Scalability + Correctness

Chris Rossbach + Calvin Lin
CS380p

Outline for Today

* Concurrency & Parallelism Basics
* Decomposition redux
* Measuring Parallel Performance
* Performance Tradeoffs
* Correctness and Performance

Acknowledgments: some materials in this lecture borrowed from or built on materials from:
* Emmett Witchel, who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger

* Mark Silberstein, who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta

Review: Game of Life

* Given a 2D Grid:
* v:(i,j) = F(v;_1(of all its neighbors))

+1
& & 4
) o
o o' o
J-1
O O O

CS380P Scalability + Correctness

Domain decomposition

Each CPU gets part of the Input * What would a functional decomposition look like?
* Issues/obstacles with this domain decomposition?
CPUO
j*+1
o © o
-1] +1
O O—O
J-1
O 0
CPU 1

CS380P Scalability + Correctness 4

Functional decomposition

Each CPU gets part of the per-cell work

CPU O:

tmpij = F(ve-1(neighbors))

o

JiEd
o

O

i-1 i,j I+1
O @ O
=1
@ i) (D
A 4 A -

FIFO
Queue

CS380P

Scalability + Correctness

CPU 1:
vt(i,j) = tmpi;

JiEd
¢ o

Y
& h
i-1] i+1
O O O
j=1
@ i ()
& & \ 4

Domain decomposition

e Each CPU gets part of the input

CPUO
j+1
o— 0 0o
i-1 i,j I+1
@ ® O
j-1
O O—O
CPU 1

CS380P

Issues?
* Accessing Data
* Can we access v(i+1, j) from CPU O
e ...asina “normal” serial program?
e Shared memory? Distributed?
* Time to access v(i+1,j) == Time to access v(i-1,j) ?
e Scalability vs Latency
e Control
e Can we assign one vertex per CPU?
* Can we assign one vertex per process/logical task?
* Task Management Overhead
e Load Balance
* Correctness
e order of reads and writes is non-deterministic
e synchronization is required to enforce the order
* Jocks, semaphores, barriers, conditionals....

Scalability + Correctness 6

Load Balancing

* Slowest task determines performance

CPUO CPU 1
j*+1 | Task O
| Task 2 |
i+1 I Task 3
| work |
CPU 2 CPU 3 time >

CS380P Scalability + Correctness 7

Granularity

* Fine-grain parallelism
* Gissmall
* Good load balancing
* Potentially high overhead

* Hard to get correct
Computation

G =

Communication * Coarse-grain parallelism
* Gislarge
* Load balancing is tough
* Low overhead
 Easier to get correct

CS380P Scalability + Correctness

aw}

sw}

\d

| communication
" computation

Performance: Amdahl’s law

o Sprocliiaictaariad o ca e] o e e e D
Sp . .
1y serial run time
peeaup = .
parallel run time
pr——— #CPUs
Speedup(#CPUs) = Tseriat =— 1
parallel +(1—A)

#CPUs

CS380P Scalability + Correctness

Amdahl’s law

X seconds

X/2 seconds X/2 seconds

| | |
Serial Parallelizable

What makes something “serial” vs. parallelizable?

CS380P Scalability + Correctness

10

Amdahl’s law 2 CPUs

X/4 seconds
X/2 seconds l X/Z—s‘econds

Parallelizable

Serial slizable
Parallelizable

End to end time: KXg@coXd4) = (3/4)X seconds

What is the “speedup” in this case?

i serial runtime | _ ¥ _ 5853
peeatp = parallel runtime A 5 % 55

CS380P m ope (1 - A) Scalabilim?ct$s£1_'5) 11

Speedup exercise

(3X/4
econ
p 3 * X/4 seconds
X/4 seconds 5
l P |
P
Serial
P
P
P .
p End to end time: X seconds

What is the “speedup” in this case?

serial run time 1 1

S d — — = -
peeaup parallel run time A 2.91x

CS380P m }r (1 - A) 5ca|abi|ity+7c§/e8tr$s(1'-75) 12

Amdahl Action Zone

50% parallel
2.5
2
%1.5 /
o
$
a1
0.5
0
N Vv ™ ® © v D N o Vv ™ & o WV De
"t » © v \e) Y v D %) O >
WY 9 S O

N
number of CPUs

CS380P Scalability + Correctness

Amdahl Action Zone

Percentage of parallel work
-=50% =75%

3.5

W

Speedup
OOk FEFNNW
¢ s

W

e Vv D D © V
number of CPUs

CS380P Scalability + Correctness

Amdahl Action Zone

Percentage of parallel work
-50% =75% =90% —95% =—99%

Number of CPUs

CS380P Scalability + Correctness

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

* N=#CPUs, S =serial portion=1—A
* Amdabhl's law: Speedup(N) = %

S5+

* Strong scaling: Speedup(N) calculated with total work fixed
* Solve same fixed size problem, #CPUs grows
* Fixed parallel portion [] speedup stops increasing

* Gustafson's law: Speedup(N) = N + (N-1)-S

* Weak scaling: Speedup(N) calculated with work-per-CPU fixed
* Add more CPUs [] Add more work [] granularity stays fixed

* Problem size grows: solve larger problems

* Consequence: speedup upper bound much greater

CS380P Scalability + Correctness

16

Super-linear speedup

* Possible due to cache
* But usually just poor methodology
* Baseline: *best* serial algorithm

* Example:

 Efficient bubble sort takes:
* Parallel 40s
* Serial 150s

e Speedup = % =3.757?

