I Language-Level Concurrency Support

Chris Rossbach and Calvin Lin
cs380p

IOutIine

Message Passing background

Concurrency in Go

Acknowledgements: Rob Pike’s 2012 Go presentation is excellent, and | borrowed from it:
https://talks.golang.org/2012/concurrency.slide

Review: Execution and Programming Models

Source code

a = "hello";
b =a +

nmipw.
-

struct machine_state{
uint64 pc;

uint64 Registers[16];

Compiler

1
L |

program.exe

instructionl instructionl instructionl instructionl
instruction? instruction instruction? instruction?
instruction3 instructionl instructiond instructiond
instructiond instructiond instructiond instructiond

e

R

Y

Y

uint64 cr(6]; // control registers crO-cr4 and EFER on AMD

} machine;
while(1) {

fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

}

void execute_instruction(i) {

switch(opcode) {
case add_rr:

machine .Registers[i.dst] += machine.Registers[i.src];

break;

struct machine_stated{
uint64 pc;
uint64 Registers[16];
uint64 cr(6]; // control registers crO-cr4 and EFER on AMD

} machine;

while(1) {
fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

}

void execute_instruction(i) {
switch(opcode) {
case add_rr:
machine.Registers[i.dst] += machine.Registers([i.src];
break;

Review: Execution and Programming Models

program.exe
Source code
Compiler instructionl | instructienl instructionl | instructienl
a = "hello"; |_|'| J:_nstruc:i_o:‘l.? :::‘ust':uc:':.un? ::nstru-:::':.un:z ::nstru-:::':.un:z
b = nyw. instruction3 instructiond instructionl instructionl
=a + - I instructiond instructiond instructiond instructiond
——— L a—

struct |
uint6
uint6
uint6

} machi:

while(1
fetch
decod
execu

}

void ex
switc
case .
mach
brea

Review: Execution and Programming Models

program.exe
Source code

Compiler instructionl | instruetionl instructionl instructionl

a = "hello": |_|'| instruction2 instructiond instructiond instructiond

_ : " “: instruction3 instructiond instructionl instructionl

b=a+ . F I instructiond instructiond instructiond instructiond

~ _= = =

Concrete execution model:
Multiple CPU(s) execute instructions sequentially
struct |
uint6
uint6
uint6
}.ﬁachi
while(1
fetch
decod
execu
}

void ex
switc
case .
mach

brea

}

Review: Execution and Programming Models

program.exe
Source code

Compiler instructionl | instructionl instruction] instructionl
a = "hello"; |_|'| instruction? J:TIST.:"JCT'.DTI-'.Z :::'-St:'uCT:un? :::'-St:'uCT:un?
b = instruction3 | instruction3 instruction3 | instruction3

a + LI L
T I instructiond instructiond instructiond instructiond

~ _= = =
Concrete execution model:
Multiple CPU(s) execute instructions sequentially

=, Programming Model Dimensions:

uint6

uint6 How to specify computation
o How to specify communication
while(l How to specify coordination/control transfer

fetch
decod
execu

}

void ex
switc
case .
mach
brea

}

I Review: Execution and Programming Models

program.exe
Source code

Compiler instructionl instructiconl instructienl instruction]
a = "hello"; r"""'--] instruction2 %nﬁtru:?:an? %nﬂtru:::an? %nﬂtru:::an?
b = instruction3 instruction3 instructionl instructionl

a + LI L
T I instructiond instructiond instructiond instructiond
P . . P

~ L

Concrete execution model:
Multiple CPU(s) execute instructions sequentially

= Programming Model Dimensions:

intt How to specify computation
}H?l How to specify communication

feven How to specify coordination/control transfer
, “* Techniques/primitives
i Threads/Processes/Fibers/Events

