Parallel Systems
Programming Models:
Processes + Threads

Chris Rossbach + Calvin Lin
CS380p

Outline for Today

* Parallel programming models
* Processes
e Threads
* Fibers
e pthreads

Acknowledgments: some materials in this lecture borrowed from or built on materials from:
* Emmett Witchel, who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger

* Mark Silberstein, who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta

Programming and Machines: a mental model

Source code

a
b

"hello";
a+ Ill";

FFFFFFFF

C0400000

1GB

C0000000_,

3GB

CS380P

Compiler

1

program.exe

instructionl
instruction?
instruction3
instructiond

ustack (1)

free

used

struct machine_state{
uint64 pc;
uint64 Registers[16];
uint64 cr([6]; // control registers crO-cr4 and EFER on AMD

} machine;

while(1) {
fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

}

void execute_instruction(i) {

switch(opcode) {
case add_rr:
machine.Registers[i.dst] += machine.Registers[i.src];

break;

Processes + Threads

Parallel Machines: a mental model

program.exe
Source code
Compiler instructionl | instructienl instruetionl | instructionl
a = "hello": r"""""1 ?nstruc:%on2 ?nstruc:?onﬁ ?nstruc:?onz ?nstruc:?onﬁ
b = . instruction3 instruction3 instruction3 instruction3
=a+ = | I instructiond instructiond instruectiong instructiond

struct machine_stated{
uint64 pc;
uint64 Registers[16];
uint6é4 cr(6]; // control registers crO-cr4 and EFER on AMD

struct machine_stateq{
uinté4 pc;
uint64 Registers[16];
uint64 cr(6]; // control registers crO-cr4 and EFER on AMD

} machine;

while(1) {
fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

} machine;

while(1) {
fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

} }

void execute_instruction(i) { void execute_instruction(i) {
switch(opcode) { switch(opcode) {
case add_rr: case add_rr:
machine .Registers[i.dst] += machine.Registers[i.src]; machine.Registers[i.dst] += machine.Registers[i.src];
break; break;

CS380P Processes + Threads

Programming Models for Concurrency

sssssssssssssssssssssss

Programming Models for Concurrency

* Concrete model:
e CPU(s) execute instructions sequentially

CPU CPU CPU CPU

CS380P Processes + Threads [Input H Memory H[Output]

Programming Models for Concurrency

* Concrete model:
e CPU(s) execute instructions sequentially

* Dimensions:
* How to specify computation
* How to specify communication
* How to specify coordination/control transfer

CS380P Processes + Threads

Programming Models for Concurrency

* Concrete model:
e CPU(s) execute instructions sequentially

* Dimensions:
* How to specify computation
* How to specify communication
* How to specify coordination/control transfer

* Techniques/primitives
* Threads/Processes
* Message passing vs shared memory
* Preemption vs Non-preemption

CS380P Processes + Threads

Programming Models for Concurrency

* Concrete model:
e CPU(s) execute instructions sequentially

* Dimensions:
* How to specify computation
* How to specify communication
* How to specify coordination/control transfer

* Techniques/primitives
* Threads/Processes

* Message passing vs shared memory
* Preemption vs Non-preemption

* Dimensions/techniques not always orthogonal

CS380P Processes + Threads

Processes and Threads

e Abstractions

* Unit of Allocation/Containment

instruectionl
instruction
instruction3
instructiond

instructionl
instruction
instruction3
instructiond

instruectionl
instruction
instruction3
instructiond

instructionl
instruction
instruction3
instructiond

e State

* Where is shared state?
* How is it accessed?
* |sit mutable?

1366 pins i H

HHIW‘

CS380P Processes + Threads ~ Videocard

Processes
The Process Model

One program counter

N Four program counters
A Process
E switch w D P . o D
N & @ @ -
= e — — g C e
o o
c A # B Y c 4 DY B — - Bl —
d
[y D Time —»> Time —»
(a) (b) (€) (d)

Multiprogramming of four programs

Conceptual model of 4 independent, sequential processes
Uniprocessor: Only one program active at any instant
Multiprocessor: two run in parallel per quantum

CS380P Processes + Threads

Threads
The Thread Model

Process 1 Process 1 Process 1 Process
\\ | | i
User y
space
Thread Thread
Kernel
space Kernel Kernel

(a)

(a) Three processes each with one thread
(b) One process with three threads

CS380P Processes + Threads

(b)

The Thread Model

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers

Accounting information

CS380P Processes + Threads

The Thread Model

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers

Accounting information

* [tems shared by all threads in a process

CS380P Processes + Threads

Thread 2

Each thread has S \ Threag s
its own stack)
H

|

The Thread Model Rl .

