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SIMD Processor Array Architectures

1, Princi IMD

In Single Instruction stream, Multiple Data stream (SIMD) processors one instruction
works on several data items simultaneously by using several Processing Elements (PEs),
all of which carry out the same operation as illustrated in Figure SIMD-1.

Data items
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Principle of SIMD processor.
Figure SIMD-1.

A SIMD Processor has a single Control Unit reading instructions pointed to by a single
Program Counter, decoding them and sending control signals to the PEs. Data are to be
supblied to, and derived from, the PEs by a memory with as many data paths as there are
PEs. Figure SIMD-2a shows the resulting processing structure which is also known as a
Processor Array. The Interconnection Network provides flexibility in choosing source
and destination for data to and from the PEs, necessary in many algorithms. The 1/O
system plays the role of converting — typically at very high rates — input/output data
between the format of the outside world and the internal format of the array. The design
of the I/O system is highly application dependent.

In order to provide overall control of the Processor Array, as well as to execute sequential
operations, it is common to use a conventional Host Computer which then views the
Processor Array as an attached processor as illustrated in figure SIMD-2b.
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2. Array Topologies

The topology of the processor array is defined by the structure of the interconnection
network. The choice of topology is heavily influenced by the demands of the applications
that the architecture is primarily designed for. Looking back at the short history of SIMD
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processor arrays one may observe that many of the architectures have been designed for |
specific application domains. Typically, the designers have tried to combine the communi-
cation demands of the specific area with more general demands.

We will introduce the most common topologies and show the interconnection structures
of several existing (or earlier existing) research machines and commercial machines. The
list is by no means exhaustive, but chosen to demonstrate the variety of topologies.

2.1 Mesh connected arrays

The twodimensional mesh as illustrated in figure SIMD-3 is the most common topology
of SIMD processor arrays. The main reason for this popularity is its obvious support for
close local connections, which are exploited in several application areas. The main draw-
back of the 2D mesh is the relatively large maximum-distance value, Dmax. With wrap-
around connections at the edges as in figure SIMD-3, Dmax for an N processor array is
equal to the squareroot of N (e.g., for a 1024 processor array, Dmax is 32).

To
left
edge

To upper edge

Twodimensional mesh with wrap-around connections
at the edges

Figure SIMD-3

ILLIAC IV

The first processor array to be implemented was ILLIAC IV — "'the first Supercomputer”.
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Designed at University of Illinois under the leadership of Daniel Slotnick and implemen-
ted by Burroughs Corporation, it was intended to have 256 powerful PEs, divided into
four ”quadrants”, 64 PEs in each. However, only one quadrant was constructed. The to-
pology is shown in figure SIMD-4. As can be seen it is a 2D-mesh with modified hori-
zontal wrap-around connections compared to the one shown in the previous figure.
Rather than being connected to PE number 8, PE number 15 is connected to the next PE
in order, i.e. number 16. Thus, the interconnection structure of ILLIAC IV can be descri-
bed as a one-dimensional nearest neighbor structure (a long row of PEs) with additional
connections 8 steps forward and backward (the vertical connections in the figure).

ILLIACIV was operational at NASA Ames Research Center from 1972 to 1981 and re-
mained the world’s most powerful computer for its entire lifetime. The original paper on
the ILLIAC IV hardware is Barnes et al. (1968).

poamosemamente
15 /16 17 18 - 23 24

The topology of ILLIAC IV
Figure SIMD-4

DAP and MPP

The Distributed Array Processor — DAP — produced by ICL (International Computers
Limited) and AMT (Active Memory Technology Ltd) as well as the Massively Parallel
Processor — MPP — from Goodyear Aerospace are the prime examples of large scale two-
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dimensional processor arrays. Both use bit-serial PEs (which will be described later).
DAP is manufactured in 1024 (32 by 32) and 4096 (64 by 64) PE arrays, while the only
MPP machine that was constructed has a 16384 (128 by 128) PE array.

The DAP architecture provides an additional interconnection facility in that two sets of
data paths — “highways” — pass along the rows of PEs and along the columns of PEs, re-
spectively, as shown in figure SIMD-35. By these data paths a row (or column) of bits can
be broadcast in one cycle so that each row (column) of PEs receives the same data pattern.
Another use is in extracting data from the array, where the basic operation is to AND to-
gether all the rows or columns, respectively.

Thus it can be seen that provisions have been made to overcome the shortcoming of the
ordinary 2D-array — its poor long-distance communication performance.

The chief designer of DAP was Stewart Reddaway of ICL. The main ideas behind his
concept can be found in Reddaway (1979). A description of the current line of products
from AMT is given in Hunt (1989). MPP was designed by Kenneth Batcher (1980).
Potter (1985) is a good reference for further details.
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Connectivity for a small section of the DAP.
Horizontal and vertical lines are Row Highways
and Column Highways, respectively.

Figure SIMD-5
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2.2 Shuffle-exchange networks, direct and indirect binary n-cubes

The shuffle-exchange network, see figure SIMD-6, consists of a shuffle function (the ar-
rows) and an exchange function (the boxes). In an N PE array, any destination can be re-
ached in logN iterations, i.e. Dmax = logN. For N=1024, Dmax is 10, whereas for the
2D mesh it was 32. Thus the maximum-distance value of the shuffle-exchange network is
low compared to the 2D mesh. The cost of the network measured in number of connec-
tions per PE is also lower.

In a direct binary n-cube network the PEs are at the corners of an n-dimensional cube
(where n=logN), and each PE has an n-way switch. See figure SIMD-7a for n=3. The
maximum distance to any other PE is again logN.

The direct cube can be simulated by the indirect binary n-cube network, which is a multis-
tage network with only two-way switches. Figure SIMD-7b shows the network for N=8§
(n=3).
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Shuffle-exchange network
Figure SIMD-6
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Direct (left) and indirect (right) binary 3-cube
Figure SIMD-7

LUCAS

LUCAS (Lund University Content Addressable System) was designed and built as a re-
search vehicle to study organization principles, PE design, programming, and application
development on SIMD machines. Therefore the interconnection network was made recon-
figurable so that different topologies could be chosen. Eight different sources can be
wired to the input of each PE, as shown in figure SIMD-8. This allows several simple
network structures to be implemented simultaneously. Application development and pro-
gramming in areas like image, signal, and database processing has been made on a machi-
ne with both shuffle-exchange network and nearest-neighbor connections. (in one dimen-
sion). More details of the interconnection network are given by Svensson (1983).
Fernstrom, Kruzela and Svensson (1986) describes the entire LUCAS project.
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- Figure SIMD-8

STARAN

STARAN, a commercial product manufactured by Goodyear Aerospace Corporation in
the seventies, used a "flip network” between memory modules and PEs. This network is
functionally identical to the indirect binary n-cube. More important than the ability to reach
any memory module from any PE was probably the many different access patterns that
were made available through the network in combination with a clever addressing sche-
me. See also the historical perspective chapter in Part I of this book. Batcher (1974,

1976, 1977) provides additional details.

