Parallel Systems
Welcome to ¢s380p

Chris Rossbach + Calvin Lin
CS380p

Outline for Today

* Course Overview
* Course Details and Logistics

* Concurrency & Parallelism Basics
* Motivation
* Problem Decomposition

Acknowledgments: some materials in this lecture borrowed from or built on materials from:
Emmett Witchel, who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger

Mark Silberstein, who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta

Course Details
Course Name:

Lectures: Online

Class Web Page: http://www.cs.utexas.edu/users/rossbach/cs380p

Chris Rossbach + Calvin Lin
Text: Principles of Parallel Programming (ISBN-10: 0321487907)

| I INICIEILES OhF
.l- PARALLEL

= et ek

PROGRAMMING

Please read the syllabus!

CALVIN LIN
LAWRENCE SNYDER

CS380P Introduction

http://www.cs.utexas.edu/users/rossbach/cs378h
http://www.cs.utexas.edu/users/rossbach
http://www.cs.utexas.edu/users/lin/
https://www.universitycoop.com/search?keywords=Lin%20Snyder%20Parallel%20Programming

Why you should take this course

Why you should take this course

* Parallelism is super-cool and super-important

Why you should take this course

* Parallelism is super-cool and super-important

* You'll learn important concepts and background

Why you should take this course

* Parallelism is super-cool and super-important
* You'll learn important concepts and background

* Have fun programming cool systems
e GPUs! Multi-core!
 Modern infrastructure and programming languages
* Interesting synchronization primitives (not just about locks!)

CS380P Introduction

Why you should take this course

* Parallelism is super-cool and super-important
* You'll learn important concepts and background

* Have fun programming cool systems
* GPUs! Multi-core!
* Modern infrastructure and programming languages
* Interesting synchronization primitives (not just about locks!)

Two perspectives:

* The “just eat your kale and quinoa” argument
* The “it’s going to be fun” argument

CS380P Introduction 4

My first computer

My first computer

CS380P Introduction

My first computer

CS380P Introduction

My first computer

CS380P Introduction

My first computer

Storage

Tape drive! »

also good for playing heavy metal music
CS380P Introduction (8 playing Y)

My first computer

screen

Storage

Tape drive!

also good for playing heavy metal music
CS380P Introduction (8 playing y) 5

My first computer

Wires +
gobbledygook

screen

Storage

Tape drive!

also good for playing heavy metal music
CS380P Introduction (8 playing y) 5

My current computer

CS380P Introduction

My current computer

Too boring...

CS380P Introduction

Another of my current computers

CS380P Introduction

ANo
ther of my current computers

Calendar Camera

o z
o
7o

Clock

Notes

Home

Maps Weather

A
Reminders

CS380P
Introduction

Another of my current computers

CPU
(@

camera

otos X
Calendar i poRupeRaL | ooRumona [| MARDAOR

‘ == CPU
* ! |
- & »: [oot [ows B 0w [e [smas |
News |

o
s
cloc)

EH

050 20
" Weather ot HBIE)

. Notes

Home

GPU

stocks

Image DSP

Crypto

CS380P Introduction

Another of my current computers

CPU
ey B o
=l =

GPU

-Gl ™ gystim sbcurily bchnology: SHA-
DESFI0ES, ANG, AES, PKA, securs WOT, bt

CS380P Introductife

Another of my current computers

A lot has changed but...

CPU

the common theme is...??

vorupesat | soryooeny | MARROR N Jﬁiﬁﬁ CPU
[o1 | owz B o | wons | smas |

GPU

Image DSP

M-Shiid™ gystem security bechnelgy: SHA-1/SHA-ZMDS,
oesmmmwr erypto DMA

P

Mositor
ceets —JTCTRY
st oo ~—— T nimiu W

m i) cro | wems | gk
A caniriber
L]

Crypto

CS380P Introductife

Modern Technology Stack

Modern Technology Stack

CPU /O dev DISK NIC

MH

CS380P Introduction

Modern Technology Stack

’

Modern Technology Stack

Applications

:

CS380P Introduction

Modern Technology Stack

Applications

user-mode
Runtimes/libs

OS-level
abstractions
+ HAL

CPU /O dev DISK NIC

Josn

i

ED

MH

CS380P Introduction

Modern Technology Stack

FPGA GPU ASIC

MH

NVM DSP CRYPT

CS380P Introduction

Modern Technology Stack

CS380P

Applications
device device
APls APIs

Runtime Runtime

device
APIs

Josn

Runtime

)