Thread 1's — ﬁ
s

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers

Accounting information

* [tems shared by all threads in a process
* |[tems private to each thread

CS380P Processes + Threads 9

The Thread Model

Each thread has

Thread 2

Thread 1 \
LY

Thread 3

/

its own stack

Thread 1's —

2
]

s
:

é
H

|

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

* [tems shared by all threads in a process
* |[tems private to each thread

* Decouples memory and control abstractions!

CS380P Processes + Threads

— Thread 3's stack

Thread 2

Each thread has S \ Threag s
its own stack .

|

The Thread Model o L LSS T

Kernel

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

* |tems shared by all threads in a process

* |tems private to each thread

* Decouples memory and control abstractions!
» What is the advantage of that?

Processes + Threads 9

The Thread Model

Each thread has
its own stack

Thread 1's
stack

Per process items
Address space

Pending alarms
Signals and signal handlers
Accounting information

Per thread items
Program counter

Global variables Registers
Open files Stack
Child processes State

Thread 2

Thread 1 \
LY

/

Thread 3

SRR
i H B

|_—Process

— Thread 3's stack

Kernel

* [tems shared by all threads in a process

* |tems private to each thread

* Decouples memory and control abstractions
» What is the advantage of that?

® Processes + Threads

Process management Memory management File management
Pointer to text segment Root directory
[Pointer to data segment Working directory
Program status word Pointer to stack segment | File descriptors
(User ID
[Process state] Group ID
Process ID
Parent process
Process group
Signals
Time when process started
CPU time used
Children’s CPU time
Time of next alarm
9

The Thread Model

Each thread has
its own stack

Thread 1's
stack

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

Thread 2

Thread 1 \ Thread 3
LY

/

E
—h

SR
X

|_—Process

— Thread 3's stack

Kernel

Process management

[)

* [tems shared by all threads in a process
* |[tems private to each thread

* Decouples memory and control abstractio

» What is the advantage of that?

Processes + Threads

Program status word

Process state

—_—
—

Process ID
Parent process
Process group

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

How can we share mutable state across threads?

How can we share mutable state across processes?

Using threads

Ex. How might we use threads in a word processor program?

Quick Access Toolbar Ribbon Tabs Title Bar

CS380P Processes + Threads

10

Using threads

Ex. How might we use threads in a word processor program?

Quick Access Toolbar Ribbon

Poge e Beteresces

Tabs

Wadngs

Window Controls

PP v

e om W ket

181 Wersro Ingu Mied Suse I

CS380P

Keyboard

Four score and ssven
years ago, our fathers
brought forth upon this
cantinent a new nation:
conceived in liberty,
and dedicated 1o the
propesition that all
men are created equal

Now we ar engaged
in a great civil war
testing whether thar

nation, or any nation
sa conceived and so0
dedicated, can long
endure. We are met on
a great battlefield of
that war.

We have come to
dedicats a portion of
that field as a final
resting place for thoss
who here gave their

lives that this nation
might live. It is
altogether fitting and
proper that we shovld
o this.

But, ina largsrsense,
we cannet dedicate, we
camnat camsecrate we
cannat hallow this
gwound. The bmve
men, living and dead,

wha struggled here
have cansecrated it, far
above omr poor pawer
to add or detract. The
world will little note,
mor long temember,
what we say here, but
it can never forget
what they did here

1t is for ws the living,
mther, to be dedicated

here to the unfinished
work which they wha
fought her hive ths
far 50 nably advanced
1t is mther for ve to be
here dedicated 1o the
geat task remaining
before s, that from
these honored dead we
take increased devotion
o that cause for which

they gave the last full
measure of devation,
that we here highly
rasalve that these dead
shall net have died in
vain that this natian,
under Ged, shall have
a nzw birth of freedom
and that government of
the people by the
peaple, for the peaple