The Cohnection Machine

The Connection Machine Modei CM-2 from Thinking Machines Corporation uses a 12-
dimensional direct binary cube to support general patterns of communication among 4096
nodes (in a fully configured system), each node incorporating 16 bit-serial processors.
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The routers — one at each node — are capable of dealing with contention for hypercube
wires by routing the message alternative (and longer!) ways.

While the router network supports completely general patterns of communication by mes-
sage passing, additional special hardware supports certain commonly used regular pat-
terns of communication. This is called the NEWS network, because one of its uses is to
implement a two-dimensional grid (North, East, West, and South connections).
However, grids of any dimension up to 31 are supported. For example, possible grid
configurations for 64K processors include 256 x 256, 1024 x 64, 65536 x 1,64 x 32 x
32,and 16 x 16 x 16 x16. The structured NEWS communication is significantly faster
than general routing.

Figure SIMD-9 shows a node of 16 PEs inéluding Router, NEWS, and Hypercube inter-
face.
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CM-2 Processor Chip (from (Thinking Machines Corporation, 1989))
Figure SIMD-9 :
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When the parallel data structure has more elements than there are physical processors the.

system operates in virtual processor mode. This means that each hardware processor si-

mulates (by sequential execution) a number of virtual processors, each with a correspon-
dingly smaller memory. The virtual processor mode is supported by microcode.

As an example of the way in which a data structure and a communication demand may be
mapped onto the architecture, imagine a set of 22 virtual processors (about 4 million) that
we want to organize as a 2048 x 2048 square grid. We assume a 64K Connection
Machine system.

First, a 2-dimensional grid of shape, say, 64 x 64 is embedded in the boolean 12-cube.
This can always be done using Gray-coding of the grid coordinates and implies selection
of a subset of the wires that form the 12-cube. Each of the 64 x 64 nodes has 16 physical
processors arranged as a 4 x 4 grid. Within each physical processor we now need 64 vir-
tual processors, which we imagine are arranged as an 8 x 8 grid.

In order for each virtual processor to send a value to its east neighbor, three different
types of communication need to take place. Within each group of 64 virtual processors
(implemented in a single physical processor), 56 of them have their east neighbor within
the same physical processor, i.e. the work is done by having each physical processor re-
arrange data within its own memory. The remaining eight values are to be sent to the phy-
sical processor to the east. In some cases this is within the same 16 PE node, in some
cases it is not.

Within each group of 16 physical processors, 12 of them must send data to another physi-
cal processor that is within the same chip. This transfer is thus independent of the entire
router/hypercube-wire mechanism.

Remaining to be sent over the wires is only 1/32 of the total communication. Each node
has to send 32 messages to its east neighbor along one hypercube wire.

All three types of communication are supported by specialized hardware on the CM-2, al-
lowing the communication to take place without use of the slower general routing mecha-
nism. This is true for grid communication patterns of any dimension and is handled by
microcode.

In conclusion, a very general network, the boolean cube, has been selected as the basic
communication structure for the CM-2, but special hardware support has been added for
the most common regular structures — the multidimensional grids.
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2.3 Linear arrays

Several linear arrays of processors have been built, mainly for use in low level image pro-
cessing. The earlier mentioned general purpose systems STARAN and LUCAS have a li-
near array structure in addition to shuffle and flip networks respectively. Examples of
pure linear arrays, i.e. with only nearest neighbor interconnections in one dimension, are
LAPP (Forchheimer and Odmark, 1983), SLAP (Fisher and Highnam, 1985), and AIS-
5000 (Schmitt and Wilson, 1988). LAPP integrates a row of photodiodes and processing
elements into a single chip and is designed for high speed, low cost industrial quality
measurement and inspection, which will be demonstrated in an application study in Part V
of this book.

AIS-5000

The AIS-5000 (Schmitt and Wilson, 1988) is a commercially available system from
Applied Intelligent Systems Inc. It has up to 1024 processing elements arranged in a one-
dimensional chain that, for computer vision applications, can be as wide as the image it-
self. The PEs are bit-serial and each PE has its own bit-wide RAM of (currently) 32k bits.
The system integrates 128 processors on each board, thus the whole processing array is a
small desktop system. Its main use is in industrial vision systems where the speed requi-
rements are far greater than what can be met by ordinary, sequential processors.
Processing of images is done line by line.

Pr 1 PE) D

In the design or choice of a processor array there is a traditional trade-off problem, name-
ly between the power of the Processing Elements and the size of the array. One extreme
is based on "massive parallelism” and very simple, bit-serial processors. This is the phi-
losoﬁhy represented by e.g. DAP, MPP, Connection Machine and AIS-5000. At the other
end of the scale we find designs like PICAP3 (described below) with a moderate number
of specialized floating point processors. Surprisingly enough, the two extremes may be
combined in the same design: The Connection Machine represents both schools in that it,
in addition to its tens of thousands of bit-serial processors, also has thousands of 32-bit
floating point processors. The two sets of processors share the same communication
structure and memory.

There is a connection also between the power of the PEs and the interconnection structu-
re. Multi-bit PEs may require multibit data paths to match their processing bandwidth.
This in turn restricts the degree of connectivity of the array.



The machines that show the highest degree of parallelism also show the simplest proces-
sor designs. The DAP and the Connection Machine both have bit-serial PEs that can per-
form a full adder operation and various other logical operations on one, two, or three bits.
They also have a small set of one-bit registers to store intermediate results, and an activa-
tion flip-flop. The PEs of LUCAS and AIS-5000 also belong to this category. As an il-
lustration of the degree of complexity found in these PEs, figures SIMD-10a and 10b
show the bit-serial PEs of LUCAS and the Connection Machine CM-2, respectively.
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Examples of bit-serial PEs:
a) LUCAS, b) Connection Machine

Figure SIMD-10
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2 Enh it-serial pr T

Multiplication is a common operation in many of the applications in which processor ar-
rays are used, e.g. in signal and image processing. A serious drawback of simple bit-seri-
al processors is that multiplication time grows quadratically with the data length. How-
ever, there is a method of doing bit-serial multiplication that requires no more time than
what is needed to read the operands (bit by bit, of course) and store the result (also bit by
bit). The method, based on a carry-save adder technique, requires as many full adders as
the data length. Figure SIMD-11 shows the design for multiplication of two 2’s comple-
ment integers. It is operated by first shifting in the multiplicand, most significant bit first,
into the array of M flip-flops. The bits of the multiplier are then successively applied to
the input, least significant bit first, and the product bits appear at the output, also least sig-
nificant bit first.

