
Synchronization:
Implementing Monitors + Barriers

Chris Rossbach & Calvin Lin

CS380P



Today

• Material for the day
• Monitor implementation

• Barrier implementation

• Acknowledgements 
• Thanks to Gadi Taubenfield: we borrowed from some of his slides on barriers

cs380p: Monitors  and Barriers 2



What is a monitor?

❑ Same as a condition variable?

cs380p: Monitors  and Barriers 3



What is a monitor?

❑ Monitor: one big lock for set of 
operations/ methods

❑ Language-level implementation of 
mutex

• Entry procedure: called from outside

• Internal procedure: called within monitor

• Wait within monitor releases lock

Many variants…

Monitor != condition variable
• Encapsulates shared data behind API
• Compiler support usually involved
• May be built on conditionscs380p: Monitors  and Barriers 4



Pthreads and conditions

• Type pthread_cond_t

int pthread_cond_init(pthread_cond_t *cond, 

const pthread_condattr_t *attr);

int pthread_cond_destroy(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *cond, 

pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

Java: 
synchronized keyword

wait()/notify()/notifyAll()

C#: Monitor class
Enter()/Exit()/

Pulse()/PulseAll()

• Why a mutex_t parameter for pthread_cond_wait?
• Why not in p_cond_init? 

cs380p: Monitors  and Barriers 5



Does this code work?

• Uses “if” to check invariants.
• Why doesn’t if work? 
• How could we MAKE it work?

cs380p: Monitors  and Barriers 6



Hoare-style Monitors 
(aka blocking condition variables)
Given entrance queue ‘e’, signal queue ‘s’, condition var ‘c’
enter:

if(locked):

e.push_back(thread) 

else 

lock

wait c: 
c.q.push_back(thread) 
schedule  // block this thread

signal c : 

if (c.q.any()) 
t = c.q.pop_front() // t → "the signaled thread" 

s.push_back(thread)

t.run

schedule:

if s.any() 

t  s.pop_first()

t.run

else if e.any()

t  e.pop_first()

t. run

else 

unlock // monitor unoccupied

• Signaler must wait, but gets 
priority over threads on 
entrance queue

• Lock only released by
• Schedule (if no waiters)

• Application

• Pros/Cons?

Must run signaled thread immediately
Options for signaler:
• Switch out (go on s queue)
• Exit (Hansen monitors)
• Continue executing?

leave:

schedule

cs380p: Monitors  and Barriers 7



Mesa-style monitors
(aka non-blocking condition variables)

• Leave still calls schedule

• No signal queue

• Extendable with more queues for priority

• What are the differences/pros/cons?

enter: 

if locked: 

e.push_back(thread)

block

else

lock

wait c: 
c.q.push_back(thread)
schedule

block

notify c: 
if c.q.any()

t  c.q.pop_front() // t is "notified “

e.push_back(t)

schedule: 

if e.any() 

t  e.pop_front

t. run 

else

unlock

cs380p: Monitors  and Barriers 8



Example: anyone see a bug?
Solutions?
• Timeouts
• notifyAll
• Can Hoare monitors support notifyAll?

cs380p: Monitors  and Barriers 9



Barriers

cs380p: Monitors  and Barriers 10



11

abegin b c d e f

aend a+b a+b+c a+b+c+d
a+b+c
+d+e

a+b+c
+d+e+f

time

Prefix Sum

cs380p: Monitors  and Barriers



12

abegin b c d e f

a a+b c d e f

a a+b a+b+c a+b+c+d e f

aend a+b a+b+c a+b+c+d
a+b+c
+d+e

a+b+c
+d+e+f

a a+b a+b+c d e f

a a+b a+b+c a+b+c+d a+b+c+d+e f

time

Prefix Sum

cs380p: Monitors  and Barriers



Parallel Prefix Sum

13

abegin b c d e f

a a+b b+c c+d d+e e+f

a a+b a+b+c a+b+c+d b+c+d+e c+d+e+f

aend a+b a+b+c a+b+c+d
a+b+c
+d+e

a+b+c
+d+e+f

cs380p: Monitors  and Barriers

time



Pthreads Parallel Prefix Sum

Will this 
work?

cs380p: Monitors  and Barriers 14



Pthreads Parallel Prefix Sum

fixed?

cs380p: Monitors  and Barriers 15



16

abegin b c d e f

a a+b b+c c+d d+e e+f

a a+b a+b+c a+b+c+d b+c+d+e c+d+e+f

aend a+b a+b+c a+b+c+d
a+b+c
+d+e

a+b+c
+d+e+f

barrier

barrier

cs380p: Monitors  and Barriers

time

Parallel Prefix Sum



What is a Barrier ?