~

Kernel

Processes + Threads

D

IS

k

10

Thread Usage

Web server process

while (TRUE) { while (TRUE) {
- get_next_request(&buf); wait_for_work(&buf)
, Y handoff_work(&buf); look _for_page_in_cache(&buf, &page);
Dispatcher threza } if (page_not_in_cache(&page)

read_page_from_disk(&buf, &page);

2;‘ l Worker thread User return_page(&page);

> space }
? E g (a) (b)
Web page cache

Kernel } i (a) Dispatcher thread
(b) Worker thread

Network
connection

A multithreaded Web server

CS380P Processes + Threads 11

Where to Implement Threads:

Where to Implement Threads:

User Space Kernel Space

CS380P Processes + Threads

12

Where to Implement Threads:

User Space
Process Thread
r \\ /
User
space<
=
o
Kernel
space Kernel
X
/ \
Run-time Thread Process
system table table

A user-level threads package
CS380P

Processes + Threads

Kernel Space

12

Where to Implement Threads:

User Space Kernel Space
Process Thread Proce\ss Th}aad
N \
User
space <
=
_
ferne Kernel
space Kernel " / =

/ \ P / Th| d
Run-time Thread Process rocess rl:,ala
system table table table table

A user-level threads package A threads package managed by the kernel

Where to Implement Threads:

User Space Kernel Space
Process Thread Proce\ss Th}aad

i \
Usat What are some tradeoffs

space between user/kernel support
for threads?

—

Kernel T
space Kernel \ / *

/ \ P / Th| d
Run-time Thread Process rocess rl::ala
system table table table table

A user-level threads package A threads package managed by the kernel

Execution Context Management

“Task” == “Flow of Control”
“Stack” == Task State

Execution Context Management

“Task” == “Flow of Control”
“Stack” == Task State

Task Management

Execution Context Management

“Task” == “Flow of Control”
“Stack” == Task State

Task Management

* Preemptive
* Interleave on uniprocessor
e Overlap on multiprocessor

Execution Context Management

“Task” == “Flow of Control”
“Stack” == Task State

Task Management

* Preemptive
* Interleave on uniprocessor
e Overlap on multiprocessor

 Serial
* One at a time, no conflict

Execution Context Management

“Task” == “Flow of Control”
“Stack” == Task State

Task Management

* Preemptive
* Interleave on uniprocessor
e Overlap on multiprocessor

 Serial
* One at a time, no conflict

* Cooperative
* Yields at well-defined points

e E.g. wait for long-running
/O

Execution Context Management

“Task” == “Flow of Control”
“Stack” == Task State

Task Management

* Preemptive
* Interleave on uniprocessor
e Overlap on multiprocessor

 Serial
* One at a time, no conflict

* Cooperative
* Yields at well-defined points

e E.g. wait for long-running
/O

Stack Management

* Manual
* Inherent in Cooperative
e Changing at quiescent points

e Automatic
* Inherent in pre-emptive

* Downside: Hidden concurrency
assumptions

Fibers

CS380P

Processes + Threads

14

Fibers

* Cooperative tasks

* most desirable when reasoning about
concurrency

* usually associated with event-driven
programming

Fibers

* Cooperative tasks

* most desirable when reasoning about
concurrency

* usually associated with event-driven
programming
* Automatic stack management

* most desirable when reading/maintaining code

» Usually associated with threaded (or serial)
programming

Fibers

* Cooperative tasks

* most desirable when reasoning about
concurrency

* usually associated with event-driven
programming
* Automatic stack management

* most desirable when reading/maintaining code

e Usually associated with threaded (or serial)
programming

Fibers: cooperative threading

with automatic stack
CS380P management

14

Threads vs Fibers

Threads vs Fibers

* Like threads, just an abstraction for flow of control

Threads vs Fibers

* Like threads, just an abstraction for flow of control

* Lighter weight than threads
* In Windows, just a stack, subset of arch. registers, non-preemptive
» stack management/impl has interplay with exceptions
* Can be completely exception safe

Threads vs Fibers

* Like threads, just an abstraction for flow of control

* Lighter weight than threads

* In Windows, just a stack, subset of arch. registers, non-preemptive
» stack management/impl has interplay with exceptions
* Can be completely exception safe