mach Message passing vs shared memory

! Preemption vs Non-preemption

I Review: Execution and Programming Models

program.exe
Source code

Compiler instructionl | instructionl instruction] instructionl
a = "hello"; r"""'--] instruction? ?nﬁtru:?:an? ?nﬁtru:::an? ?nﬁtru:::an?
b = instruction3 instruction3 instructionl instructionl

a + LI L
T I instructiond instructiond instructiond instructiond
P . . P

~ L

Concrete execution model:
Multiple CPU(s) execute instructions sequentially
= Programming Model Dimensions:

uint6

uint6 How to specify computation
) st How to specify communication
fevch How to specify coordination/control transfer
, “* Techniques/primitives
d Threads/Processes/Fibers/Events
sach Message passing vs shared memory
’ Preemption vs Non-preemption

** Dimensions/techniques not always orthogonal

I Message Passing: Motivation

Threads have a *lot* of down-sides:
Tuning parallelism for different environments
Load balancing/assignment brittle

Shared state requires locks 2

Priority inversion
Deadlock
Incorrect synchronization

I Message Passing: Motivation

Threads have a *lot* of down-sides:
Tuning parallelism for different environments
Load balancing/assignment brittle

Shared state requires locks =
Priority inversion
Deadlock
Incorrect synchronization

Message passing:
Threads aren’t the problem, shared memory is

Restructure programming model to avoid communication through
shared memory (and therefore locks)

I Message Passing: Motivation

Threads have a *lot* of down-sides:

Tuning parallelism for different environments
Load balancing/assignment brittle

Recurring theme

Message passing:
Threads aren’t the problem, shared memory is

Restructure programming model to avoid communication through
shared memory (and therefore locks)

II\/Iessage Passing

Message

77N\

Object A Object B

Sending Object Receiving Object

Message Passing

II\/Iessage Passing

Threads/Processes send/receive messages

Message

Object A Object B

Sending Object Receiving Object

Message Passing

II\/Iessage Passing

Threads/Processes send/receive messages

Three design dimensions
Naming/Addressing: how do processes refer to each other?
Synchronization: how to wait for messages (block/poll/notify)?
Buffering/Capacity: can messages wait in some intermediate structure?

Message

Object A Object B

Sending Object Receiving Object

Message Passing

Naming: Explicit vs Implicit

Also: Direct vs Indirect

Naming: Explicit vs Implicit

Also: Direct vs Indirect

Explicit Naming
Each process must explicitly name the other party
Primitives:

send(receiver, message)
receive(sender, message)

Naming: Explicit vs Implicit

Also: Direct vs Indirect

Explicit Naming
Each process must explicitly name the other party
Primitives:
send(receiver, message)
receive(sender, message) -
Implicit Naming
Messages sent/received to/from mailboxes
Mailboxes may be named/shared

Primitives:
send(mailbox, message)

receive(mailbox, message) - ﬂ -

ISynchronization

ISynchronization

Synchronous vs. Asynchronous

Blocking send: sender blocks until received
Nonblocking send: send resumes before message received
Blocking receive: receiver blocks until message available

Non-blocking receive: receiver gets a message or null

ISynchronization

Synchronous vs. Asynchronous

Blocking send: sender blocks until received
Nonblocking send: send resumes before message received
Blocking receive: receiver blocks until message available

Non-blocking receive: receiver gets a message or null

Blocking:
+ simple
+ avoids wasteful spinning

Non-blocking:
+ maximal flexibility

ISynchronization

Synchronous vs. Asynchronous

Blocking send: sender blocks until received
Nonblocking send: send resumes before message received
Blocking receive: receiver blocks until message available

Non-blocking receive: receiver gets a message or null

If both send and receive block
“Rendezvouz”
Operation acts as an ordering primitive
Sender knows receiver succeeded
Receiver knows sender succeeded
Particularly appealing in distributed environment

Communicating Sequential Processes
Hoare 1978

CSP: language for multi-processor machines

* Non-buffered message passing "j
* No shared memory l
* Send/recv are blocking

« Explicit naming of src/dest processes -
* Also called direct naming 4‘ b o T
* Receiver specifies source process
* Alternatives: indirect

