existence of a
“system” compilation unit, where the primitive types of the language, and also
the classes of java.lang.*, are declared. Part of this “system” compilation unit
is shown in the bottom of Fig. 2 (within the dashed box), with the declaration
of the primitive type int.

3 Conclusion and Future Work

To sum up, the contributions of our work are threefold.

– We have created a comprehensive type graph that covers all executable ele-
ments of the Java programming language. Such type graph can be of interest
as a model for tools that represent Java programs as graphs.
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– We have shown a straightforward and systematic approach for the construc-
tion of the type graph model by analysing a compiler source code. Although
our described method focused on Java, we believe that it can be adapted
(with varying degrees of difficulty) to other programming languages as well.

– We explained how the back end of a compiler can be adapted in order to
automatically construct a syntax graph representation from source code.

The work described in this paper is the first step in our planned approach
for the verification of Java programs. Now that we are able to generate syntax
graphs from code the next step is the construction of flow graphs, structures that
model the sequential execution relation between elements of the syntax graph.
We plan to define graph transformations rules over syntax graphs for flow graph
construction, as described in [6]. Together, a syntax graph and a flow graph form
a program graph. The subsequent step is then use the GROOVE tool to simulate
the execution of program graphs. Another important aspect of this step is that
we want to apply abstract interpretation techniques to simplify the program
graphs and thus improve the performance of the simulation.
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Abstract. Network simulators, which implement network protocols un-
der some simulated conditions, have been widely used to analyze the
feasibility of network protocols. Conformance testing of the simulator
against the protocol is a very important task in the community of
telecommunications. However, many current conformance testing meth-
ods face a problem of finding a systematic mechanism to verify the test
outputs. This paper proposes to use an innovative testing approach,
metamorphic testing (MT), to alleviate such a problem. We select one ad-
hoc on-demand distance vector (AODV) simulator for study and test its
conformance against the AODV protocol by the MT technique. Through
our experiments, we illustrate the applicability of MT in the protocol
conformance testing, confirm the reliability of the selected AODV simu-
lator, and demonstrate the cost-effectiveness of MT using the mutation
analysis technique.

1 Introduction

A network protocol specifies a set of mechanisms for exchanging messages among
communication entities in a network system. A protocol must be feasible and
its implementation must also conform to the protocol in order to deliver ex-
pected services in the network system [2]. Simulation is an important method
for analyzing the feasibility of a protocol [7]. The network simulator, a proto-
col implementation under simulated network environments, is particularly useful
to identify potential problems of the implemented protocol. It is important to
ensure conformance between the simulator and the protocol.

Protocol conformance testing tests a protocol entity against the protocol spec-
ification. It aims to gain confidence in the correctness of the implementation with
respect to a given specification [7]. International Organization for Standardiza-
tion (ISO) has defined a framework and common terminologies for conformance
testing of Open Systems Interconnection (OSI) systems [6]. Many approaches
have been proposed to conduct conformance testing under various circumstances,
such as unique input/output sequences generation method [7] and model-based
approaches [13].

Many current conformance testing methods only work well when the network
protocol can be modeled as a fully specified finite state machine (FSM). For such
� Corresponding author.

D. Lee et al. (Eds.): FMOODS/FORTE 2009, LNCS 5522, pp. 243–248, 2009.
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protocols, we can always expect the correct output given any testing input [7].
For many other network protocols, which are not completely modeled by FSM,
it is normally difficult to find a systematic verification mechanism for test re-
sults [8]. Such a verification mechanism is normally called the testing oracle [4]
in the context of software testing. If there does not exist an testing oracle (known
as the oracle problem in software testing), it is then very difficult to verify the
correctness of the simulator’s output.

Metamorphic testing (MT) [4] is an innovative testing method to alleviate the
oracle problem. MT first identifies some properties from the specification of the
software under test. These properties, which are known as metamorphic relations
(MRs), are then used to generate some test cases. MT verifies the outputs of
test cases based on MRs. Besides the alternative verification mechanism, MT has
many other advantages. For example, it can be effectively applied by end users
without too much knowledge of software testing. MT can also automatically
generate a large number of test cases at a low cost, and MT test outputs can be
verified by some simple script. MT have been successfully applied to detecting
bugs in various programs [3,9].

MT is basically a general technique used in the testing of software with any
form of specification. In other words, no matter whether the software specifica-
tion can be modeled by FSM or not, MT can always provide a mechanism to
verify the test results. MT can identify some key properties from the specifica-
tion, and generate test cases based on these properties. When a network protocol
specification or a network simulator is updated, regression testing [12,15] is al-
ways conducted to re-run the testing to ensure the correctness of the updates.
Provided that the key properties identified by MT remain unchanged during the
updates, all associated MT test cases can be re-used in the regression testing. In
the paper, we attempt to apply MT into the conformance testing of a network
simulator against its network protocol. A case study is conducted on an ad-hoc
on-demand distance vector (AODV) simulator to illustrate the applicability and
effectiveness of MT in conformance testing.