* NO!
* Serial quicksort runs in 30s
« = Speedup = 0.75

CS380P Scalability + Correctness

Superlinear

\S
o

Sublinear

Processors

17

Concurrency and Correctness

If two threads execute this program concurrently,
how many different final values of X are there?

Initially, X == 0.

CS380P

Thread 1

void increment () {
int temp = X;
temp = temp + 1;
X = temp;

Thread 2

void increment () {
int temp = X;
temp = temp + 1;
X = temp;

Scalability + Correctness

18

Schedules/Interleavings

Model of concurrent execution
* Interleave statements from each thread into a single thread
* If any interleaving yields incorrect results, synchronization is needed

Thread 1 Thread 2
/tmpl = X;
tmp2 = X; -~
DL = 28 tmp2 = tmp2 + 1; EEE = o

\
tmpl = tmpl + 1, slempl = tmpl + 1; | |tWP2 = tmp2 + 1;
X —
X

X = tmpl; = tmpl:
P4l
_ thZ;/

If X==0 initially, X == 1 at the end. WRONG result!

CS380P Scalability + Correctness

Locks fix this with Mutual Exclusion

void increment () {
lock.acquire() ;
int temp = X;
temp = temp + 1;
X = temp;
lock.release() ;

Mutual exclusion ensures only safe interleavings
* But it limits concurrency, and hence scalability/performance

Is mutual exclusion a good abstraction?

y + Correctness

20

Correctness conditions

* Safety :
* Only one thread in the critical region Theor-em:. EUELY [pIefpEly 15 €
combination of a safety property and a
* Liveness liveness property.
* Some thread that enters the entry section eventually enters the critical region -Bowen Alpern & Fred Schneider [1985]

. . N . hitps: cs.cornell.edu/fbs/publications/defliveness.pdf
* Even if other thread takes forever in non-critical region ps:/fwww.cs.comnell.edu/fbs/publications/defliveness.p

* Bounded waiting

* Ifa threadiis in entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is

granted :
while (1) {
Entry section]
Mutex, spinlock, etc. g™ . 1 .
are ways to implement \ Critical section
Exit section |

Non-critical section
CS380P Scalability + Correctness 21

these

Let’s talk concurrency control

Consider a hash-table

CS380P Scalability + Correctness

22

Let’s talk concurrency control

thread T1

Consider a hash-table

0 —= -8 -8
| w—
2 wmmub

3 == -
4 ==y -0

5 =t> @308

CS380P

ht.add({_));

if(ht. contains(-))
ht.del(@D);

Scalability + Correctness

23

Let’s talk concurrency control

thread T1 thread T2

Consider a hash-table

ht.add({)); ht.add({));
0 == B-E8-00
1 === @
2 o) if(ht.contains(-)) if(ht.contains(@W))

ht.del(@®); ht.del(@®);

CS380P Scalability + Correctness 24

Let’s talk concurrency control

thread T1 thread T2

Consider a hash-table

ht.add({_));

0—> 0B -0B -8 ht.add({_J);

1 == if(ht.contains(@®))

if(ht.contains(@W))

ht.del(@®);
ht.del(-&

CS380P Scalability + Correctness 25

Pessimistic concurrency control: coarse locks

thread T1 thread T2
. Consider a hash-table ht.lock();
[JQ ht.add({));
0 —= IR -E8 -0
1 === @
2 emmph if(ht.contains(@®))
3 = (3~ ht.del(@®);
4 ==p (50000 ht.unlock();

5 =t> @08

CS380P Scalability + Correctness 26

Pessimistic concurrency control: coarse locks

thread T1 thread T2

. Consider a hash-table ht.lock(); ht.lock();

{JQ ht.add({)); ht.add({{T));
0 —= -8 -8
(el
2 o) if(ht.contains(.)) if(ht.contains({_)))
3 wp (DD ht.del(@®); ht.del (@) ;
4 =mup OO ht.unlock(); ht.unlock();
5 =) (-0

Coarse lock:
Non-conflicting ops serialized

Low Complexity -- Low Performance

CS380P Scalability + Correctness

Pessimistic concurrency control: fine locks

thread T1 thread T2

_ Consider a hash-table figure-out-locks(); figure-out-locks();
[J‘ ~ A O O lock-them-inorder(); lock-them-inorder();

—I»?—-.—-' ht.add({)); ht.add({J);
—"SZHS:

if(ht.contains(@®)) if(ht.contains({)))
ht.del(@) ; ht.del (@) ;

unlock-locks(); unlock-locks

Fine-grain lock:
Non-conflicting parallel

N(h[WIN|=|O

High Complexity -- High Performance

CS380P Scalability + Correctness

Why Locks are Hard

* Coarse-grain locks * Fine-grain locks
e Simple to develop e Greater concurrency
* Easy to avoid deadlock e Greater code complexity
* Few data races e Potential deadlocks
* Limited concurrency * Not composable

e Potential data races

° 1 ?
// WITH FINE-GRAIN LOCKS Which lock to lock:

void move (T s, T d, Obj key) {

LOCK (s) ; Thread 0 Thread 1

LOCK (d) ; move (a, b, keyl);

tmp = s.remove (key) ; move (b, a, key2);
d.insert (key, tmp);

UNLOCK (d) ;

ONLOCK (o) . DEADLOCK!

}

CS380P Scalability + Correctness 29

