
Parallel Systems
Events and Futures

Chris Rossbach + Calvin Lin

CS380p



Outline for Today

• Asynchronous Programming Models
• Events

• Futures

Events+Futures 2CS380P



Review: Parallel Programming Models

CS380P Processes + Threads 3



Review: Parallel Programming Models

• Concrete model: 
• CPU(s) execute instructions sequentially

CS380P Processes + Threads 3



Review: Parallel Programming Models

• Concrete model: 
• CPU(s) execute instructions sequentially

• Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

CS380P Processes + Threads 3



Review: Parallel Programming Models

• Concrete model: 
• CPU(s) execute instructions sequentially

• Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Techniques/primitives
• Threads/Processes
• Message passing vs shared memory
• Preemption vs Non-preemption

CS380P Processes + Threads 3



Review: Parallel Programming Models

• Concrete model: 
• CPU(s) execute instructions sequentially

• Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Techniques/primitives
• Threads/Processes
• Message passing vs shared memory
• Preemption vs Non-preemption

• Dimensions/techniques not always orthogonal

CS380P Processes + Threads 3



Review: Execution Context Management
“Task” == “Flow of Control”
“Stack” == Task State

4CS380P Processes + Threads



Review: Execution Context Management
“Task” == “Flow of Control”
“Stack” == Task State

Task Management

4CS380P Processes + Threads



Review: Execution Context Management
“Task” == “Flow of Control”
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor 

• Overlap on multiprocessor 

4CS380P Processes + Threads



Review: Execution Context Management
“Task” == “Flow of Control”
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor 

• Overlap on multiprocessor 

• Serial
• One at a time, no conflict

4CS380P Processes + Threads



Review: Execution Context Management
“Task” == “Flow of Control”
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor 

• Overlap on multiprocessor 

• Serial
• One at a time, no conflict

• Cooperative
• Yields at well-defined points

• E.g. wait for long-running 
I/O

4CS380P Processes + Threads



Review: Execution Context Management
“Task” == “Flow of Control”
“Stack” == Task State

Task Management

• Preemptive
• Interleave on uniprocessor 

• Overlap on multiprocessor 

• Serial
• One at a time, no conflict

• Cooperative
• Yields at well-defined points

• E.g. wait for long-running 
I/O

4

Stack Management

• Manual
• Inherent in Cooperative

• Changing at quiescent points

• Automatic
• Inherent in pre-emptive

• Downside: Hidden concurrency 
assumptions

CS380P Processes + Threads



UI Programming

CS380P Events+Futures 5



UI Programming

CS380P Events+Futures 5



UI Programming

CS380P Events+Futures 6



UI Programming

CS380P Events+Futures 6



UI Programming

CS380P Events+Futures 6



UI Programming

CS380P Events+Futures 6



UI Programming

CS380P Events+Futures 6



UI programming

CS380P Events+Futures 7



UI programming
Over 1000 last 
time I checked!

CS380P Events+Futures 7



UI programming
void OnMove() { … }
void OnSize() { … }

void OnPaint() { … }

Over 1000 last 
time I checked!

CS380P Events+Futures 7



UI Programming Distilled

CS380P Events+Futures 8



UI Programming Distilled

Pros

CS380P Events+Futures 8



UI Programming Distilled

Pros

• Simple imperative programming

CS380P Events+Futures 8



UI Programming Distilled

Pros

• Simple imperative programming

• Good fit for uni-processor
CS380P Events+Futures 8



UI Programming Distilled

Pros

• Simple imperative programming

• Good fit for uni-processor

Cons

CS380P Events+Futures 8



UI Programming Distilled

Pros

• Simple imperative programming

• Good fit for uni-processor

Cons
•Awkward/verbose

CS380P Events+Futures 8



UI Programming Distilled

Pros

• Simple imperative programming

• Good fit for uni-processor

Cons
•Awkward/verbose
•Obscures available parallelism

CS380P Events+Futures 8



UI Programming Distilled

Pros

• Simple imperative programming

• Good fit for uni-processor

Cons
•Awkward/verbose
•Obscures available parallelism

CS380P Events+Futures 8



UI Programming Distilled

CS380P Events+Futures 9



UI Programming Distilled
How can we 
parallelize 

this?

CS380P Events+Futures 9



Parallel UI Implementation 1

CS380P Events+Futures 10



Parallel UI Implementation 1

CS380P Events+Futures 10



Parallel UI Implementation 1

CS380P Events+Futures 10



Parallel UI Implementation 1

CS380P Events+Futures 10



Parallel UI Implementation 1

DoThisProc

DoThatProc

OtherThing

CS380P Events+Futures 11



Parallel UI Implementation 1

DoThisProc

DoThatProc

OtherThing

Pros/cons?