* Takeaway: diversity of abstractions/containers for execution flows

x86 64 Architectural Registers

ZMMO [YMMO ZMM1 [YMM1 sT(0)[MMo || sT(1)[MM1 || [[Er9AXEAX|RAX||C=] rev] reo| Ra|fE=Rizw[r120R12| | CRO || CR4
ZMM2 | YMM2 [XMM2 || ZMM3 [YMM3 [XMM3 || sT(2)[MM2 || ST(3)[MM3 | RBXRBD| R9ru=u|R13 CR1 || CR5
ZMM4 [YMM4 XMM4 J| ZMM5 [YMM5 [XMM5] [5T(4)[MM4][ST(5)[MM5 | RCX|[Esewuoor10][ETweoR 14] [CR2 || CR6
ZMM6 [YMM6 ZMM7 [YMM7 ST(6)[MM6 || ST(7)[MM7 | [EEDXEDXR DX|[ErkuwfruclR11|fE=RewrscR15| | CR3 || CR7
ZMM8 | YMM8 [XMM8 || ZMM9 | YMM9 [XMM3 || [ErIBPERPRBP| [2 DIEDI|RDI MEIF‘l RIP| | CR3 || CR8
ZMM10 [YMM10 XMM10]| zZMM11 [YMM11 cw [[Fr_ir[Fr_pp|Fr_cs| [EISIEsRsI| [E5PESPRSP MSW || CR9
ZMM12 [YMM12 XMM1Z]| ZMM13 [YMM13 XMM13]| | SwW CR10
zvvia_[vviapomell zwis [vwispomas] [Tw | B e e ey LCRLL
ZMM16|| ZMM17|| ZMM18|| ZMM19|| ZMM20|| ZMM21|| ZMM22|| ZMM23 FP_DS CR12
ZMM24|(ZMM25(| ZMM26(] ZMM27| ZMM28|| ZMM29|[ZMM30|| ZMM31| |FP_OPC FP_DP FP_IP CS SS DS GDTR IDTR DRO DR6 CR13
ES || F5 || GS TR || LDTR | | DR1 || DR7 | |CR14
[l =RFLAGS DR2 || DR8 | | CR15 [MXCSR
DR3 || DR9
DR4 || DR10||DR12 | DR14
DR5 |[DR11|[DR13 | DR15

* Register map diagram courtesy of: By Immae - Own work,

CS380P

C BY-SA 3

rocesses + I

Qf el;t(‘ﬂ)s://commons. wikimedia.org/w/index.php?curid=32745525 r

/*
switch_to(x,v) should switch tasks from x to y.

This could still be optimired:
- fold all the options into a flag word and test it with a single test.
- could test fs/gs bitsliced

® % % % %

Linux x86_64 context
switch excerpt

*
* Kprobes not supported here. Set the probe on schedule in.
* Function graph tracer not supported too.
=

__visible __notrace_funcgraph struct task_str

__switch_to(struct task_struct *prev_p, struct task_struct *next_p)

{

Complete fiber

context switch on
Unix and Windows

struct thread_struct *prev = Eprev_p-=thread;

struct thread_struct *next = Enext_p-=thread;

struct fpu *prev_fpu = &prev-=fpu;

struct fpu *next_fpu = &next-=fpu:

int cpu = smp_processor_id();

struct tss_struct “tss = Aper_cpu(cpu_tss_rw, cpul; * The AMDE4 architecture provj
* 128-bit SSE registers,

s 16 general 64-bit registers together with 16
erlapping with 8 legacy 8@-bit x87 floating point

WARN_ON_ONCE(IS_EMABLED(CONFIG_DEBUG_ENTRY) && * registers

ZMMO i S) (= 1k ST(0)|MMO || ST(1)|MM1. CRO || CR4

(zvm2] switeh-fpu_prapare(prev_fps. cou: sT(2)[MM2 || sT(3)[MM3 - o e e e cR1l || crRs

= e
J* We must save %fs and %gs before load TLS() becouse o Result register

ZMM4 [:%fs and %gs may be cleared by load TLS(). ST(4) |MM4 ST(S) |MM5 : o Mast be preserves CRZ CRG