17

B
ar
ri
e
r

P1P1

P2P2

P3P3

P4P4

B
ar
ri
e
r

P1P1

P2P2

P3P3

P4P4

P1P1

P2P2

P3P3

P4P4

time

B
ar
ri
e
r

four threads 
approach the 
barrier

all except 
P4 arrive

Once all 
arrive, they 
continue

➢ Coordination mechanism (algorithm)

➢ threads wait until all reach specified point.

➢ Once all reach barrier, all can pass.

cs380p: Monitors  and Barriers



Pthreads and barriers

Type pthread_barrier_t

int pthread_barrier_init(pthread_barrier_t *barrier, 

const pthread_barrierattr_t *attr,                    

unsigned count);

int pthread_barrier_destroy(pthread_barrier_t *barrier);

int pthread_barrier_wait(pthread_barrier_t *barrier); 

cs380p: Monitors  and Barriers 18



Pthreads Parallel Prefix Sum

fixed?

cs380p: Monitors  and Barriers 19



Barrier Goals

20

Desirable barrier properties:

• Low shared memory space complexity

• Low contention on shared objects

• Few shared memory references per thread/process

• No need for shared memory initialization 

• Symmetric: same amount of work for all processes

• Algorithm simplicity

• Minimal propagation time

• Reusability (a must!)

cs380p: Monitors  and Barriers



22

• Conditions

• Semaphores 

• Atomic Bit

• Atomic Register

• Fetch-and-increment register

• Test and set bits

• Read-Modify-Write register

Barrier Building Blocks

cs380p: Monitors  and Barriers



Barrier with Semaphores

cs380p: Monitors  and Barriers 23



Barrier using Semaphores
Algorithm for N threads

24

shared sem_t arrival = 1;               // sem_init(&arrival, NULL, 1)

sem_t departure = 0;        // sem_init(&departure, NULL, 0)

atomic int counter = 0;     // (gcc intrinsics are verbose)

sem_wait(arrival);

if(++counter < N)

sem_post(arrival);

else 

sem_post(departure);

sem_wait(departure);

if(--counter > 0) 

sem_post(departure) 

else 

sem_post(arrival) 

1

2

3

4

5

6

7

8

9

10

First N-1 threads post on 
arrival, wait on departure

Phase I

Phase II

Nth thread post on 
departure, releasing 
threads into phase II 

(what is value of arrival?)

First N-1 threads post on 
departure, last posts arrival

cs380p: Monitors  and Barriers



Semaphore Barrier Action Zone
N == 3

25

shared sem_t arrival = 1;               

sem_t departure = 0;        

atomic int counter = 0;     

sem_wait(arrival);

if(++counter < N)

sem_post(arrival);

else 

sem_post(departure);

sem_wait(departure);

if(--counter > 0) 

sem_post(departure) 

else 

sem_post(arrival) 

sem_wait(arrival);

if(++counter < N)

sem_post(arrival);

else 

sem_post(departure);

sem_wait(departure);

if(--counter > 0) 

sem_post(departure) 

else 

sem_post(arrival) 

sem_wait(arrival);

if(++counter < N)

sem_post(arrival);

else 

sem_post(departure);

sem_wait(departure);

if(--counter > 0) 

sem_post(departure) 

else 

sem_post(arrival) 

CPU 0 CPU 1 CPU 2

1

0

01

0

0

1

23

0

1

1

10

0

0

1

1

1

2

Do we need two 
phases?