CS380P Events+Futures 11



Parallel UI Implementation 1

Pros: 
• Encapsulates parallel work
Cons:
• Obliterates original code structure
• How to assign handlers→CPUs?
• Load balance?!?
• Utilization

DoThisProc

DoThatProc

OtherThing

Pros/cons?

CS380P Events+Futures 11



Parallel GUI Implementation 2

CS380P Events+Futures 12



Parallel GUI Implementation 2
Pros/cons?

CS380P Events+Futures 12



Parallel GUI Implementation 2
Pros: 
• Preserves programming model
• Can recover some parallelism
Cons:
• Workers still have same problem
• How to load balance?
• Shared mutable state a problem

Pros/cons?

CS380P Events+Futures 12



Parallel GUI Implementation 2
Pros: 
• Preserves programming model
• Can recover some parallelism
Cons:
• Workers still have same problem
• How to load balance?
• Shared mutable state a problem

Extremely difficult to solve 
without changing the whole 

programming model…so 

change it

Pros/cons?

CS380P Events+Futures 12



Event-based Programming: Motivation

CS380P Events+Futures 13



Event-based Programming: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments

• Load balancing/assignment brittle 

• Shared state requires locks →
• Priority inversion

• Deadlock 

• Incorrect synchronization

• …

CS380P Events+Futures 13



Event-based Programming: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments

• Load balancing/assignment brittle 

• Shared state requires locks →
• Priority inversion

• Deadlock 

• Incorrect synchronization

• …

• Events: restructure programming model to have no threads!

CS380P Events+Futures 13



Event Programming Model Basics

CS380P Events+Futures 14



Event Programming Model Basics

• Programmer only writes events

CS380P Events+Futures 14



Event Programming Model Basics

• Programmer only writes events

• Event: an object queued for a module (think future/promise)

CS380P Events+Futures 14



Event Programming Model Basics

• Programmer only writes events

• Event: an object queued for a module (think future/promise)

• Basic primitives
• create_event_queue(handler) → event_q

• enqueue_event(event_q, event-object)
• Invokes handler (eventually)

CS380P Events+Futures 14



Event Programming Model Basics

• Programmer only writes events

• Event: an object queued for a module (think future/promise)

• Basic primitives
• create_event_queue(handler) → event_q

• enqueue_event(event_q, event-object)
• Invokes handler (eventually)

• Scheduler decides which event to execute next
• E.g. based on priority, CPU usage, etc.

CS380P Events+Futures 14



Event-based programming

CS380P Events+Futures 15



Event-based programming

CS380P Events+Futures 15



Event-based programming

CS380P Events+Futures 15



Event-based programming

CS380P Events+Futures 15



Event-based programming

Runtime

CS380P Events+Futures 15



Event-based programming

Runtime

CS380P Events+Futures 15



Event-based programming

Runtime

Is the problem solved?
CS380P Events+Futures 15



Another Event-based Program

CS380P Events+Futures 16



Another Event-based Program

CS380P Events+Futures 16



Another Event-based Program

Blocks!

CS380P Events+Futures 16



Another Event-based Program

Blocks!Burns CPU!

CS380P Events+Futures 16



Another Event-based Program

Blocks!Burns CPU!Uses Other Handlers!
(call OnPaint?)

CS380P Events+Futures 16



No problem! 
Just use more events/handlers, right?

CS380P Events+Futures 17



Continuations, BTW

CS380P Events+Futures 18



Stack-Ripping

CS380P Events+Futures 19



Stack-Ripping

CS380P Events+Futures 19



Stack-Ripping

CS380P Events+Futures 19



Stack-Ripping

Stack-based state out-of-scope!
Requests must carry state

CS380P Events+Futures 19



Threads vs Events

• Thread Pros
• Overlap I/O and computation 

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of 

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

CS380P Events+Futures 20



Threads vs Events

• Thread Pros
• Overlap I/O and computation 

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of 

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

Language-level 
Futures: the 
sweet spot?

CS380P Events+Futures 20



Threads vs Events

• Thread Pros
• Overlap I/O and computation 

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of 

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

Language-level 
Futures: the 
sweet spot?