The design, which was proposed but not implemented in the LUCAS project, will now be
used in the "Hampus” system, an implementation of a configurable, modular processor
array building upon the experiences of LUCAS (Svensson, 1989). A similar multiplier
design has been proposed for the “Centipede”, a further development of the AIS-5000
concept (Wilson, 1988).

Principle of bit-serial multiplier used in the PEs of Hampus-1

Figure SIMD-11
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3.3 Bit-parallel, floating point PEs

While still conforming to the SIMD principle,the proposed and partially implemented
PICAP3 design (Lindskog 1988, Segerstrom 1990) shows processing elements that are
considerably more complex than those that we have considered so far. See figure SIMD-
12. Each PE comprises 32 bit integer and floating point arithmetic (Am29332 and
Am29325), a four-port register file, and a set of complicated gate arrays to implement
functions like local addressing, microword decoding, memory control, and parity check.
No more than four PEs with associated memories (4 Mbyte each) can be implemented on
one circuit board. A PICAP3 system is anticipated to have up to 64 PEs.

Minne
4 Mbyte RAM
BMA | iBMD
<—»\ BIO
BLT \¢«———» Grindmatris [@«———\ BRT
BBB\<+— 2
BGR [ l
BGA| [BGWy ¥ >
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Registerfil
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Glada gubben.

A processing element ,”Glada gubben” (Merry man), in PICAP3.32 -
Figure SIMD-12

4, Pro r 1 hine Par

To achieve highest efficiency, a SIMD processor array requires the problem to expose at
least the same degree of parallelism as the array. In nearly all applications that call for
large amounts of computing power this is the case. However, it is not always required
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that the machine is as parallel as the problem. In addition, it may imply difficulties, con- -
cerning e.g. communications and input/output, to try to utilize the entire amount of paral-
lelism. The purpose of this section is to show trade-off situations and demonstrate the va-
rious consequences of the decisions made.

4.1 Image processing approaches.

In MPP, with its 16384 PEs arranged as a 128 x 128 grid, one PE is typically assigned to
each pixel. Thus, images are divided into square parts, sized 128 x 128, when processed
(see figure SIMD-13a). This method implies a quite complicated I/O system to reorder
data. The “staging memory” that accomplishes this in the MPP is a large part of the
machine ( a part that was actually added late in the design phase). The method also implies
neighborhood access problems at the edges of the subimages, problems which must be
taken care of at the lowest level of programming.

7

2
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(a) (d)

Processing part of an image
a) subimage by subimage b) line by line

Figure SIMD-13

With LUCAS and AIS-5000, organized as linear arrays, one PE takes care of one line of
the image, see figure SIMD-13b. This simplifies I/O significantly, at least in the case
when the image is input and output in line-scan format. Normally, the PEs have enough
memory to allow the whole image to be stored in the array. The memory of each PE then
stores a whole pixel column. Vertical neighbor pixels are in the same PE, horizontal ones
are in neighboring PEs. Long distance communication in the vertical direction is achieved
at no cost (within the same PE).

The linear array approach to image processing has a limit (by definition): the number of
PEs cannot exceed the number of pixels of a line. However, duplication of arrays can be
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made to enhance performance if needed. This can be arranged as parallcl working arrays .
or arrays working in pipeline fashion.

To make this collection of mapping methods more complete we should also mention that

each PE in a 2D array can process a small, coherent part of the image. Reordering of data
at input/output is needed also in this case, although it can be done one line at a time, thus

requiring less of staging memory. The neighborhood access patterns are different for dif-
ferent pixels within the subimage, but the instantaneous pattern is the same for the whole
set of physical PEs.

The three examples (subimage-on-whole-array, line-by-line, and subimage-on-PE) de-
monstrate that virtual processors can be mapped to physical processors in several ways,
giving different consequences for input/output and computations. Choosing organization
and mapping carefully is as important as using as many processors as possible in the so-
lution of a problem. For example, it might be beneficial to use fewer, but more powerful,
processors and a simple and efficient mapping and input/output scheme.

4.2 Neural net approaches.

Processor arrays are candidates for performing the computations of neural network mo-
dels efficiently. The computations involved are uniform and arithmetically simple. This
suggests that simple processing elements are sufficient and that the SIMD type of architec-
ture is appropriate.

The number of interconnections in even an artificial neural network is often orders of
magnitude greater than the number of available processing units. In addition, extensive
training sets are normally used, in some models they can be run independently of each
other. Thus the problem parallelism exceeds the machine parallelism with orders of mag-
nitude, leaving the system designer with a multidimensional design space.

A popular neural net model is the multilayer feedforward network with error back-propa-
gation, shown in figure SIMD-14. In the first phase of computation the input to the
network is provided and values propagate through the network to compute the output vec-
tor. In these computations each neuron first computes a weighted sum of all its inputs.
Then it applies an activation function to the sum, resulting in an activation value - or out-
put - of the neuron. Usually a sigmoid function with a smooth threshold-like curve is
used as activation function.

The output vector of the network is then compared with a target vector, which is provided
by a teacher, resulting in an error vector. In the second phase the values of the error vector
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are first propagated back through the network. The error signals for hidden units are the-
reby determined recursively: Error values for layer / are determined from a weighted sum
of the values of the next layer, /+1, again using the connection weights - now "back-
wards". The weighted sum is multiplied by the derivative of the activation function to
give the error value.

Now, finally, appropriate changes of weights and thresholds can be made. The weight
change in the connection to unit i in layer / from unit j in layer /-1 is proportional to the
product of the output value and the error value.

Input Hidden Output
units units units

Neural network of the multilayer feedforward type

Figure SIMD-14

Mapping of neural network computations on SIMD arrays have been studied by, among
others, Brown et al. (1988), Svensson and Nordstrém (1990), Nordstrém (1990), and
Singer (1990). Nordstrom identifies six different ways of achieving parallelism: (i) each
node in a layer can be mapped to one PE, (ii) each interconnection can be mapped to a PE,
(iii) the training examples can be mapped to different PEs, (iv) different training sessions
(e.g. different starting weights) can be started on different PEs, (v) the different layers
can be pipelined, and (vi) the forward and backward passes can be run simultaneously on
different patterns.