2 AODV Protocol and Its Simulator

Ad-hoc on-demand distance vector (AODV) routing protocol [14] is a reactive
protocol, that is, it establishes a route from a source node to a destination node
only “on demand”. AODV avoids the counting-to-infinity problem by using “se-
quence numbers” mechanism on route updates. It also uses a so-called “black-
list” mechanism to avoid invalid connection attempt. Concer [5] has developed
an AODV simulator based on OMNeT++ [11], a discrete event simulation en-
vironment. One of us has worked on this simulator and has extensive domain
knowledge of it, so we selected this specific simulator as the target program of
our case study. The simulator depicts the AODV protocol with a number of
nodes in a simulated field without obstacles. Each node in the field is comprised
of five layers, namely, the application, network, date link, physical, and mobility
layers. Inside a node, a higher layer (such as the application layer) consumes
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certain services offered by the lower layer (such as the network layer), but all
layers is designed to be invisible to the implementation details of other layers.

Network simulators usually return some outputs relating to network protocol
attributes, which are generally presented as the forms of network performance,
such as, latency and throughput. Latency in a packet switched network is mea-
sured by the time from the source node sending a packet to the destination node
receiving it, and throughput is the amount of digital data per time unit that
pass through a certain node in the network. However, it is difficult to verify
the correctness of these outputs, because the values of these outputs depend on
various simulation environments, such as CPU and memory.

3 Metamorphic Testing

Most software testing techniques (such as random testing and branch test-
ing [10]) assume that the oracle exists. However, the oracle may not exist in
some practical situations. For example, given a program for finding the shortest
path in an undirected graph, when the graph is nontrivial, there is no oracle
to effectively verify whether the returned outcome is really the shortest path
between two nodes.

Metamorphic testing (MT) was proposed to test programs when oracle prob-
lem occurs [4]. MT requires domain knowledge to identify some important prop-
erties from the specification. These properties are called metamorphic relations
(MRs). Some traditional testing techniques are first used to generate some source
test cases. MRs are then applied to construct some follow-up test cases from
source test cases. Both source and follow-up test cases are executed on the pro-
gram under test. The test results are checked against MRs. If a relation is vio-
lated, a fault is said to be detected. For example, in the shortest path program,
there is a permutation property: the program can produce the same outcome for
a graph and the graph’s permutation. Let a graph G be the source test case. We
can generate G′, a permutation of G, as the follow-up test case. The MR is that
the program should produce the same output for G and G′.

4 Metamorphic Testing on AODV Simulator

As mentioned in Section 2, it is very difficult to verify the correctness of the test
outputs of the AODV simulator. In this study, we attempt to use MT to test
the conformance between the simulator and the AODV protocol. Our testing
is mainly focused on two main outputs, latency and throughput, and two key
mechanisms, the “sequence numbers” and “black-list” mechanisms. In the case
study, in order to simplify the testing environment, we have modified the source
codes in the application and mobility layers of the AODV simulator. Since the
AODV protocol is implemented in the network layer, the modifications will not
affect the conformance testing. The simplified testing environment we use in this
study is a simulated network which contains a fixed number of nodes. Our testing
is conducted mainly on a pair of randomly selected nodes (denoted by A and
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B), which are randomly moving inside the network. We identify the following
11 MRs. Among them, MRs 1 to 7 have an additional prerequisite that there is
always a connection between A and B; while MRs 1 to 5 and 8 to 10 further
requires that the network’s topology remains unchanged.

MR1: The source test case is that A sends a data packet P to B. The resultant
latency and throughput are l1 and r1, respectively. The follow-up test case is
that the locations of A and B are changed, and then A sends the same packet
P to B. The resultant latency and throughput are l2 and r2, respectively. We
should have the relations l2 ≈ l1 and r2 ≈ r1.
MR2: The source test case is that A sends a data packet P to B. The resultant
latency and throughput are l1 and r1, respectively. The follow-up test case is that
B sends the same data packet P to A. The resultant latency and throughput
are l2 and r2, respectively. We should have the relations l2 ≈ l1 and r2 ≈ r1.
MR3: The source test case is that A sends a data packet P to B with channel
delay c1. The resultant latency is l1. The follow-up test case is that A sends the
same data packet P to B with a different channel delay c2. The resultant latency
is l2. We should have the relation l1

c1
≈ l2

c2
.

MR4: The source test case is that A sends a data packet P1 with packet size s1
to B. The resultant throughput is r1. The follow-up test case is that A sends a
different data packet P2 with packet size s2 to B. The resultant throughput is
r2. We should have the relation r1

s1
≈ r2

s2
.

