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Why you should take this course

* Parallelism is super-cool and super-important
* You'll learn important concepts and background

* Have fun programming cool systems
e GPUs! Multi-core!
 Modern infrastructure and programming languages
* Interesting synchronization primitives (not just about locks!)
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Why you should take this course

* Parallelism is super-cool and super-important
* You'll learn important concepts and background

* Have fun programming cool systems
* GPUs! Multi-core!
* Modern infrastructure and programming languages
* Interesting synchronization primitives (not just about locks!)

Two perspectives:

* The “just eat your kale and quinoa” argument
* The “it’s going to be fun” argument
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My first computer

Storage

Tape drive! »

also good for playing heavy metal music
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My first computer
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My current computer
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My current computer

Too boring...
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Another of my current computers
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Another of my current computers
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Another of my current computers

A lot has changed but...

CPU
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Modern Technology Stack
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Modern Technology Stack
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Modern Technology Stack

FPGA GPU ASIC
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Modern Technology Stack

CS380P
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Concurrency and Parallelism are Everywhere

Applications

device device device device
APIs APls APIs APIs

Runtime Runtime Runtime Runtime

[ ioctl ]

Vendor-specific
driver
CPU GPU DISK ASIC
NVM FPGA DSP CRYPT
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Concurrency and Parallelism are Everywhere

Applications

device device device device
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Runtime Runtime Runtime Runtime
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Concurrency and Parallelism are Everywhere

Applications

device device device device
APIs APls APIs APIs

Runtime Runtime Runtime Runtime

[ doctl ]
Vendor-specific
driver

HYPERVISOR

CPU GPU DISK ASIC

NVM FPGA DSP CRYPT
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Concurrency and Parallelism are Everywhere
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Concurrency and Parallelism are Everywhere
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Concurrency and Parallelism are Everywhere
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Concurrency and Parallelism are Everywhere
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Concurrency and Parallelism are Everywhere
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Concurrency and Parallelism are Everywhere
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Concurrency and Parallelism are Everywhere

mma
mma mma mma

-Mn_ve; P~ Vendor-specific
- driver I driver

Veﬁ-do‘r-sfyecific —_ p Veﬁ-do‘r-s;)ecific

driver

[ loctl ] |
-ﬂ'ﬂe'—. P~ Vendor-specific

driver

B
N

HYPERVISOR HYPERVISOR

N CPU GPU DISK ASIC N CPU GPU p| DISK ASIC N CPU GPU p DISK ASIC N cPU GPU o Disk ASIC
FPG
pM A Do PT NVM A Dsp PT NVM A DsP PT NVM A DSP e

Cluster OS

CS380P Introduction 10



Concurrency and Parallelism are Everywhere
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Concurrency and Parallelism are Everywhere
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Concurrency and Parallelism are everywhere
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Concurrency and Parallelism are everywhere

Key concerns:
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Concurrency and Parallelism are everywhere

Key concerns:

* Concurrency/parallelism can’t be avoided
anymore (want a job?)

e A program or two playing with locks and threads
isn’t enough

Course goal is to expose you to lots of ways of
programming systems like these

CS380P
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Goal: Make Parallelism Your Close Friend
Method: Use Many Different Approaches

 Abstract | Concrete

Locks and Shared Memory Synchronization Basic Locking

Prefix sum — pthreads

Go lab: condition variables, channels, go routines

HNGLEER Slppel Rust lab: type-safety, 2PC
Parallel Architectures GPU Programming Lab
HPC MPI: Barnes-Hut lab
» Specialized Runtimes / Programming Models
Modern/Advanced Topics * Auto-parallelization

e Race Detection

CS380P Introduction
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Serial vs. Parallel Program

instructions

CS380P Introduction

One instruction at a
time (apparently)
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Serial vs. Parallel Program
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Serial vs. Parallel Program

instructions

Key concerns:

instructions

=~'IIIIII I |- ==
=ML |- v nstruce
Multiple instructions
=...|II|II I I=...- in parallel
-~ |-
In

CS3

13



Serial vs. Parallel Program

Key concerns:
* Programming model

problem

instructions
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Serial vs. Parallel Program
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Key concerns:
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Serial vs. Parallel Program

Key concerns:
* Programming model
9. Execution Model

l instructions / * Performance/Efficiency
N
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Key concerns:

* Programming model

* Execution Model

* Performance/Efficiency
e Exposing parallelism

problem

instructions

Serial vs. Parallel Program
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Technology Trends

35 YEARS OF MICROPROCESSOR TREND DATA

10’
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Transistors
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Single-thread
~ Performance
(SpecINT)

Typical Power
(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore
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Free lunch —is over ®

35 YEARS OF MICROPROCESSOR TREND DATA
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Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore
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Sequential
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no longer
improves

Cores number
grows
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Execution Models: Flynn’s Taxonomy

CS380P

SISD

Single Instruction stream

Single Data stream

SIMD

Single Instruction stream
Multiple Data stream

MISD

Multiple Instruction stream
Single Data stream

Introduction

MIMD

Multiple Instruction stream

Multiple Data stream
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Execution Models: Flynn’s Taxonomy

\gsmn

\ / Multiple Data stream
MISD MIMD

Multiple Instruction stream | Multiple Instruction stream
Single Data stream Multiple Data stream

Normal Serial program
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Execution Models: Flynn’s Taxonomy

SISD SIMD

Single Instruction stream Single Instruction stream
Single Data stream Multiple Data stream

L N

MIMD

ultiple Instruction stream
Multiple Data stream

Uncommon architecture:

Fault — tolerance
Pipeline parallelism

16



Execution Models: Flynn’s Taxonomy

sisp | -

Single Instruction stream
Single Data stream

MISD

Multiple Instruction stream
Single Data stream
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CS380P

SIMD

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)|
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

Introduction

qwy
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SIMD

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)|
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

Introduction

qwy

e Example: vector operations (e.g., Intel SSE/AVX, GPU)
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SIMD

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n)
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)}
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn
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Introduction

o
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qwy

e Example: vector operations (e.g., Intel SSE/AVX, GPU)
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* Example: multi-core CPU



MIMD

* Example: multi-core CPU

CS380P

prev instruct

load A(1)

load B(1)

C(1)=A(1)*B(1)

store C(1)

next instruct

P1

prev instruct

prev instruct

call funcD

do 10 i=1,N

X=y*z

alpha=w**3

sum=x*2

zeta=C(i)

call sub1(i,j)

10 continue

next instruct

P2

Introduction

next instruct

Pn

awy
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Problem Partitioning

* Decomposition: Domain v. Functional

* Domain Decomposition (Data Parallel)
* SPMD
* Input domain

* Output Domain
* Both
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Problem Data Set
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. . | . .
task 0 task 1 task 2 task 3
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Problem Partitioning

* Decomposition: Domain v. Functional

* Domain Decomposition (Data Parallel)
* SPMD
* Input domain

* Output Domain
* Both

* Functional Decomposition (Task Parallel)
* MPMD
* Independent Tasks
* Pipelining

CS380P Introduction

Problem Data Set
i I| I "-\

J"'f |I II IIII".
task 0 task 1 task 2 task 3
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Problem Partitioning

Problem Data Set

* Decomposition: Domain v. Functional

* Domain Decomposition (Data Parallel) - ' ' -
spuID i

Input domain
Output Domain
Both

* Functional Decomposition (Task Parallel)
* MPMD
* Independent Tasks
* Pipelining

Problem Instruction Set
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Game of Life

e Given a 2D Grid:

c v:(i,]) = F(vt_l(of all its neighbors))

1

P PN

—/ o N
i-1 N i+1

O O O

j-1
() () ')
Ny Ny N

CS380P Introduction
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Game of Life

* Given a 2D Grid:
c v:(i,]) = F(vt_l(of all its neighbors))

w
A AL
—/ N \_/

i-1 ij i+1 What decomposition fits “best”?

0- O -
T T * Domain (data parallel)
J- e Functional (task parallel)

O O O
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Domain decomposition

Each CPU gets part of the input

CPUO

CS380P

Introduction
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Domain decomposition

Each CPU gets part of the input

CPUO

CS380P

For next time:

Introduction
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Domain decomposition

Each CPU gets part of the input

CPUO

For next time:
* What issues/challenges might arise with this solution?
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Domain decomposition

Each CPU gets part of the input

CPUO

For next time:
* What issues/challenges might arise with this solution?
* How could we do a functional decomposition?
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