= * (e.g. xen_load tis()) rex Fourth argument First argument
ZMM6 =/) ST(G) MM6 ST(7) MM7 * rdx Third argument Second argument CR3 CR7
L save_fsgs(prev_p); .
—— * rsp Stack pointer, must be preserved
ZMMB [VA * rbp Frame pointer, must be preserved CR3 CRB
s— * load TLS before restoring any segments so that segment loads *® psi Second argument Must be preserved
[* reference the correct GOT entries. * rdi First argument Must be preserved
zMmio [Lt CW |[FP_IP||FP_DP|FP_C - MSW || CR9
[- : ’ * ro Sixth argument Fourth argument
ZMM12 SW i ¢ ¢ CR10
L i* * rle-ril Volatile
T * Leave lazy mode, flushing any hypercalls made here. This] . B-bit reqgiste|* ri1z-r1s Must b d register
ZMM14 [* nust be done after loading TLS entries in the GDT but before TW 9 . :mm@iﬁ V;;tijepresewe 9 CRll
—— * loading segments that might reference them, and and it must — . 16-bit regist‘ register
* be done before fpu restore(), so the TS bit is up to - Hmme =15 volatile Must be preserve
ZMM16| ZMM s *P_DS ¢ fpesr Mon volmtile CR12
* * mxcsr Non volatile
ZMM24|| ZMM arch_end_context_switch(next_p); ‘P_OPC FP DP|FP IP [. DR6 CR13
/* Switch DS and ES. * Thus for the two architectures we get slightly different lists of registers
= * to preserve. DR7 CR 14
* Reading them enly returns the selectors, but writing them (if *
* nonzero) loads the full descriptor from the GDT or LDT. The . - " .
* 10T for next is loaded in switch_mm, and the GDT is loaded " Registers “ouned” by caller: DRB CR]-S MXCSR
= ghove. * Unix: rbx, rsp, rbp, r12-ri5, mxcsr (control bits), =87 CW
* * Windows: rbx, rsp, rbp, rsi, rdi, ril2-ri5, xmm&-15 DRg
* we therefore need to write new values to the segment *
* registers on every context switch unless both the new and old
* values are zero. DR4 || DR10 ||DR12 ([DR14
*
* Note that we don't need to do anything for CS and 55, as
* those are saved and restored as part of pt_regs. ' DRS DR]- 1 DR13 DR 1 5
-
"/

savesegment{es, prev-=es);
if (unlikely(next--es | prev-=es))
loadsegment(es, next--es);

savesegment(ds, prev--ds);
if (unlikelv(next--ds | prev-=ds))
* Reg st et 'wn work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32745525

CS38OP load_seg_legacy(prev-=fsindex, prev-=fshase, rocesses + T

next-=fsindex, next-=fshase, F§);
load_seg_legacy(prev-=gsindex, prev-=gshase,
next-=gsindex, next-=gsbase. GS):

x86 64 Registers and Threads

ZMMO YMMO | XMMO [ZMM1 YMM1 MM1 ST(0)(MMO | ST(1)|MM1 [afaHAXIEAX | RAX||[=] naw| reo| R8|[f=jr12wr120R12| | CRO || CR4

ZMM2 | YMM2 [XMM2 || ZMM3 [YMM3 [XMM3 || sT(2)[MM2 || ST(3)[MM3 | RBXRBD| R9ru=u|R13 CR1 || CR5

ZMM4 [YMM4 XMM4 J| ZMM5 [YMM5 [XMM5] [5T(4)[MM4][ST(5)[MM5 | RCX|[Esewuoor10][ETweoR 14] [CR2 || CR6

ZMM6 [YMM6 ZMM7 [YMM7 ST(6)[MM6 || ST(7)[MM7 | [EEDXEDXR DX|[ErkuwfruclR11|fE=RewrscR15| | CR3 || CR7

ZMM8 | YMM8 [XMM8 || ZMM9 | YMM9 [XMM3 || [ErIBPERPRBP| [2 DIEDI|RDI MEIF‘l RIP| | CR3 || CR8

ZMM10 [YMM10 XMM10]| zZMM11 [YMM11 cw [[Fr_ir[Fr_pp|Fr_cs| [EISIEsRsI| [E5PESPRSP MSW || CR9

ZMM12 [YMM12 XMM1Z]| ZMM13 [YMM13 SW CR10
XMm14] XMM15]|

ZMM14 |YMM14 XMM14]| ZMM15 |YMM15 [XMM15 ™ B 8-bit register [32-bit register [} 80-bit register [256-bit register CR11