CS380P Events+Futures 20



Futures & Promises

CS380P Events+Futures 21



Futures & Promises

• Values that will eventually become available

CS380P Events+Futures 21



Futures & Promises

• Values that will eventually become available

• Time-dependent states:
• Completed/determined

• Computation complete, value concrete

• Incomplete/undetermined
• Computation not complete yet

CS380P Events+Futures 21



Futures & Promises

• Values that will eventually become available

• Time-dependent states:
• Completed/determined

• Computation complete, value concrete

• Incomplete/undetermined
• Computation not complete yet

• Construct ( future X ) 
• immediately returns value 

• concurrently executes X

CS380P Events+Futures 21



Java Example

CS380P Events+Futures 22



Java Example

CS380P Events+Futures 22



Java Example

• CompletableFuture is a container for Future object type

CS380P Events+Futures 22



Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

CS380P Events+Futures 22



Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts

• Lambda expression

• Anonymous function

• Functor

CS380P Events+Futures 22



Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts

• Lambda expression

• Anonymous function

• Functor

• runAsync() immediately returns a waitable object (cf)

CS380P Events+Futures 22



Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts

• Lambda expression

• Anonymous function

• Functor

• runAsync() immediately returns a waitable object (cf)

• Where (on what thread) does the lambda expression run?
CS380P Events+Futures 22



Futures and Promises: 
Why two kinds of objects?

CS380P Events+Futures 23



Futures and Promises: 
Why two kinds of objects?

Promise: “thing to be done”

CS380P Events+Futures 23



Futures and Promises: 
Why two kinds of objects?

Promise: “thing to be done”

Future: encapsulation
(something to give caller)

CS380P Events+Futures 23



Futures and Promises: 
Why two kinds of objects?

Promise: “thing to be done”

Future: encapsulation
(something to give caller)

Promise to do something in the futureCS380P Events+Futures 23



Futures vs Promises

• Future: read-only reference to uncompleted value

• Promise: single-assignment variable that the future refers to

• Promises complete the future with:
• Result with success/failure

• Exception

CS380P Events+Futures 24



Futures vs Promises

• Future: read-only reference to uncompleted value

• Promise: single-assignment variable that the future refers to

• Promises complete the future with:
• Result with success/failure

• Exception
Language Promise Future

Algol Thunk Address of async
result

Java CompletableFuture<T> Future<T>

C#/.NET TaskCompletionSource<T> Task<T>

JavaScript Deferred Promise

C++ std::promise std::futureCS380P Events+Futures 24



Futures vs Promises

• Future: read-only reference to uncompleted value

• Promise: single-assignment variable that the future refers to

• Promises complete the future with:
• Result with success/failure

• Exception
Language Promise Future

Algol Thunk Address of async
result

Java CompletableFuture<T> Future<T>

C#/.NET TaskCompletionSource<T> Task<T>

JavaScript Deferred Promise

C++ std::promise std::futureCS380P Events+Futures 24



Futures vs Promises

• Future: read-only reference to uncompleted value

• Promise: single-assignment variable that the future refers to

• Promises complete the future with:
• Result with success/failure

• Exception
Language Promise Future

Algol Thunk Address of async
result

Java CompletableFuture<T> Future<T>

C#/.NET TaskCompletionSource<T> Task<T>

JavaScript Deferred Promise

C++ std::promise std::future

Mnemonic:
Promise to do something

Make a promise for the future

CS380P Events+Futures 24



Putting Futures in Context
My unvarnished opinion

CS380P Events+Futures 25



Putting Futures in Context
My unvarnished opinion

Futures: 

CS380P Events+Futures 25



Putting Futures in Context
My unvarnished opinion

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects

• Runtime: scheduler, task queues, thread-pools are transparent

CS380P Events+Futures 25



Putting Futures in Context
My unvarnished opinion

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects

• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

CS380P Events+Futures 25



Putting Futures in Context
My unvarnished opinion

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects

• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

CS380P Events+Futures 25



Putting Futures in Context
My unvarnished opinion

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects

• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

CS380P Events+Futures 25



Putting Futures in Context
My unvarnished opinion

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects

• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Programming Model between:

CS380P Events+Futures 25



Putting Futures in Context
My unvarnished opinion

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects

• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Programming Model between:

• Event-based programming

CS380P Events+Futures 25



Putting Futures in Context
My unvarnished opinion

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects

• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Programming Model between:

• Event-based programming

• Thread-based programming

CS380P Events+Futures 25



Putting Futures in Context
My unvarnished opinion

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects

• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Programming Model between:

• Event-based programming

• Thread-based programming Events vs. Threads!

CS380P Events+Futures 25



• nodes → computation

• edges → communication

• Expresses parallelism explicitly

• Minimal specification of data movement: runtime does it.

• asynchrony is a runtime concern (not programmer concern)

• No specification of compute→device mapping: like threads!

Dataflow: a better abstraction? 

gemm

gemm

Matrix: C

Matrix: A Matrix: B

CS380P Events+Futures 26