Vendor-specific

driver

FPGA GPU ASIC

MH |BUJBN

NVM DSP CRYPT

Introduction

~— Runtime
support

Concurrency and Parallelism are Everywhere

Applications

device device device device
APIs APls APIs APIs

Runtime Runtime Runtime Runtime

[ioctl]

Vendor-specific
driver
CPU GPU DISK ASIC
NVM FPGA DSP CRYPT

CS380P Introduction

Concurrency and Parallelism are Everywhere

Applications

device device device device
APlIs APls APIs APlIs

Runtime Runtime Runtime Runtime

[ioctl |

Vendor-specific

driver

driver

HYPERVISOR

CPU GPU DISK ASIC

NVM FPGA DSP CRYPT

CS380P Introduction

Concurrency and Parallelism are Everywhere

Applications

device device device device
APIs APls APIs APIs

Runtime Runtime Runtime Runtime

[doctl]
Vendor-specific
driver

HYPERVISOR

CPU GPU DISK ASIC

NVM FPGA DSP CRYPT

CS380P Introduction

Concurrency and Parallelism are Everywhere

CS380P Introduction

10

Concurrency and Parallelism are Everywhere

—p— = =~ =

Vendor-specific

[‘ HYPERVISOR
N! CPU GPU p DISK ASIC I

FPG |
NVM N DSP :pT

CS380P Introduction

Concurrency and Parallelism are Everywhere

—o Ve;dn;r»s;)ecific

Wi 1 driver
[o o S
H)R

B HYPERVISOR

N] CPU GPU p DISK ASIC I

FPG |
NVM N DSP :pT

CS380P Introduction

Concurrency and Parallelism are Everywhere

— U Ve;dn;r-s;)ecific

HYPERVISOR

N] CPU GPU p DISK ASIC I

FPG |
NVM N DSP :pT

CS380P Introduction

oncurrency and Parallelism are Everywhere

o

mma

arver V I 7T — -—a
.-___l _ 2 P~ Vendor-specific

.7 diver |

N] CPU GPU p DISK ASIC I Ny CPU GPU p DIsK ASIC I

FPG | FPG I
VM A Doh pT NVM | DSP CDT‘

CS380P Introduction

Concurrency and Parallelism are Everywhere

mma mma

v Veﬁ-do‘r-sE)eciﬂc Veﬁ-do‘r-s;)ecific

HYPERVISOR
N cru GPU DIsK asic| N cru epu g oisk asic |
FPG FPG FPG CRY
MY " Db pT | NVM . DSP il NVM A DSP il

CS380P Introduction

Concurrency and Parallelism are Everywhere

mma mma

mma

v Veﬁ-do‘r-sE)eciﬂc Veﬁ-do‘r-s;)ecific

Veﬁ-dc;'-s;)ecific

HYPERVISOR

N cPU GPU DISK ASIC | N cpu GPU [g DIsK asic | N cru U |d Disk asic |
PG CRY | FPG TPG CRY CRY
pM A Do PT NVM A Dsp PT | NVM A DsP PT | NVM H;b DSP e |

CS380P Introduction 10

Concurrency and Parallelism are Everywhere

mma
mma mma mma

-Mn_ve; P~ Vendor-specific
- driver I driver

Veﬁ-do‘r-sfyecific —_ p Veﬁ-do‘r-s;)ecific

driver

[loctl] |
-ﬂ'ﬂe'—. P~ Vendor-specific

driver

B
N

HYPERVISOR HYPERVISOR

N CPU GPU DISK ASIC N CPU GPU p| DISK ASIC N CPU GPU p DISK ASIC N cPU GPU o Disk ASIC
FPG
pM A Do PT NVM A Dsp PT NVM A DsP PT NVM A DSP e

Cluster OS

CS380P Introduction 10

Concurrency and Parallelism are Everywhere

Applications

mma mma mma

Vendor-specific - v Veﬁ-doAr-sEyecific —_ o Veﬁ-do‘r-s;)ecific

driver Iriv deiver

Ve;dc;'-s;)ecific

HYPERVISOR HYPERVISOR HYPERVISOR

N CPU GPU DISK ASIC N CPU GPU p| DISK ASIC N CPU GPU p DISK ASIC N cPU GPU o Disk ASIC
FPG
pM A Do PT NVM A Dsp PT NVM A DsP PT NVM A DSP e

