Scalability + Correctness

Chris Rossbach + Calvin Lin

CS380p

Outline for Today

- Concurrency & Parallelism Basics
 - Decomposition redux
 - Measuring Parallel Performance
 - Performance Tradeoffs
 - Correctness and Performance

Acknowledgments: some materials in this lecture borrowed from or built on materials from:

- Emmett Witchel, who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger
- Mark Silberstein, who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta

Review: Game of Life

- Given a 2D Grid:
- $v_t(i,j) = F(v_{t-1}(of \ all \ its \ neighbors))$

Domain decomposition

Each CPU gets part of the input

- What would a functional decomposition look like?
- Issues/obstacles with this domain decomposition?

Functional decomposition

Each CPU gets part of the per-cell work

Domain decomposition

• Each CPU gets part of the input

Issues?

- Accessing Data
 - Can we access v(i+1, j) from CPU 0
 - ...as in a "normal" serial program?
 - Shared memory? Distributed?
 - Time to access v(i+1,j) == Time to access v(i-1,j) ?
 - Scalability vs Latency
- Control
 - Can we assign one vertex per CPU?
 - Can we assign one vertex per process/logical task?
 - Task Management Overhead
- Load Balance
- Correctness
 - order of reads and writes is non-deterministic
 - synchronization is required to enforce the order
 - locks, semaphores, barriers, conditionals

Load Balancing

• Slowest task determines performance

Granularity

- Fine-grain parallelism
 - G is small
 - Good load balancing
 - Potentially high overhead
 - Hard to get correct
- Coarse-grain parallelism
 - G is large
 - Load balancing is tough
 - Low overhead
 - Easier to get correct

$G = \frac{Computation}{Communication}$

Performance: Amdahl's law

$$Speedup(\#CPUs) = \frac{T_{serial}}{T_{parallel}} = \frac{1}{\frac{A}{\#CPUs} + (1 - A)}$$

Amdahl's law X seconds my task X/2 seconds X/2 seconds Serial Parallelizable

What makes something "serial" vs. parallelizable?

Amdahl's law

End to end time: (X/2C+)X/d4) = (3/4)X seconds

What is the "speedup" in this case?

$$Speedup = \frac{\text{serial run time}}{\text{parallel run time}} = \frac{1}{\frac{A}{\#CPUs} + (1 - A)} = \frac{1}{\frac{.5}{.5} + (1 - .5)} = 1.333$$

11

What is the "speedup" in this case?

Amdahl Action Zone

Amdahl Action Zone

number of CPUs

Amdahl Action Zone

Number of CPUs

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

- N = #CPUs, S = serial portion = 1 A
- Amdahl's law: $Speedup(N) = \frac{1}{\frac{A}{N}+S}$
 - Strong scaling: Speedup(N) calculated with total work fixed
 - Solve same fixed size problem, #CPUs grows
 - Fixed parallel portion □ speedup stops increasing
- Gustafson's law: $Speedup(N) = N + (N-1) \cdot S$
 - Weak scaling: Speedup(N) calculated with work-per-CPU fixed
 - Add more CPUs □ Add more work □ granularity stays fixed
 - Problem size grows: solve larger problems
 - Consequence: speedup upper bound much greater

Super-linear speedup

- Possible due to cache
- But usually just poor methodology
- Baseline: *best* serial algorithm
- Example:
- Efficient **bubble sort** takes:
 - Parallel 40s
 - Serial 150s

• Speedup =
$$\frac{150}{40}$$
 = 3.75 ?

- NO!
 - Serial quicksort runs in 30s
 - \Rightarrow Speedup = 0.75

Concurrency and Correctness

If two threads execute this program concurrently, how many different final values of X are there?

Initially, X == 0.

Schedules/Interleavings

Model of concurrent execution

- Interleave statements from each thread into a single thread
- If any interleaving yields incorrect results, synchronization is needed

If X==0 initially, X == 1 at the end. WRONG result!

Locks fix this with Mutual Exclusion

```
void increment() {
    lock.acquire();
    int temp = X;
    temp = temp + 1;
    X = temp;
    lock.release();
}
```

Mutual exclusion ensures only safe interleavings

• But it limits concurrency, and hence scalability/performance

Is mutual exclusion a good abstraction?

Correctness conditions

- Safety
 - Only one thread in the critical region
- Liveness
 - Some thread that enters the entry section eventually enters the critical region
 - Even if other thread takes forever in non-critical region
- Bounded waiting
 - A thread that enters the entry section enters the critical section within some bounded number of operations.
 - If a thread i is in entry section, then there is a bound on the number of times that other threads are allowed to enter the critical section before thread i's request is granted

Theorem: Every property is a combination of a safety property and a liveness property.

-Bowen Alpern & Fred Schneider [1985] https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

Mutex, spinlock, etc. are ways to implement these

Scalability + Correctness

Consider a hash-table

h

Consider a hash-table

ht.del();

24

Pessimistic concurrency control: coarse locks

Pessimistic concurrency control: coarse locks

Pessimistic concurrency control: fine locks

thread T1	thread T2
<pre>figure-out-locks();</pre>	<pre>figure-out-locks();</pre>
<pre>lock-them-inorder();</pre>	<pre>lock-them-inorder();</pre>
ht.add(🛑);	ht.add(🛑);

if(ht.contains())
 ht.del();
unlock-locks();

if(ht.contains(___))
 ht.del(___);
unlock-locks();

Fine-grain lock: Non-conflicting parallel High Complexity -- High Performance

Why Locks are Hard

- Coarse-grain locks
 - Simple to develop
 - Easy to avoid deadlock
 - Few data races
 - Limited concurrency

```
// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
  LOCK(s);
  LOCK(d);
  tmp = s.remove(key);
  d.insert(key, tmp);
  UNLOCK(d);
  UNLOCK(s);
}
```

- Fine-grain locks
 - Greater concurrency
 - Greater code complexity
 - Potential deadlocks
 - Not composable
 - Potential data races
 - Which lock to lock?

Thread 0	Thread 1
<pre>move(a, b, key1);</pre>	
	<pre>move(b, a, key2);</pre>

DEADLOCK!