B 16-bit register [64-bit register [J] 128-bit register] 512-bit register

ZMM16| ZMM17(| ZMM18|[ZMM19|| ZMM20(ZMM21|[ZMM22| zMM23[(FP_DS CR12
ZMM24| ZMM25((ZMM26|| ZMM27|| ZMM28|| ZMM29|| ZMM30(| ZMM31| FP_OPC|FP_DP|(FP_IP CS || SS || DS GDTR || IDTR DRO || DR6 CR13
ES FS || G5 TR LDTR DR1 | DR7 | |[CR14
EFLAGSRFLAGS DR2 || DR8 | [CR15 [MXCSR
DR3 || DR9

DR4 || DR10 |DR12 (|DR14
DR5 ||DR11 || DR13 || DR15

. . . : i :) [. . et i
ceog Olgeglster map diagram courtesy of: By Immae - Own work, rg C%¥5g§4+3TF1),regg£s.//commons. wikimedia.org/w/index.php?curid=32745525 18

Xx86 64 Registers and Threads
7/

_

DR4 || DR10 |DR12 (|DR14
DR5 ||DR11 || DR13 || DR15

. ' 1 . - : . iki 1 i Pcurid=
ceog Olé’eg/ster map diagram courtesy of: By Immae - Own work, rgC%ZSé’§§4+3TQfegg§os.//commons.W/k/med/a.org/w//ndex.php.curld 32745525 18

x86 64 Registers and Fibers

ZMMO YMMO | XMMO [ZMM1 YMM1 MM1 ST(0)(MMO | ST(1)|MM1 [afaHAXIEAX | RAX||[=] naw| reo| R8|[f=jr12wr120R12| | CRO || CR4

ZMM2 | YMM2 [XMM2 || ZMM3 [YMM3 [XMM3 || sT(2)[MM2 || ST(3)[MM3 | RBXRBD| R9ru=u|R13 CR1 || CR5

ZMM4 [YMM4 XMM4 J| ZMM5 [YMM5 [XMM5] [5T(4)[MM4][ST(5)[MM5 | RCX|[Esewuoor10][ETweoR 14] [CR2 || CR6

ZMM6 [YMM6 ZMM7 [YMM7 ST(6)[MM6 || ST(7)[MM7 | [EEDXEDXR DX|[ErkuwfruclR11|fE=RewrscR15| | CR3 || CR7

ZMM8 | YMM8 [XMM8 || ZMM9 | YMM9 [XMM3 || [ErIBPERPRBP| [2 DIEDI|RDI MEIF‘l RIP| | CR3 || CR8

ZMM10 [YMM10 XMM10]| zZMM11 [YMM11 cw [[Fr_ir[Fr_pp|Fr_cs| [EISIEsRsI| [E5PESPRSP MSW || CR9

ZMM12 [YMM12 XMM1Z]| ZMM13 [YMM13 SW CR10
XMm14] XMM15]|

ZMM14 |YMM14 XMM14]| ZMM15 |YMM15 [XMM15 ™ B 8-bit register [32-bit register [} 80-bit register [256-bit register CR11

B 16-bit register [64-bit register [J] 128-bit register] 512-bit register

ZMM16| ZMM17(| ZMM18|[ZMM19|| ZMM20(ZMM21|[ZMM22| zMM23[(FP_DS CR12
ZMM24| ZMM25((ZMM26|| ZMM27|| ZMM28|| ZMM29|| ZMM30(| ZMM31| FP_OPC|FP_DP|(FP_IP CS || SS || DS GDTR || IDTR DRO || DR6 CR13
ES FS || G5 TR LDTR DR1 | DR7 | |[CR14
EFLAGSRFLAGS DR2 || DR8 | [CR15 [MXCSR
DR3 || DR9