Cluster OS

CS380P Introduction 10

Concurrency and Parallelism are Everywhere

Applications

mma mma mma

Vendor-specific - v Veﬁ-doAr-sEyecific —_ o Veﬁ-do‘r-s;)ecific

driver Iriv deiver

Ve;dc;'-s;)ecific

HYPERVISOR HYPERVISOR HYPERVISOR

N CPU GPU DISK ASIC N CPU GPU p| DISK ASIC N CPU GPU p DISK ASIC N cPU GPU o Disk ASIC
FPG
pM A Do PT NVM A Dsp PT NVM A DsP PT NVM A DSP e

Cluster OS

(PeBueRRRIey

CS380P Introduction 10

Concurrency and Parallelism are everywhere

CPU(s)

GPU

Image DSP

i @D
S RCONCE - §

|

{

Crypto

CS380P Introduction

Concurrency and Parallelism are everywhere

CPU(s)

GPU

Image DSP

i @D
S RCONCE - §

|

{

Crypto

CS380P Introduction

Concurrency and Parallelism are everywhere

Key concerns:

CS380P Introduction

Concurrency and Parallelism are everywhere

Key concerns:

* Concurrency/parallelism can’t be avoided
anymore (want a job?)

e A program or two playing with locks and threads
isn’t enough

Course goal is to expose you to lots of ways of
programming systems like these

CS380P

Introduction

Goal: Make Parallelism Your Close Friend
Method: Use Many Different Approaches

 Abstract | Concrete

Locks and Shared Memory Synchronization Basic Locking

Prefix sum — pthreads

Go lab: condition variables, channels, go routines

HNGLEER Slppel Rust lab: type-safety, 2PC
Parallel Architectures GPU Programming Lab
HPC MPI: Barnes-Hut lab
» Specialized Runtimes / Programming Models
Modern/Advanced Topics * Auto-parallelization

e Race Detection

CS380P Introduction

12

Serial vs. Parallel Program

Serial vs. Parallel Program

instructions

CS380P Introduction

One instruction at a
time (apparently)

13

Serial vs. Parallel Program

problem
_ One instruction at a

instructions time (a ppa rently)

instructions

=-'IIIIII I |- ==

=ML |- v nstruce
Multiple instructions

=.|II|I| I |=.- in parallel

-l -

CS3

13

Serial vs. Parallel Program

instructions

Key concerns:

instructions

=~'IIIIII I |- ==
=ML |- v nstruce
Multiple instructions
=...|II|II I I=...- in parallel
-~ |-
In

CS3

13

Serial vs. Parallel Program

Key concerns:
* Programming model

problem

instructions

1
I

13 2 t1

probhlgs instructions

-l | -E=
=ML |- v nstruce
Multiple instructions
=...|II|II I I=...- in parallel
-l -
CS3 In

13

Serial vs. Parallel Program

-~

B e
Multiple instructions

=....- in parallel

—"

In

Key concerns:
* Programming model
* Execution Model

problem

instructions

13 2 t1

1
i |

problss instryetions

)

I |

CS3

12 i

Serial vs. Parallel Program

Key concerns:
* Programming model
9. Execution Model

l instructions / * Performance/Efficiency
N

13 2 t1

problem

instryetio

problgs ns
— —=
Multiple instructions
in parallel
—"
CS3 In

N t3 t

I |

13

Key concerns:

* Programming model

* Execution Model

* Performance/Efficiency
e Exposing parallelism

problem

instructions

Serial vs. Parallel Program

13 2 t1

1
i |

instryetio

problgs ns
— —=
Multiple instructions
in parallel
—"
CS3 In

N t3 t

I |

Technology Trends

35 YEARS OF MICROPROCESSOR TREND DATA

10’

10°

10°

10*

10°

Transistors
(thousands)

Single-thread
~ Performance
(SpecINT)

Typical Power
(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

CS380P

Introduction

14

Free lunch —is over ®

35 YEARS OF MICROPROCESSOR TREND DATA

/

Transistor
number grows
(Moore’s law)

7 B
10 ¢ Transistors
- : : : : : : : : (thousands)
6 [: : : ? E : : »
s f
10" ¢
i Single-thread
4 . Performance
10 ¢ © (SpecINT)
3 A
10
2 . Typical Power
10 3 (Watts)
1 . Number of
10" ¢ Cores \
0 A
10