Still correct if 
counter is not 

atomic?

cs380p: Monitors  and Barriers



Barrier using Semaphores
Properties

• Pros:
• Very Simple

• Space complexity O(1)

• Symmetric

• Cons:
• Required a strong object

• Requires some central manager

• High contention on the semaphores

• Propagation delay O(n)

• Pros:

• Cons:

cs380p: Monitors  and Barriers 26



Barriers based on counters

cs380p: Monitors  and Barriers 27



28

Fetch-and-Increment register

• A shared register that supports a F&I operation:

• Input: register r

• Atomic operation:

• r is incremented by 1

• the old value of r is returned

Counter Barrier Ingredients

function fetch-and-increment (r : register)

orig_r := r;

r:= r + 1;

return (orig_r);

end-function

Await

• For brevity, we use the await macro

• Not an operation of an object

• This is also called: “spinning”

macro await (condition : boolean condition)

repeat

cond = eval(condition);

until (cond)

end-macro

cs380p: Monitors  and Barriers



29

1 local.go := go

2 local.counter := fetch-and-increment (counter)

3 if local.counter + 1 = n then

4 counter := 0

5 go := 1 - go

6 else await(local.go ≠ go) 

shared counter: fetch and increment reg. – {0,..n}, initially = 0

go: atomic bit, initial value doesn’t matter

local local.go: a bit, initial value doesn’t matter

local.counter: register

Simple Barrier Using an Atomic Counter

cs380p: Monitors  and Barriers



SM

Simple Barrier Using an Atomic Counter
Run for n=2 Threads

? ?counter go

1 local.go := go

2 local.counter := fetch-and-increment (counter)

3 if local.counter + 1 = n then

4 counter := 0

5 go := 1 - go

6 else await(local.go ≠ go) 

P1
?local.go

?local.counter
P2

?local.go

?local.counter

cs380p: Monitors  and Barriers 30



P1

31

P1P2

SM0 0counter go

?

1 local.go := go

2 local.counter := fetch-and-increment (counter)

3 if local.counter + 1 = n then

4 counter := 0

5 go := 1 - go

6 else await(local.go ≠ go)

0

120 1

local.go

P1 Busy wait

?0local.counter
P2

?0local.go

?1local.counter

0+1≠21+1=2

Simple Barrier Using an Atomic Counter
Run for n=2 Threads

Pros/Cons?

• There is high memory contention on go bit

• Reducing the contention:

• Replace the go bit  with n bits: 
go[1],…,go[n]

• Process pi may spin only on the bit go[i]cs380p: Monitors  and Barriers



shared counter: fetch and increment reg. – {0,..n}, initially = 0

go[1..n]: array of atomic bits, initial values are immaterial

local local.go: a bit, initial value is immaterial

local.counter: register

A Local Spinning Counter Barrier
Program of a Thread i

1 local.go := go[i]

2 local.counter := fetch-and-increment (counter)

3 if local.counter + 1 = n then

4 counter := 0

5 for j=1 to n { go[j] := 1 – go[j] }

6 else await(local.go ≠ go[i]) 

cs380p: Monitors  and Barriers 32



SM

A Local Spinning Counter Barrier
Example Run for n=3 Threads

33

0 ?counter go ? ?

1 local.go := go[i]

2 local.counter := fetch-and-increment (counter)

3 if local.counter + 1 = n then

4 counter := 0

5 for j=1 to n { go[j] := 1 – go[j] }

6 else await(local.go ≠ go[i]) 

P1
?loc.go

?loc.counter
P2

?loc.go

?loc.counter
P3

?loc.go

?loc.counter

0 0 0

P2

0

1

0

0+1≠3

P1

P1 Busy wait

0

2

1

1+1≠3

P1,P2 Busy wait

P3

0

3

2

2+1=3

0 1 1 1

Pros/Cons?

Does this 

actually reduce 

contention?cs380p: Monitors  and Barriers



Comparison of counter-based Barriers

Simple Barrier Simple Barrier with go array

34

• Pros:

• Cons:

• Pros:

• Cons:

cs380p: Monitors  and Barriers



Simple Barrier Simple Barrier with go array

35

• Pros:

• Very Simple

• Shared memory: O(log n) bits

• Takes O(1) until last waiting p is 
awaken

• Cons:

• High contention on the go bit

• Contention on the counter 
register (*)

• Pros:

• Low contention on the go array

• In some models:

• spinning is done on local 
memory

• remote mem. ref.: O(1)

• Cons:

• Shared memory: O(n)

• Still contention on the counter 
register (*)