DR4 || DR10 |DR12 (|DR14
DR5 ||DR11 || DR13 || DR15

. . . : i :) [. . et i
ceog Olgeglster map diagram courtesy of: By Immae - Own work, rg C%¥5g§4+3TQ,regg£s.//commons. wikimedia.org/w/index.php?curid=32745525 1

x86 64 Registers and Fibers

ZMMO [YMMO ZMM1 YMM1 sT(0)[MMO || ST(1)[M 1ﬂ |CRO CR4
ZMM2 | YMM2 [XMM2 || ZMM3 [YMM3 [XMM3 || ST(2)[MM2 || ST(3)[MM3 H L | CR1 || CR5
ZMM4 [YMM4 [XMMa]| ZMM5 [YMM5_[XMM5]| [5T(4)[MM4][ST(5)[MM5 | = R1 | crR2 |[cre
ZMM6 [YMM6 ZMM7 YMM7) [sT(6)[MM6 || ST(7) MM7]]mwmmh | CR3 || CR7
ZMM8 [YMMB ZMM9 [YMMO9 | IP[EIP[RIP| | CR3 | CR8
ZMM10 [YMM10 ZMM11 [YMM11 CW |[|FP_IP|[FP_DP FP_CS| F MSW || CR9
ZMM12 [YMM12 ZMM13 [YMM13 SW CR10
ZMM14_[YMM14 zwvis [WMIS| [T | e e oot v BB or2tt ey LCRLL
ZMM16|| ZMM17|| ZMM18|| ZMM19|| ZMM20|| ZMM21|| ZMM22|| ZMM23 FP_DS CR12
ZMM24|(ZMM25(| ZMM26(] ZMM27| ZMM28|| ZMM29|[ZMM30|| ZMM31| |FP_OPC FP_DP FP_IP CS SS DS GDTR IDTR DRO DR6 CR13
ES || FS || GS TR || LDTR | | DR1 || DR7 | |CR14
[l RFLAGS DR2 || DR8 | | CR15 [MXCSR
DR3 | DR9
DR4 || DR10||DR12 || DR14
DR5 || DR11|[DR13 || DR15

. iki 1 i Pcurid=
ceog Oirgeg/ster map diagram courtesy of: By Immae - Own work, Iggc%)s/sg'sqﬁTRr tggs.//commons.W/k/medla.org/w//ndex.php.curld 32745525 1

x86 64 Registers and Fibers

ZMMO [YMMO ZMM1 YMM1 sT(0)[MMO || ST(1)[M 1ﬂ |CRO CR4
ZMM2 | YMM2 [XMM2 || ZMM3 [YMM3 [XMM3 || ST(2)[MM2 || ST(3)[MM3 H L | CR1 || CR5
ZMM4 [YMM4 [XMMa]| ZMM5 [YMM5_[XMM5]| [5T(4)[MM4][ST(5)[MM5 | = R1 | crR2 |[cre
ZMM6 [YMM6 ZMM7 [YMM7) [sT(6)[MM6 || ST(7) MM7]]m«rr«unm:k | CR3 || CR7
ZMM8 [YMMB ZMM9 [YMMO9 | IP[EIP[RIP| | CR3 | CR8
ZMM10 [YMM10 ZMM11 [YMM11 CW |[|FP_IP|[FP_DP FP_CS| F MSW || CR9
ZMM12 [YMM12 ZMM13 [YMM13 SW CR10
zis [mal Jawis Teomsl J[w] Remees Roviens Qe REeeny [
ZMM16|| ZMM17|| ZMM18|| ZMM19|| ZMM20|| ZMM21|| ZMM22|| ZMM23 FP_DS CR12
ZMM24| ZMM25((ZMM26|| ZMM27|| ZMM28|| ZMM29|| ZMM30(| ZMM31| FP_OPC|FP_DP|(FP_IP CS || SS || DS GDTR || IDTR DRO || DR6 CR13
ES || FS || GS TR || LDTR | | DR1 || DR7 | |CR14
[l RFLAGS DR2 || DR8 | | CR15 [MXCSR
The takeaway: DR3 || DR9
* Many abstractions for flows of control DR4 || DR10 | DR12 | DR14
 Different tradeoffs in overhead, flexibility DRS ||DRI1DRI3JDR15

* Matters for concurrency: exercised heavily

) [. . et i
ceog O,geglster map diagram courtesy of: By Immae - Own work, g%cBeZSg§4+3TQr t(‘}z)s.//commons.W/k/medla.org/w//ndex.php.curld 32745525 1

Pthreads

* POSIX standard thread model,
 Specifies the APl and call semantics.
* Popular — most thread libraries are Pthreads-compatible