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

CS380P Introduction

Sequential
performance
no longer
improves

Cores number
grows

15

Execution Models: Flynn’s Taxonomy

Execution Models: Flynn’s Taxonomy

CS380P

SISD

Single Instruction stream

Single Data stream

SIMD

Single Instruction stream
Multiple Data stream

MISD

Multiple Instruction stream
Single Data stream

Introduction

MIMD

Multiple Instruction stream

Multiple Data stream

16

Execution Models: Flynn’s Taxonomy

\gsmn

\ / Multiple Data stream
MISD MIMD

Multiple Instruction stream | Multiple Instruction stream
Single Data stream Multiple Data stream

Normal Serial program

CS380P Introduction

Execution Models: Flynn’s Taxonomy

SISD SIMD

Single Instruction stream Single Instruction stream
Single Data stream Multiple Data stream

L N

MIMD

ultiple Instruction stream
Multiple Data stream

Uncommon architecture:

Fault — tolerance
Pipeline parallelism

16

Execution Models: Flynn’s Taxonomy

sisp | -

Single Instruction stream
Single Data stream

MISD

Multiple Instruction stream
Single Data stream

CS380P Introduction 16

SIMD

CS380P

SIMD

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)|
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

Introduction

qwy

17

CS380P

SIMD

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)|
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

Introduction

qwy

e Example: vector operations (e.g., Intel SSE/AVX, GPU)

17

SIMD

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)}
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

./

+

)/

(X+Y [xp+vn [enalxene

X[1] |’ x3

x2

x1 x0 |]

-+

F 4

T[]Iﬂ-lﬂlﬂlrﬂﬂ

Introduction

o
x1+y1 | x0 + yﬂ'ﬂ

qwy

e Example: vector operations (e.g., Intel SSE/AVX, GPU)

17

MIMD

MIMD

* Example: multi-core CPU

MIMD

* Example: multi-core CPU

CS380P

prev instruct

load A(1)

load B(1)

C(1)=A(1)*B(1)

store C(1)

next instruct

P1

prev instruct

prev instruct

call funcD

do 10 i=1,N

X=y*z

alpha=w**3

sum=x*2

zeta=C(i)

call sub1(i,j)

10 continue

next instruct

P2

Introduction

next instruct

Pn

awy

18

Problem Partitioning

Problem Partitioning

* Decomposition: Domain v. Functional

Problem Partitioning

* Decomposition: Domain v. Functional

* Domain Decomposition (Data Parallel)
* SPMD
* Input domain

* Output Domain
* Both

Problem Partitioning

* Decomposition: Domain v. Functional

* Domain Decomposition (Data Parallel)
* SPMD
* Input domain

* Output Domain
* Both

CS380P Introduction

Problem Data Set

|
. . | . .
task 0 task 1 task 2 task 3

19

Problem Partitioning

* Decomposition: Domain v. Functional

* Domain Decomposition (Data Parallel)
* SPMD
* Input domain

* Output Domain
* Both

* Functional Decomposition (Task Parallel)
* MPMD
* Independent Tasks
* Pipelining

CS380P Introduction

Problem Data Set
i I| I "-\

J"'f |I II IIII".
task 0 task 1 task 2 task 3

19

Problem Partitioning

Problem Data Set

* Decomposition: Domain v. Functional

* Domain Decomposition (Data Parallel) - ' ' -
spuID i

Input domain
Output Domain
Both

* Functional Decomposition (Task Parallel)
* MPMD
* Independent Tasks
* Pipelining

Problem Instruction Set

CS380P Introduction 19

Game of Life

Game of Life

e Given a 2D Grid:

c v:(i,]) = F(vt_l(of all its neighbors))

1

P PN

—/ o N
i-1 N i+1

O O O

j-1
() () ')
Ny Ny N

CS380P Introduction

20

Game of Life

* Given a 2D Grid:
c v:(i,]) = F(vt_l(of all its neighbors))

w
A AL
—/ N _/

i-1 ij i+1 What decomposition fits “best”?

0- O -
T T * Domain (data parallel)
J- e Functional (task parallel)

O O O

Domain decomposition

Domain decomposition

Each CPU gets part of the input

Domain decomposition

Each CPU gets part of the input

CPUO

CS380P

Introduction

21

Domain decomposition

Each CPU gets part of the input

CPUO

CS380P

For next time:

Introduction

21

Domain decomposition

Each CPU gets part of the input

CPUO

For next time:
* What issues/challenges might arise with this solution?

CS380P Introduction 21

Domain decomposition

Each CPU gets part of the input

CPUO

For next time:
* What issues/challenges might arise with this solution?
* How could we do a functional decomposition?

CS380P Introduction 21

