
Scalability + Correctness
Chris Rossbach + Calvin Lin

CS380p

Scalability + Correctness 1CS380P

Outline for Today

•Concurrency & Parallelism Basics
• Decomposition redux
• Measuring Parallel Performance
• Performance Tradeoffs
• Correctness and Performance

Acknowledgments: some materials in this lecture borrowed from or built on materials from:

• Emmett Witchel, who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger

• Mark Silberstein, who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta

Scalability + Correctness 2CS380P

Review: Game of Life

•Given a 2D Grid:

Scalability + Correctness 3CS380P

Domain decomposition

Each CPU gets part of the input

CPU 0

CPU 1

• What would a functional decomposition look like?
• Issues/obstacles with this domain decomposition?

Scalability + Correctness 4CS380P

Functional decomposition

Each CPU gets part of the per-cell work

Scalability + Correctness 5CS380P

CPU 0:
tmpi,j = F(vt-1(neighbors))

CPU 1:
vt(i,j) = tmpi,j

Domain decomposition

•Each CPU gets part of the input

CPU 0

CPU 1

Issues?
• Accessing Data

• Can we access v(i+1, j) from CPU 0
• …as in a “normal” serial program?
• Shared memory? Distributed?

• Time to access v(i+1,j) == Time to access v(i-1,j) ?
• Scalability vs Latency

• Control
• Can we assign one vertex per CPU?
• Can we assign one vertex per process/logical task?
• Task Management Overhead

• Load Balance
• Correctness

• order of reads and writes is non-deterministic
• synchronization is required to enforce the order
• locks, semaphores, barriers, conditionals….

Scalability + Correctness 6CS380P

Load Balancing

• Slowest task determines performance

Scalability + Correctness 7CS380P

Task 0
Task 1

Task 2
Task 3

wait
work

time

Granularity
• Fine-grain parallelism

• G is small
• Good load balancing
• Potentially high overhead
• Hard to get correct

• Coarse-grain parallelism
• G is large
• Load balancing is tough
• Low overhead
• Easier to get correct

Scalability + Correctness 8CS380P

Performance: Amdahl’s law

Scalability + Correctness 9CS380P

Amdahl’s law

What makes something “serial” vs. parallelizable?

Serial Parallelizable

X/2 seconds X/2 seconds

my task

X seconds

Scalability + Correctness 10CS380P

Amdahl’s law

Serial Parallelizable
Parallelizable

Parallelizable

X/2 seconds X/2 seconds

End to end time: X seconds

X/4 seconds

End to end time: (X/2 + X/4) = (3/4)X seconds

What is the “speedup” in this case?

2 CPUs

Scalability + Correctness 11CS380P

Speedup exercise

Serial Parallelizable

X/4 seconds
3 * X/4 seconds

End to end time: X seconds

What is the “speedup” in this case?

8 CPUs

P P P P P P P P

P

P

P

P

P

P

P

P

(3X/4
)/8
secon
ds

Scalability + Correctness 12CS380P

Amdahl Action Zone

Scalability + Correctness 13CS380P

Amdahl Action Zone

Scalability + Correctness 14CS380P

Percentage of parallel work

Amdahl Action Zone

Scalability + Correctness 15CS380P

Percentage of parallel work

Strong Scaling vs Weak Scaling

Amdahl vs. Gustafson

• Strong scaling: Speedup(N) calculated with total work fixed

• Solve same fixed size problem, #CPUs grows

• Fixed parallel portion 🡪 speedup stops increasing

• Weak scaling: Speedup(N) calculated with work-per-CPU fixed

• Add more CPUs 🡪 Add more work 🡪 granularity stays fixed

• Problem size grows: solve larger problems

• Consequence: speedup upper bound much greater

Scalability + Correctness 16CS380P

Super-linear speedup

•Possible due to cache

•But usually just poor methodology

•Baseline: *best* serial algorithm

•Example:

Scalability + Correctness 17CS380P

Concurrency and Correctness
If two threads execute this program concurrently,

how many different final values of X are there?

Initially, X == 0.

void increment() {
 int temp = X;
 temp = temp + 1;
 X = temp;
}

void increment() {
 int temp = X;
 temp = temp + 1;
 X = temp;
}

Thread 1 Thread 2

Answer:
A. 0
B. 1
C. 2
D. More than 2

Scalability + Correctness 18CS380P

Schedules/Interleavings
Model of concurrent execution

• Interleave statements from each thread into a single thread

• If any interleaving yields incorrect results, synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;

Thread 1 Thread 2
tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!

Scalability + Correctness 19CS380P

Locks fix this with Mutual Exclusion

Mutual exclusion ensures only safe interleavings
• But it limits concurrency, and hence scalability/performance

void increment() {
 lock.acquire();
 int temp = X;
 temp = temp + 1;
 X = temp;
 lock.release();
}

Is mutual exclusion a good abstraction?
Scalability + Correctness 20CS380P

Correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region

• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.

• If a thread i is in entry section, then there is a bound on the number of times that
other threads are allowed to enter the critical section before thread i’s request is
granted

while(1) {
 Entry section
 Critical section
 Exit section
 Non-critical section
}

Mutex, spinlock, etc.
are ways to implement
these

Theorem: Every property is a
combination of a safety property and a
liveness property.

-Bowen Alpern & Fred Schneider [1985]
https://www.cs.cornell.edu/fbs/publications/defliveness.pdf

Scalability + Correctness 21CS380P

Let’s talk concurrency control

Consider a hash-table

Scalability + Correctness 22CS380P

Let’s talk concurrency control

Consider a hash-table

ht.add();

if(ht.contains())

 ht.del();

thread T1

Scalability + Correctness 23CS380P

Let’s talk concurrency control

Consider a hash-table

ht.add();

if(ht.contains())

 ht.del();

thread T1

ht.add();

if(ht.contains())

 ht.del();

thread T2

Scalability + Correctness 24CS380P

Let’s talk concurrency control

Consider a hash-table

ht.add();

if(ht.contains())

 ht.del();

thread T1

ht.add();

if(ht.contains())

 ht.del();

thread T2

Scalability + Correctness 25CS380P

Pessimistic concurrency control: coarse locks

Consider a hash-table ht.lock();

ht.add();

if(ht.contains())

 ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())

 ht.del();

ht.unlock();

thread T2

lock

Scalability + Correctness 26CS380P

Pessimistic concurrency control: coarse locks

Consider a hash-table ht.lock();

ht.add();

if(ht.contains())

 ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())

 ht.del();

ht.unlock();

thread T2

lock

Coarse lock:
Non-conflicting ops serialized

Low Complexity -- Low Performance
Scalability + Correctness 27CS380P

Pessimistic concurrency control: fine locks

Consider a hash-table figure-out-locks();

lock-them-inorder();

ht.add();

if(ht.contains())

 ht.del();

unlock-locks();

thread T1
figure-out-locks();

lock-them-inorder();

ht.add();

if(ht.contains())

 ht.del();

unlock-locks();

thread T2

lock

Fine-grain lock:
Non-conflicting parallel

High Complexity -- High Performance
Scalability + Correctness 28CS380P

• Fine-grain locks
• Greater concurrency

• Greater code complexity

• Potential deadlocks
• Not composable

• Potential data races
• Which lock to lock?

Why Locks are Hard

// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
 LOCK(s);
 LOCK(d);
 tmp = s.remove(key);
 d.insert(key, tmp);
 UNLOCK(d);
 UNLOCK(s);
}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0 Thread 1

• Coarse-grain locks
• Simple to develop

• Easy to avoid deadlock

• Few data races

• Limited concurrency

Scalability + Correctness 29CS380P