MR5: The source test case is that the routing table of A contains the route p1
to B. The follow-up test case is that all route entries in A’s routing table are
deleted, and then A requests to identify a new route p2 to B. We should have
the relation p1 = p2.
MR6: The source test case is that A sends a data packet P to B via a route
with h1 hops. The resultant latency is l1. The follow-up test case is that the
route from A to B is changed to a new one with h2 hops, and then A sends
the same data packet P to B. The resultant latency is l2. We should have the
relation that if h1 > h2, then l1 > l2.
MR7: The source test case is that A sends a data packet P to B via a route
with h1 hops. The resultant sequence number is q1. The follow-up test case is
that the route from A to B is changed to a new one with h2 hops, and then A
sends the same data packet P to B. The resultant sequence number is q2. We
should have the relation that if h1 > h2, then q1 > q2.
MR8: The source test case is that A requests to transmit a data packet P to B
(first transmission). The follow-up test case is that after a while, A requests to
transmit the same packet P to B again (second transmission). We should have
the relation (1) if the first transmission is successful, the second transmission
should also be successful, or (2) if A only broadcasts a Route Request (RREQ)
packet for searching a route to B but does not forward the packet at the first
transmission, A should buffer the data packet at the second transmission.
MR9: The source test case is that A requests to transmit a data packet P
to B (first transmission). The follow-up test case is that A’s neighbor node C
requests to transmit the same packet P to B (second transmission). We should
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have the relation (1) if the first transmission is successful, A should reply to
C a Route Reply (RREP) packet at the second transmission, or (2) if A only
broadcasts RREQ for searching a route to B but does not forward P at the first
transmission, it should broadcast RREQ again for searching a route to B at the
second transmission.
MR10: The source test case is that A’s neighbor node C requests to transmit a
data packet P to B (first transmission). The follow-up test case is that A requests
to transmit the same packet P to B (second transmission). We should have the
relation (1) if A replies to C an RREP packet at the first transmission, the second
transmission should be successful, or (2) if A only broadcasts RREQ for searching
a route to B and C does not forward the packet at the first transmission, A should
broadcast RREQ again for searching a route to B at the second transmission.
MR11: The source test case is that A is put into the black list of B, and then A
requests to transmit a data packet P to B. B will reply with a certain number
(n1) of RREP packets to A. The follow-up test case is that A is deleted from
the black list of B, and then A requests to transmit the same packet P to B. B
will reply with a certain number (n2) of RREP packets to A. We should have
the relation n1 < n2.

For each MR, we generated a certain number of source test cases by random
testing technique [10], and at least one follow-up test case is generated based
on the source test case and according to MR. In our experiment, we applied all
these MT test cases to test the original version of the AODV simulator. In order
to further investigate the effectiveness of MT in protocol conformance testing,
we also used mutation analysis technique [1] to randomly seed some faults into
the target program. We generated six mutants whose faults are related to key
attributes of the simulator. All MT test cases were also applied to test these
mutants. The experimental results showed that MT did not detect any fault
in the original simulator, but the fault in each mutant has been revealed by
at least one MR. With respect to the effectiveness of MT technique, we found
that the success rates in detecting faults of our MRs and MT test cases are
about 26% and 17%, respectively. Such results are very impressive in terms of
the cost-effectiveness of a testing method.

5 Conclusion

Network simulator is an important tool for analyzing the network protocol. It is
critical to ensure the conformance between the simulator and the protocol. How-
ever, protocol conformance testing is sometimes faced with an oracle problem,
that is, there does not exist a systematic mechanism to verify the correctness of
the test output given any possible program input. We are not aware of any sys-
tematic work dealing with the oracle problem in protocol conformance testing.
In this paper, we proposed to apply metamorphic testing (MT), an innovative
approach to alleviating the oracle problem, into the protocol conformance testing
of network simulators. We selected ad-hoc on-demand distance vector (AODV)
protocol and one of its simulators as our case study. Some key attributes are
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identified from the AODV protocol, and 11 metamorphic relations (MRs) are
defined based on these attributes. We generated a large number of MT test
cases based on these MRs, and checked the test results against these MRs. Our
experimental results showed that the selected simulator conforms to the AODV
protocol with respect to the chosen MRs and the used MT test cases. We also
used MT to test some fault-seeded mutants of the simulator. The results of the
mutation analysis showed that MT is very effective in detecting faults.

In this pilot study, we only conducted MT under a simplified testing environ-
ment. Some of our MRs may not be valid when the testing environment becomes
more complicated. It is of great importance to identify more MRs that can be
used in more general scenarios. It is also worthwhile to apply MT to test various
applications of different network protocols.
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Kitchin, David 1
Kremer, Steve 182
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