* Port, mailbox, queue, socket
* Guarded commands to let processes wait

synchronous
reliable
unidirectional
point-to-point
fixed topology

single thread of control
autonomous
encapsulated

named

static

Communicating Sequential Processes
Hoare 1978

CSP: language for multi-processor machines
* Non-buffered message passing
* No shared memory
* Send/recv are blocking
« Explicit naming of src/dest processes
* Also called direct naming b o . T
* Receiver specifies source process
* Alternatives: indirect
* Port, mailbox, queue, socket
* Guarded commands to let processes wait

single thread of control
autonomous
encapsulated

named

static

synchronous
reliable
unidirectional
point-to-point
fixed topology

< Transputer!

IAn Important problem in the CSP model

IAn Important problem in the CSP model

Processes need to receive messages from different senders

IAn Important problem in the CSP model

Processes need to receive messages from different senders
Only primitive: blocking receive(<name>, message)

IAn Important problem in the CSP model

Processes need to receive messages from different senders
Only primitive: blocking receive(<name>, message)

IAn Important problem in the CSP model

Processes need to receive messages from different senders
Only primitive: blocking receive(<name>, message)

. recv_multi(Q) {

receive(Q, message)
receive(R, message)
receive(S, message)

}

IAn Important problem in the CSP model

Processes need to receive messages from different senders
Only primitive: blocking receive(<name>, message)

. recv_multi(Q) {

receive(Q, message)
receive(R, message)

/ receive(S, message)
)

Is there a problem
with this?

IAn Important problem in the CSP model

Processes need to receive messages from different senders
Only primitive: blocking receive(<name>, message)

. recv_multi(Q) {

receive(Q, message)

Q
-))((receive(R, message)
s

/ receive(S, message)
)

Is there a problem
with this?

I Blocking with Indirect Naming

Processes need to receive messages from different senders

blocking receive with indirect naming
Process waits on port, gets first message to arrive at that port

I Blocking with Indirect Naming

Processes need to receive messages from different senders

blocking receive with indirect naming
Process waits on port, gets first message to arrive at that port

BB receive(port, message)

I Blocking with Indirect Naming

Processes need to receive messages from different senders

blocking receive with indirect naming
Process waits on port, gets first message to arrive at that port

BB receive(port, message)

OK to block (good)

Requires indirection (less good)

I Non-blocking with Direct Naming

Processes need to receive messages from different senders

Non-blocking receive with direct naming
Requires receiver to poll senders

I Non-blocking with Direct Naming

Processes need to receive messages from different senders

Non-blocking receive with direct naming
Requires receiver to poll senders

I Non-blocking with Direct Naming

Processes need to receive messages from different senders

Non-blocking receive with direct naming
Requires receiver to poll senders

while(...) {
try_receive(Q, message)

try_receive(R, message)
- try_receive(S, message)

}

I Non-blocking with Direct Naming

Processes need to receive messages from different senders

Non-blocking receive with direct naming
Requires receiver to poll senders

while(...) {
try_receive(Q, message)

try_receive(R, message)
- try_receive(S, message)

}

Polling (bad)
No indirection (good)

I Blocking and Direct Naming

I Blocking and Direct Naming

How to achieve it?

I Blocking and Direct Naming

How to achieve it?
CSP provides abstractions/primitives for it

IAIternative / Guarded Commands

Guarded command is delayed until either
e guard succeeds - cmd executes or
e guard fails >command aborts

Guarded Commands

<guard>— <command list>
A

boolean expression

at most one ? , must be at end of
guard, considered true iff
message pending

Examples

n <10—Alindex(n); n :=n +1;
n <10; A?index(n) —next = MyArray(n);

Alternative command:

e list of one or more guarded commands

e separated by ”||”

e surrounded by square brackets

[x>y->max:=x || y=x->max:=y]