Svensson and Nordstrém use method (i). Brown et al. use method (ii) since they run a
rather small network on a fairly large array. Singer runs several training sessions simulta-
neously, i.e. method (iii), which turns out to be the most efficient method on the
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Connection Machine (minimizes the need for communication).

3. Input/Output for SIMD Arr

In many applications, especially in real time situations, high data rates into or out of the
processing array are required. To obtain a well balanced architecture, the design of the I/O
system is as important as the design of processing elements and array topology.

Input/output can be discussed in terms of different classes of data formats:

(1)  Conventional format: Word-sequential, bit-parallel format, i.e. the traditional data
format used by conventional computers.

(2) Processing formar.
(2a) Bit-slice or bit-plane format, which is the processing data format of arrays with
bit-serial PEs, or
(2b) Word-slice or word-plane format, which is the processing data format of ar-
rays with bit-parallel PEs.

(3) Application format, e.g. the format of an image or a data base (often this is a multi-
dimensional array).

The input/output system shall serve as an interface between the different formats. In real
time applications, with processor arrays directly connected to input and output devices,
the interface between the application data format (3) and the processing format (2) is the
most important, but transfer between the word-at-a-time format of the front-end processor
and the processing array must also be efficient.

We illustrate the transfer between the different formats on the I/O system of LUCAS. See
figure SIMD-135 and figure SIMD-10a. A set of 8-bit I/O Registers (shift registers) is con-
nected to the Memory Array, one register per memory word. The I/O Registers can be
read or written from the Front-End Processor or dedicated I/O Processor in the conventio-
nal word-at-a-time format. A data input process can be divided into two phases: one to fill
the I/O Registers from the Front-End or I/O Processor, one to shift the contents out of the
I/O Registers and into any field of the Memory Array. The first phase needs one write
cycle of the Front-End or I/O Processor to transfer 8 bits, the second phase requires 8
Memory Array write cycles, in each of which an entire bit-slice is transferred.
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Figure SIMD-15

A variation of this input/output scheme that is used in some designs does not allow for
addressing of the I/O registers. Instead, data is shifted in and out of the register set. Such
I/O register systems may be used also for communication between the PEs. -

PASIC (Chen et al. 1990), see figure SIMD-16, is an example of a design with such a bit-
parallel shift register along the row of PEs. This can be used for image output as well as
for inter-PE communication. However, for image input there is a direct, word-parallel,
bit-serial interface between the photosensor array (128 by 128 pixels in present version)
and the linear array of PEs. Thus, PASIC is an example of a design which has special fa-
cilities to interface between the data format of the application and the processing data for-
mat, resulting in a significantly higher input speed. PASIC is primarily intended for low-
level vision processing where high speed image I/O is required.

PASIC is a further development of the LAPP concept which is treated in the Application
case studies in Part V of this book.
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Figure SIMD-16

The high-speed I/O facility of the two-dimensional AMT DAP processor array (Hunt,
1989) is depicted in figure SIMD-17. One of the one-bit registers in the PEs, the D regis-
ter, may be loaded from the memory or written back to the memory, but does not otherwi-
se take part in PE operations. The D plane may be shifted towards the North edge of the
array, so that successive rows of the plane are output at that edge; at the same time succes-
sive data words may be presented as input at the Southern edge. The shifting is done in-
dependently of the normal array instruction stream and may be done at a faster clock rate.
It is controlled by one of a number of input/output couplers rather than by the array con-
trol unit, and may be thought of as a DMA facility.

After the shifting of a plane is finished, it is stored to — or the next plane is loaded from —
the array. This is done by a request to the array control unit, thus delaying the normal in-
struction stream for one clock cycle. Reordering of the data is needed in several cases; to
this end couplers with double buffer arrangements are used.
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Progr. 1 IMD Arr

6.1 Instruction level

The “instruction level” of a processor array shows powerful instructions, performing
tasks that need procedures with loops on sequential computers. Examples of instructions
are:

" Maximum value of a field (vector, matrix etc.). On a bit-serial array this is found by
traversing the bit-slices from most to least significant bit and successively discarding
values with a ’zero’ if there are others still active with a "one’.

Exact match, or Closest match between a constant and the values of a field.
Pairwise multiply between the elements of two vectors, matrices etc.
Typical for the instructions is also that the effect of the operations can be limited to a cer-
tain subset of the processors. The subset is specified by an array of zeros and ones, a se-

lector. Selectors are often determined through an associative process, i.e. processors are
selected on the basis of the contents of their respective memories.
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Based on the type of operands and type of result six basic types of instructions to mani-
pulate data in the memory array can be identified:

Instruction type Example

field --> field Increment field, permute field

field --> selector Maximum/minimum value of a field

field,field --> field Multiply fields, pairwise max of vector elements
field,field --> selector Pairwise equality between vector elements
constant,field --> field Multiply by constant, AND with constant

constant,field -->selector  Exact match, closest match, greater than

igh-level lan

High-level languages for SIMD processor arrays are often referred to as data parallel
languages. Typically, they are very similar to conventional languages but allow the pro-
grammer to organize data so that operations may be applied to many elements of data si-
multaneously. This is accomplished by adding new data types and extending the meaning
of existing program syntax when applied to parallel data. Extension of the control structu-
re is often also done.

When programming in data parallel style, emphasis is put on the use of large, uniform
data structures, such as arrays, whose elements can be processed all at once. For examp-
le, the statement A=B+C indicates many simultaneous addition operations if A, B, and
C are declared to be arrays. Each array element is in the memory of a different processor,
or at least in the memory of a different virtual processor.

Thus, much of the parallel code looks just like sequential code. The compiler has to exa-
mine the declarations to determine whether B+C will require a single addition operation
(in the front-end processor) or thousands (in the PE array). '

Scalar and parallel values may be mixed in a program, for example when multiplying
every element of an array by a constant. In that case the scalar value is broadcast to all
processors at once. Also, an operation on parallel data may yield a scalar result, for ex-
ample when finding the sum or maximum of all the elements of an array. In this case a re-
duction operation is performed, which can be supported in various ways by the hardware
(e.g. by the ability to form a binary tree).

Conditionals are implemented in SIMD arrays by limiting the impact of operations to a
certain subset of processors. This is often achieved through the use of a parallel data type
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called selector.