• Takes O(n) until last waiting p is 
awaken

Comparison of counter-based Barriers

cs380p: Monitors  and Barriers



Tree Barriers

cs380p: Monitors  and Barriers 36



A Tree-based Barrier

37

• Threads are organized in a binary tree

• Each node is owned by a predetermined thread

• Each thread waits until its 2 children arrive

• combines results

• passes them on to its parent

• Root learns that its 2 children have arrived→tells children they can go

• The signal propagates down the tree until all the threads get the message

7654

32

1

cs380p: Monitors  and Barriers



38

1098 11 12 13 14 15

7654

32

1

Assume 𝑛

= 2𝑘 − 1

arrive

go

2       3     4      5      6     7      8      9     10    11    12    13    14   15

2𝑖
+1

𝑖

2𝑖

A Tree-based Barrier: indexing

Indexing starts from 2
Root → 1, doesn’t need wait objects

Step 1: label numerically 
with depth-first traveral

cs380p: Monitors  and Barriers



A Tree-based Barrier
program of thread i

39

shared arrive[2..n]: array of atomic bits, initial values = 0

go[2..n]: array of atomic bits, initial values = 0

1 if i=1 then //  root

2 await(arrive[2] = 1); arrive[2] := 0

3 await(arrive[3] = 1); arrive[3] := 0

4 go[2] = 1; go[3] = 1

5 else if i ≤ (n-1)/2 then // internal node

6 await(arrive[2i] = 1); arrive[2i] := 0

7 await(arrive[2i+1] = 1); arrive[2i+1] := 0

8 arrive[i] := 1

9 await(go[i] = 1); go[i] := 0

10 go[2i] = 1; go[2i+1] := 1

11 else //  leaf

12 arrive[i] := 1

13 await(go[i] = 1); go[i] := 0 fi

14 fi 

Root

Internal

Leaf

Root: 
• Wait for arriving children
• Tell children to go

Internal: 
• Wait for arriving children
• Wait for parent go signal
• Tell children to go

Child: 
• arrive
• Wait for parent go signal

cs380p: Monitors  and Barriers



7654

32

1

A Tree-based Barrier
Example Run for n=7 threads

40

arrive

go

2      3       4      5      6      7

11 1

7654

32

1

7654

32

1

7654

32

1

7654

32

1

7654

32

1

Waiting  for 
p4 to arrive

Waiting  for 
go[5]

Waiting  for 
go[4]

7654

32

1

Waiting  for 
go[2]

0 0

7654

32

1

1 0 0 1

7654

32

1

Waiting  for 
go[6]

7654

32

1

Waiting  for 
p3 to arrive

arrive[2]=1

?

P2 zeros 

arrive[4,5]

Arrive[2]=1

?

7654

32

1

7654

32

1

Waiting  for 
go[7]

7654

32

1

P3 zeros 

arrive[6,7]

1 0 01 0 0 1

P1 zeros 

arrive[2]

0 0 0 10 0 0 1 10 0 0 0 00 1 0 0 0 0

Waiting  for 
go[3]

7654

32

1

P1 zeros 

arrive[3]

0 0 0 0 0 0

7654

32

1

0 0 0 0 0 0

1 1

0 0 0 0 0 0

1 1 1 1 1 1

Finished!!

At this point 

all non-root 

threads in some 

await(go) casecs380p: Monitors  and Barriers



41

• Pros:
• Low shared memory contention

• No wait object is shared by more than 2 processes

• Good for larger n

• Fast – information from the root propagates after log(n) steps

• Can use only atomic primitives (no special objects)

• On some models:

• each process spins on a locally accessible bit

• # (remote memory ref.) = O(1) per process

• Cons:
• Shared memory space complexity – O(n)

• Asymmetric –all the processes don’t the same amount of work 

Tree Barrier Tradeoffs

cs380p: Monitors  and Barriers



Butterfly Barrier

• When would this be preferable?
cs380p: Monitors  and Barriers 42



Hardware Supported Barriers

CPU
cs380p: Monitors  and Barriers 43



Barriers Summary

44

Seen:
• Semaphore-based barrier 
• Simple barrier

• Based on atomic fetch-and-increment counter

• Local spinning barrier
• Based on atomic fetch-and-increment counter and go array

• Tree-based barrier
Not seen:
• Test-and-Set barriers

• Based on test-and-test-and-set objects
• One version without memory initialization

• See-Saw barrier

cs380p: Monitors  and Barriers



Questions?

cs380p: Monitors  and Barriers 45