Preliminaries

* Include pthread.h in the main file

* Compile program with —1pthread
* gcc -0 test test.c —-lpthread
* may not report compilation errors otherwise but calls will fail

e Good idea to check return values on common functions

Thread creation

* Types:pthread t —type of athread

* Some calls:

int pthread create(pthread t *thread,
const pthread attr t *attr,
void * (*start routine) (void *),
void *argqg);

int pthread join(pthread t thread, void **status);

int pthread detach();

void pthread exit();

No explicit parent/child model, except main thread holds process info
Callpthread exit in main, don’tjust fall through;

Don’t always need pthread join
e status = exitvalue returned by joinable thread
Detached threads are those which cannot be joined (can also set this at creation)

Creating multiple threads

#include <stdio.h>
#include <pthread.h>
#define NUM THREADS 4

void *hello (void *arqg) {
printf (*Hello Thread\n”) ;

}

main () {
pthread t tid[NUM THREADS] ;
for (int i = 0; 1 < NUM THREADS; i-++)
pthread create(&tid[i], NULL, hello, NULL) ;

for (int i = 0; 1 < NUM THREADS; i++)
pthread_juin(tid[i], NULL) ;

CS380P Processes + Threads 23

Can you find the bug here?

What is printed for myNum?

void *threadFunc (void *pArqg) {

int* p = (int*)pArg;

int myNum = *p;

printf(“Thread number %d\n”, myNum) ;
}

// from main () :
for (int 1 = 0; i < numThreads; i++) {

pthread create(&tid[i], NULL, threadFunc, &i);
}

CS380P Processes + Threads

24

Pthread Mutexes

* Type:pthread mutex t

int pthread mutex init (pthread mutex t *mutex,
const pthread mutexattr t *attr);
int pthread mutex destroy (pthread mutex t *mutex);
int pthread mutex lock (pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);
int pthread mutex trylock (pthread mutex t *mutex);

 Attributes: for shared mutexes/condition vars among processes, for priority
inheritance, etc.

* use defaults
* Important: Mutex scope must be visible to all threads!

Pthread Spinlock

Pthread Spinlock

* Type:pthread spinlock t

Pthread Spinlock

* Type:pthread spinlock t

int pthread spinlock init (pthread spinlock t *lock);

Pthread Spinlock

* Type:pthread spinlock t

int pthread spinlock init (pthread spinlock t *lock);
int pthread spinlock destroy (pthread spinlock t *lock);

Pthread Spinlock

* Type:pthread spinlock t

int pthread spinlock init (pthread spinlock t *lock);
int pthread spinlock destroy (pthread spinlock t *lock);
int pthread spin lock (pthread spinlock t *lock);

Pthread Spinlock

* Type:pthread spinlock t

int pthread spinlock init (pthread spinlock t *lock);
int pthread spinlock destroy (pthread spinlock t *lock);
int pthread spin lock (pthread spinlock t *lock);

int pthread spin unlock (pthread spinlock t *lock);

Pthread Spinlock

* Type:pthread spinlock t

int pthread spinlock init (pthread spinlock t *lock);
int pthread spinlock destroy (pthread spinlock t *lock);
int pthread spin lock (pthread spinlock t *lock);

int pthread spin unlock (pthread spinlock t *lock);

int pthread spin trylock (pthread spinlock t *lock);

CS380P

Pthread Spinlock

* Type:pthread spinlock t

int pthread spinlock init (pthread spinlock t *lock);
int pthread spinlock destroy (pthread spinlock t *lock);
int pthread spin lock (pthread spinlock t *lock);

int pthread spin unlock (pthread spinlock t *lock);

int pthread in trylock (pthread spinlock t *lock);

Wait...what’s the _ —
. int pthread mutex init (pthread mutex t *mutex,..);
difference? int pthread:hutex:destroy(pthrgad_muEex_t *mutex) ;
int pthread mutex lock (pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);
int pthread mutex trylock (pthread mutex t *mutex);

Processes + Threads

26

Lab #1

 Basic synchronization, prefix sum
* http://www.cs.utexas.edu/~rossbach/cs380p/lab/labl.html

* Start early!!!

CS380P Processes + Threads

27

http://www.cs.utexas.edu/~rossbach/cs380p/lab/lab1.html