Pascal/L. and Parallel Pascal

Pascal/lL (Fernstrom, 1982) is an extension of Pascal for parallel processing, developed in
the LUCAS project . In Pascal/L the parallelism of the architecture has a correspondence
in the syntax of the language. Thus, constructs in the language are directly implementable
as elementary operations of a SIMD processor array.

There are two kinds of parallel variables: selectors and parallel arrays. A selector de-
fines a boolean vector distributed over the Memory Modules and is intended to control the
parallelism of operations. (At execution time, the Activity Registers are set in those PEs
where the corresponding selector element has the value TRUE). A parallel array consists
of a fixed number of components which are all of the same type and which are located in
the Memory Modules.

For example,

var SEL : selector [0..999] := (0..399 -> TRUE);
WEIGHTS : parallel array [0..999,0..999] of integer (12);

declares a selector with elements in the first 400 MMs selected and a 1000 by 1000 matrix
of 12-bit integers located in the first 1000 MMs, 1000 components in each MM.

An indexing scheme allows simultaneous access to a column or a subset of the column
components of a two-dimensional array. For example, WEIGHTS[*,5] selects column 5
of WEIGHTS, and WEIGHTS[SEL,S] selects a subset of column 5 of WEIGHTS. A pa-
rallel array may be used without any index at all (and no brackets), in which case all com-
ponénts of the array are referenced. Parallel variables are allowed in expressions and assi-
gnments, e.g. 4+WEIGHTS[*,5] adds 4 to all components of column 5. '

New control structure concepts are included in Pascal/L to allow control of selection and
repetition along the parallel dimension:

The where do elsewhere construct defines different actions to take place in different
Memory Modules depending on the contents of a selector:

where SEL do WEIGHTS[*,10] := 2*WEIGHTS[*,10]
elsewhere WEIGHTS[*,10] :=0;
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The case where statement and the while and where do statement are the two other
extensions defined.

In expressions and assignments where the corresponding components of the parallel vari-
ables are located in different Memory Words, the variables must be aligned. The kind of
alignment needed is defined by the programmer in terms of standard alignment functions
which correspond to the data movements over the interconnection network.

For example, if the perfect shuffle connection is included:
M[*,0] := shuffleM[*,1])

To support associative processing a number of standard functions and procedures are de-
fined. The first function is used to find the first component of a selector with the value
TRUE. It returns a new selector with only this element true. The next procedure assigns
the value FALSE to the first TRUE element of the selector. This is useful when proces-
sing selected elements sequentially. The some function, finally, returns the value TRUE
if there is at least one TRUE element of the selector, otherwise it returns the value
FALSE.

Parallel Pascal (Reeves, 1984) was designed with the MPP as the initial target architecture
and was the first high level programming language to be implemented on the MPP. The
extensions are similar to those of Pascal/L. They include also a set of standard functions
that implement reduction operations: sum, product, all, any, max, and min, all
operating on arrays.
For example, given the definition
var a: array [1..100,1..5] of integer;
b: array[1..100] of integer;
c: integer;
b :=sum(a,2)
computes the sum of the rows of a, and

© c:=sum(a,l,2)

computes the sum of all elements of the array a.
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Fortran-8x, DAP Fortran, CM Fortran

Extensions to Fortran 77 for parallel processing have been proposed in a draft ANSI stan-
dard, Fortran 8x. Many of the features in the proposal emerge from DAP Fortran which
was developed for the DAP. Fortran for the Connection Machine, CM Fortran, which will
be our example, implements the array features of Fortran 8x.

The most important difference between Fortran 77 and Fortran 8x is that expressions in
Fortran 8x can treat entire arrays as atomic objects. For example, in the statement
A=B+C, A, B, and C may be scalars, vectors, matrices, or multidimensional arrays.

Arrays are stored in the Connection Machine with one element per virtual processor. The
arrays map directly onto the multidimensional communications grid of the Connection
Machine system.

CM Fortran also includes functions that inquire about array attributes, perform data reduc-
tion, or perform other complicated array operations. Examples of reduction oprations are
SUM, PRODUCT, MAXVAL, MINVAL, ANY, ALL, and COUNT. Examples of high-
level operations are DOTPRODUCT (vector dot product) and MATMUL (matrix multipli-
cation).

A reduction operation may take a MASK argument, so that only selected processors parti-
cipate in the operation. For example, the expression SUM(A, MASK=A .GT.0) sums
only the positive elements of the array A.

Like the Pascal based languages discussed above, CM Fortran has an extended control
structure. For example, in the code

WHERE (B .NE. 0)
" C=A/B
ELSEWHERE
C = 1.0E30
END WHERE

where A, B, and C are all conforming arrays, the result of A/B is assigned to C in each
processor containing a non-zero element of B, and 1.0E30 is assigned to C in all other
processors. As another example, the following code clears the part of the matrix H that is
“below the diagonal:

FORALL (I=1:N,J = 1:N, I .GT.J) H(IJ) =0.0
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Note the use of a mask expression in addition to the index variables I and J.

Our description of CM Fortran (as well as C* and *Lisp below) is based mainly on the
Connection Machine Technical Summary (Thinking Machines Corporation, 1989). More
details can be found in (Thinking Machines Corporation, 1990) and the CM programming
manuals. Hockney and Jesshope (1988) have a rather detailed treatment of data parallel
versions of Fortran and Lisp.

C*

C* is a parallel dialect of C that was developed at Thinking Machines Corporation but
which has also been implemented on other machines than the Connection Machine.

Two new storage classes are added, that describe where the data reside. The keywords
used are mono and poly . Scalar (mono) data reside in the memory of the front-end,
and parallel (poly) data reside in the memory of the processor array. Existing operators
are extended to operate on parallel data. Two rules are added to the usual rules of C evalu-
ation: The Replication Rule states that a scalar value is automatically replicated where ne-
cessary to form a parallel variable. The As-If-Serial rule states that a parallel operator is
executed for all active processors as if in some serial order. The latter is a simple way of
stating the guarantee that, from the programmer’s point of view, the processors do not in-
terfere with each other (while still permitting a parallel implementation).

The C* compiler for the Connection Machine computer system is implemented as a trans-
lator to ordinary C code that is then compiled by an ordinary C compiler for the front-end
computer. The C* compiler parses the C* source code, performs type and data flow ana-
lyses, and then translates parallel code into a series of function calls that invoke operations
on the machine instruction level.

*Lisp

The *Lisp language is an extension of Common Lisp for programming the Connection
Machine in a data parallel style. It supports primitives that correspond directly to the ope-
ration of the hardware. Therefore it is possible to write code that executes very efficiently.

As was the case with the extensions to other languages treated above, a new, parallel data
type has been added: A pvar (parallel variable) is a Common Lisp data object that has a
value in each processor, virtual or physical, of the Connection Machine.
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There are two ways of viewing a pvar. In one model, each processor is simultaneously
running the same Common Lisp program, and the pvar represents a variable that exists in
all processors and gets operated upon simultaneously in all processors. In the other
model, the pvar represents an array whose size is the same as the number of processors.
The elements of the array are located in consecutive processors.

As described earlier in this chapter, the Connection Machine provides very flexible com-
munication between processors by packet switching. ¥*Lisp provides functions for using
this communications system. The pref!! function allows each active processor to simul-
taneously read the value of a pvar in any processor. Even if two or more processors at-
tempt to read the data of a single processor, they all receive the same correct data. *pset
allows each active processor to simultaneaously write the value of a pvar to any other pro-
cessor. If two or more values are destined for the same place, the user can specify how
they are to be combined (for instance by adding the values together).

*Lisp also includes reduction functions, e.g. *min, *sum, and *logior (bitwise logical
OR). For example, (*all (*sum (!! 1))) will sum together the quantity 1 in all proces-
sors in the Connection Machine. The result will be the number of virtual processors in use
at that moment.

6.3 Conclusion

Data parallel programming is astonishingly simple and may be applied successfully to
many more problems than was originally conceived. It has been a long lasting conception
that efficiency could be achieved only in certain very regular calculations, and that it in ge-
neral is very difficult to map a problem onto a given machine structure. Several years of
use of data parallel machines have changed this view. Hillis and Steele (1986), after ha-
ving presented several examples of data parallel algorithms, state:

" *Our current view of the applicability of data parallelism is somewhat broader.
That is, we are beginning to suspect that this is an appropriate style wherever
the amount of data to be operated upon is very large.

... One potentially productive line of research in this area is searching for
counterexamples to this rule: that is, computations involving arbitrarily large
data sets that can be more efficiently implemented in terms of control paralle-
lism involving multiple streams of control. Several of the examples presented
in this article first caught our attention as proposed counterexamples.

... Having one processor per data element changes the way one thinks. We
found that our serial intuitions did not always serve us well in parallel contex-
ts. For example, when sorting is fast enough, the order in which things are
stored is often unimportant. Then again, if searching is fast, then sorting may
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be unimportant. In a more general sense, it seems that the selection of one
data representation over another is less critical on a highly parallel machine
than on a conventional machine since converting all the memory from one re-
presentation to another does not take a large amount of time.”

Not only that data parallel algorithms are easier to find than was expected, they are also
easier than expected to program in high-level languages. Very small changes to the langu
ages we are used to are needed, and the data parallel style of thinking and of expressing
things leaves us with programs which are easy to read and effective to execute. In gene-
ral, there is also no problem with efficiency on various sizes of the data sets, since the
concept of virtual processors takes care of the potential problems in an elegant way.

7. Application Examples
7.1 Image processing examples

With a suitable architecture that utilizes a high degree of parallelism, image processing
tasks with real-time requirements may be solved even with rather small-sized systems.
We will demonstrate this by two examples:

A PASIC example

An edge detection task typically used as a preprocessing step in pattern recognition is de-
scribed as a demonstration of the capabilities of PASIC by Chen et al. (1990).

The prototype PASIC system, as described above, works with an image size of 128 x 128
pixels, each with eight bit resolution. Recall that the processors are arranged as a linear
array, thus processing one line of the image at a time. '

The edge detection algorithm is as follows:

1. Median filtering and smoothing

Median filtering is done in two steps, first 1 x 3 vertical neighborhood, then3x 1
horizontal neighborhood on the result of the previous. Smoothing is performed by
adding two horizontal neighbors followed by adding two vertical neighbors of the
result.

2. Gradient calculation
The gradients in the x- and y-directions are computed using the Sobel operator (see
figure SIMD-18a). The gradient magnitude is approximated by the sum of the abso-



SIMD Processor Array Architectures ' 90-05-16 page 29 ' _

lute values of the two gradients.

3. Thresholding and thinning

A binary picture is created by thresholding. This picture now shows the edges. By
an iterative thinning process in four steps the widths of the edges are reduced to one
pixel (if originally not wider than five pixels).

0. Input 8

1. Median and smoothing 318

2. Gradient computation 221
1 0 -1 1 2 1
3. Thresholding and thinning 201
2 0 2 0 0 0
4. Output 17
1 0 1 -1 2 -1 P
TOTAL: 765 cycles
One cycle is 50 ns.
765 cycles per row.
128 rows.
Execution time: 4.78 ms
@ (b

(a) Sobel operator (b) Execution times for the different steps of edge detection

Figure SIMD-18

The execution times of the different steps, assuming a clock rate of 20 MHz, are shown in
figure SIMD-18b. The resulting total execution time of less than 5 ms allows for a frame
rate of more than 200 frames per second on this one-chip system! If the chip (and image
size) is scaled up, the processing time grows linearly, so that for a 512 PE system wor-
king on 512 x 512 images, the maximum frame rate would be 50 frames per second.

It should be noted that, since the PEs are bit-serial, the execution time for the major part
of this algorithm grows linearly also with the number of bits per pixel. In many applica-
tions, fewer bits than eight may be used with good result.

A LUCAS example
An edge detection task run on LUCAS, using “tracking” to get true edges, was described

by Svensson (1983). Like the above algorithm, it may be performed in real-time. In this
particular algorithm no smoothing of the image is done before the edge detection. The gra-
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dient image, derived in a way similar to the one described above, is thresholded at two
different levels. The low threshold gives all potential edge points, while the high thresh-
old gives only the strongest points, i.e. the safe edge points. Now the safe points are pro-
pagated iteratively to connected pixels marked in the image of potential points. The proce-
dure is illustrated in figure SIMD-19 and an example of a run is given in figure SIMD-20.

The computation time on a 128 by 128 pixel image with 8-bit grey-scale is 1.4 ms using a
20 MHz clock. The final tracking phase is extremely efficient on this kind of architecture
and represents only 14 percent of the total time.

As in the PASIC case, scaling up the system and the images will result in linearly increa-
sing computation times.

1 1 1
11 1 1
1 1 11 1 1
1 1
11 11 1 1 11
1 1 1 1 1
1 1 1 1 1 1
1 11 11 11 11
11 11
11 1
(a) (b) ©

Tracking process. Result of thresholding at high level (a) and at
low level (b). Result of tracking the ’1’s of (a) in (b) is shown in (c)

Figure SIMD-19
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(a) (b)
) (&)

Edge detection of a magnetic resonance image by tracking.
From top left to bottom: (a) original image,
(b) gradient image derived by Roberts’ cross difference operator,
(c) result of thresholding image (b) at level 160,
(d) result of thresholding image (b) at level 64,
(e) result of tracking the points in image (c) along the points in image (d).

Figure SIMD-20

igna ing exampl

The Fast Fourier Transform (FFT) algorithm is the basis for most signal processing appli-
cations. FFT is a method for efficiently computing the Discrete Fourier Transform (DFT)
of a time series (discrete data samples). A straightforward calculation of the DFT on a se-

quential computer takes O(N2) time, where N is the number of samples, whereas only

O(Nlog,N) time is needed when the FFT method is used. The algorithm is well suited for
parallel computation. Using N processing elements, the processing time can be reduced to
O(log,N).

The FFT is a clever computational technique to compute the DFT coefficients. The DFT
of a time series is here obtained as a weighted combination of the DFTs of two shorter
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time series. These, in turn, are computed in the same way, until the DFT of a single point
is needed. This is the sample point value itself.

Figure SIMD-21 shows the decomposition of a time series and figure SIMD-22 illustates
the calculation. Further decomposition yields the computational flow graph of figure
SIMD-23. This graph may be arranged as in figure SIMD-24, showing that the perfect
shuffle-exchange pattern is ideally suited for the computation (cf. figure SIMD-6). A bi-
nary cube pattern also solves all communication problems.

Decomposition of a time series into two half as long series

Figure SIMD-21
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OFT

DFT*

Signal flow graph illustrating how calculation of an 8-point DFT can be
reduced to the calculation of two 4-point DFTs. A number within a square
represents multiplication by -2/ raised to the number. In the lower half,
the value arriving by the dotted line is subtracted from the value arriving by

the solid line. In the upper half the two values are added.

Figure SIMD-22

/
e /
S-S0 4,

Calculation of an 8-point DFT using the FFT algorithm
Figure SIMD-23
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Adaptation of the FFT algorithm to the perfect shuffle-exchange
interconnection structure

Figure SIMD-24

FFT on a perfect shuffle connected computer (LUCAS) is described in (Fernstrom et al.,
1986). Assuming a 10 MHz clock, the execution time for a 256-point FFT with 16-bit
data on a 128 PE array is 0.33 ms. Bit-serial multipliers are utilized.

By performing first row and then column FFTs independently on a matrix of input data,
we obtain a two-dimensional FFT. A transform of a 256 x 256 image requires 512 one-
dimensional transforms (256 in each direction), thus takes 170 ms. Half of the transforms
are computed entirely within the PEs, all at the same time.

Fast-Fourier Transforms may be computed also with other array topologies. On the linear
array organized PICAP3 a transposition of the array has to be made between the transfor-
mations in the x- and y-directions, allowing all 1D transformations to be computed within
the PEs. Lindskog (1989) reports a calculated execution time of 93.5 ms using a 32 PE
array on a 512 x 512 complex data image. On the coarse-grained PICAP3 the transposi-
tion phase takes about 20 percent of the total time. As described above, PICAP3 was de-
signed to have very powerful floating point units as PEs.

7.3 A learning network example

The error back-propagation scheme for training a multilayer neural network was briefly
described earlier in this chapter. The computations involve mainly matrix-by-vector multi-
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plications, where the matrices contain the connection weights and the vectors contain acti-

vation values or error values. Such a multiplication contains N2 scalar multiplications and
N computations of sums of N numbers.

The fastest possible way to compute this is to perform all N2 multiplications in parallel,

which requires N2 PEs and unit time, and then form the sums by using trees of adders.
The addition requires N(N-1) adders and O(logN) time. This is, however, an unrealistic
method depending on both the number of PEs required and the communication problems
caused. Instead, it is practical to take the approach of having as many PEs as neurons in a
layer, N, and storing the connection weights in matrices, sized N by N, one for each
layer. The PE with index j has access to row j of the matrix by accessing its own memory
word.

The computations performed on an array of bit-serial processors are described in
(Svensson and Nordstréom, 1990). The calculation times for different network sizes are
calculated. Bit-serial multipliers of the type presented in figure SIMD-11 are used. Some
results from the study are presented in table SIMD-1. In the table, b is the data length and
N is the number of neurons per layer.

N N
256 1024 4096 ' 256 1024 4096
8 24 99 406 8 1.0 42 176
b 12 36 144 58.6 b 12 14 58 242
16 4.7 189 76.6 16 1.8 7.5 30.7

(@) (b)

a)Training time per layer (ms). b) Recall time per layer (ms).
10 MHz clock frequency is assumed.

Table 1

A common measure of the performance of neural net hardware is the number of "CPS"

(Connections per second). In a net with N neurons per layer, N2 connections are used

and/or updated in each layer. The MegaCPS figures for bit-serial array processors of dif-
ferent sizes are given in Table 2.
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N N
256 1024 4096 256 1024 4096
8 27 106 413 8 66 250 953
b 12 18 73 286 b 12 47 180 694
16 14 55 219 16 36 140 546
Training Recall
Number of MegaCPS (Million Connections Per Second) for different network sizes and
data precisions.
Table 2

If external RAM is used, 64 PEs of the complexity we discuss can easily be integrated on
one VLSI chip. A 1024 PE array will have 16 such chips, each with approximately 100
pins. Memory can be implemented using chips with 64k x 4 bits, giving a memory chip
count of 256. With appropriate mounting technology such a network may be implemented
on one board. It would e.g. run a four-layered feedforward network with 1024 neurons
per layer at the speed of 29 training examples or 81 recall examples per second.

7.4 A graph problem.

Problems that can be identified as graph theoretic show up in diverse areas, e.g. traffic

planning and network analysis. A common task is to find the shortest path between any
two vertices of a graph. The connection between two vertices may be uni-directional or
bi-directional. In the first case the graph is called a directed graph. Also, a cost (or path
length) may be associated with each path. Such graphs are called weighted.

Solutions of problems of this kind often take the form of searching large trees or updating
matrices. Opportunities to exploit data parallelism are rich. As an example we will consi-
der the problem of finding the shortest path between all pairs of vertices in a weighted,
directed graph.

In a weighted, directed graph the paths between the vertices are uni-directional and there
is a length associated with each path. Figure SIMD-25 shows an example of such a
graph. The graph may also be described in the form of a matrix. The absence of a direct
path between a pair of vertices is marked in the matrix with “infinite” (if).
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if if ifif 4 0 7
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A weighted, directed graph and its distance matrix
Figure SIMD-25

To solve the problem on a SIMD array we will parallelize an algorithm due to Floyd
(1962) which is considered as one of the two most efficient algorithm for sequential com-
puters. It is well suited for parallel implementation. On sequential computers a computa-
tion time proportional to »3 is required, where » is the number of vertices. On a parallel
computer with n PEs it should be possible to perform the algorithm in a time proportional

to n2.

The algorithm works as follows. Starting with the original n by n matrix D of direct di-
stances, n different matrices D, D,,...,D,, are constructed sequentially. Matrix D, is ob-
tained from matrix D;,_; by inserting vertex £ in a path wherever this results in a shorter

path.

On aparallel computer with n PEs an entire column of the matrix may be updated simulta-
neously. In the k:th iteration, column p of D, is obtained in the following way (using
Pascal/L. notation for matrix elements):

D,(,p) :==min [ Dy_;(,p) , D} _1(;k) + Dy_(k,p)]

A Pascal/L program for the entire algorithm reads as follows:
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Program FLOYD;
const noofvertices = 128; <
var Dmatrix: parallel array [1..noofvertices,1..noofvertices] of integer(8);
k,p: integer;
begin
for k:=1 to noofvertices do
begin
for p:=1 to noofvertices do
begin
where (Dmatrix[* k]+Dmatrix[k,p]) < Dmatrix[*,p] do
Dmatrix[*,p]:= Dmatrix[*,k]+Dmatrix[k,p];
end;
end;
end.

It is easily seen that the execution time of the program is proportional to n2. The task that

is performed 2 times is an ’add fields’ instruction followed by a *mark field greater than
field’ instruction and a selector masked *move field’. These are all performed in constant
time.

The algorithm requires a representation for an infinite value. A number that is a little smal-
ler than half the greatest number that is possible to represent in the given field length may
be chosen. In the worst case, two such numbers are added, which can be done without
giving overflow.

We have shown how a good sequential algorithm may be ported in a straightforward way
to a parallel environment. For other graph theoretical problems, however, new algorithms
have to be invented. Svensson (1983) gives a couple of examples.

Massi Par. IMD Arr in_Embedd, ms, MIMSIMD

In the same way as we have seen conventional computers evolve from big machines resi-
ding in a few computer centers, via minicomputers and desktop computers, to embedded,
yet powerful systems without degrading the computing power, we will see highly parallel
computers used in workstations or integrated into industrial systems solving real-time
tasks.

An example of an effort to implement a miniaturized massively parallel computer is the
BLITZEN project in the Research Triangle of North Carolina (Blevins et al. 1988). A hig-
hly integrated chip has been designed comprising as many as 128 bit-serial processing
elements, each with 1kbit of on-chip memory. A board of some tens, maybe up to a



SIMD Processor Array Architectures ' 90-05-16 page 39

hundred, of those chips could easily be plugged into the backplane of a workstation or
used in industrial environments where small size and large computing power is needed.

A likely development is that such massively parallel systems will be integrated with sen-
sors and actuators. Such integrations are necessary in order to cope with the high input-
output data rates. We have already demonstrated a couple of such examples, the LAPP
and the PASIC. There will certainly be more.

Along that line of development we will see systems of many cooperating SIMD arrays,
each integrated with some sensory or motor function, or serving some other specialized
task in the system, see figure SIMD-26. The different arrays are controlled by their own
streams of instructions, thus the total system may be characterized as MIMSIMD
(Multiple Instruction streams, Multiple SIMD). The cooperation between the modules will
typically require very high bandwidth inter-array communication.

SIMD SIMD
Array @ Array

oo | P T

Sensor Array

HEH

; ‘SAn‘ay @ SIMD | Actu-
. Array | ator
Environ-

ment @ a

- i

Array ¢:> —_—
SIMD | Actu- | ——> Environ-
Armay |ator | ™" men

Sensor

P

A MIMSIMD system integrated with sensors and actuators

Figure SIMD-26
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These ideas conform with Arbib’s (1989) “’sixth generation computers” concept:

The study of animal and human brain suggests overall architectural
principles for “’sixth generation computers.” Each such machine will
comprise a network of more specialized devices, with many of these de-
vices structured as highly parallel arrays of interactive, neuron-like,
possibly adaptive, components.”

According to Arbib, those sixth generation systems will be characterized by:

(a) Cooperative computation: the computer will be a heterogeneous network of spe-
cial-purpose and general-purpose subsystems. Some of the sybsystems (such as the
front ends for perceptual processors (see (b)), and devices for matrix manipulation)
will be highly parallel;

(b) Perceptual robotics: increasingly, computers will have intelligent perceptual and
motor interfaces with the surrounding world; and

(c) Learning: Many of the subsystems will be implemented as adaptive "neural
style” networks.

Im 1 jderati

The development of Very Large Scale Integration technology (VLSI) has had an important
influence on the design and implementation of processor arrays, and has on the whole
been a necessary prerequisite for producing arrays of general usefulness.

As more and more processors are implemented on the same chip, the number of connec-
tions to other chips (at least in nearest-neighbor connected systems) also increases, even if
at a slower rate. This may cause practical connection problems between chips. Even
worse problems, however, arise in the connections between processors and memory if
the memory is put in separate chips. Having local addressing, which we have found e.g.
in PICAP3, is totally impossible if several processors are implemented on the same chip.
Thus, we will probably see a development towards integrated memory and processor
chips. The combination of the two problems points to the solution of implementing a
whole array on a wafer, i.e. Wafer Scale Integration (WSI).

WSI, however, raises another problem. It is acceptable for wafers that are intended for
VLSI fabrication to incorporate defects. They lead to the failure of single dies only, and if
they are not too many they can be tolerated. However, if a whole, continuous array is on
the same wafer, we require all processors in the array to function correctly. Defects can
not be tolerated at all.
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To cope with this problem, techniques are being developed to switch out faulty proces-
sors and make a continuous array of the correct ones, or to include redundancy in the
array so that the chance of getting a functioning array increases.

Without getting into any details at all, we conclude this section by noting that much in-
terest is directed towards possible future optical realizations of processor array functions,
especially solutions to the communications problem. Beams of light may cross each other
without interfering, making it possible to communicate between millions of processors at
once. The first practical systems utilizing optical technology will no doubt be hybrid
electronic/optical systems.
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