IAIternative / Guarded Commands

Guarded command is delayed until either Alternative command:
e guard succeeds > cmd executes or .
e guard fails >command aborts .

list of one or more guarded commands

separated by 7| |”
e surrounded by square brackets

Guarded Commands

[xX>y->max:=x || y=x->max:=y]
<guard>— <command list>

boolean expression

at most one ? , must be at end of
guard, considered true iff

Examples message pending

n <10—Alindex(n); n :=n +1;

Enable choice preserving concurrency
n <10; A?index(n) —next = MyArray(n);

Hugely influential

goroutines, channels, select, defer:
* Trying to achieve the same thing

IGo Concurrency

CSP: the root of many languages
Occam, Erlang, Newsqueak, Concurrent ML, Alef, Limbo

Go is a Newsqueak-Alef-Limbo derivative
Distinguished by first class channel support
Program: goroutines communicating through channels
Guarded and alternative-like constructs in select and defer

IA boring function

func boring(msg string) {
for 1 := 0; ; i++ {
fmt.Println(msg, 1)
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

func main() {
boring("boring!")
}

IA boring function

func boring(msg string) {
for 1 := 0; ; i++ {
fmt.Println(msg, 1)
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

func main() {
boring("boring!")
}

I lgnoring a boring function

e Go statement runs the function

, i package main
* Doesn’t make the caller wait

* Launches a goroutine AmRaTE &
* Analagous to & on shell command "math/rand"

"time"

)

func main() {
go boring("boring!")
s

I lgnoring a boring function

e Go statement runs the function

, i package main
* Doesn’t make the caller wait

. 1 t
* Launches a goroutine AmRaTE &
* Analagous to & on shell command "math/rand"
"time"

)

func main() {
go boring("boring!")
s

* Keep main() around a while func main() { _
. . go boring("boring!")
e See goroutine actually running ft .PrintIn("I'm listening.")

time.Sleep(2 * time.Second)
fmt.Println("You're boring; I'm leaving.")

I lgnoring a boring function

e Go statement runs the function

, i package main
* Doesn’t make the caller wait

o . import (
Launches a goroutine S T'm listening.
* Analagous to & on shell command "math/rand" boring!
"time” boring!
) boring!
_ boring!
func ma;g(? { S .boring!
go boring(orln‘boring!
} You're boring; I'm leaving.
Program exited.
* Keep main() around a while func main() {
.) go boring("boring!")
e See goroutine actually running ft .PrintIn("I'm listening.")

time.Sleep(2 * time.Second)
fmt.Println("You're boring; I'm leaving.")

IGoroutines

IGoroutines

Independently executing function launched by go statement

IGoroutines

Independently executing function launched by go statement
Has own call stack

IGoroutines

Independently executing function launched by go statement
Has own call stack
Cheap: Ok to have 1000s...100,000s of them

IGoroutines

Independently executing function launched by go statement
Has own call stack
Cheap: Ok to have 1000s...100,000s of them

Not a thread
One thread may have 1000s of go routines!

IGoroutines

Independently executing function launched by go statement
Has own call stack
Cheap: Ok to have 1000s...100,000s of them

Not a thread
One thread may have 1000s of go routines!

Multiplexed onto threads as needed to ensure forward progress
Deadlock detection built in

IChanneB

Connect goroutines allowing them to communicate

// Declaring and initializing.
var c chan int

c = make(chan int)

// or

c := make(chan int)

// Sending on a channel.
c <-1

// Receiving from a channel.
// The "arrow" 1indicates the direction of data flow.
value = <-c

IChanneB

Connect goroutines allowing them to communicate

IChanneB
Connect goroutines allowing them to communicate

func main() {

c := make(chan string)
go boring("boring!", c)
for 1 :=0; 1 <5; i++ {

fmt.Printf("You say: %q\n", <-c) // Receive expression is just a value.
Iy

fmt.Println("You're boring; I'm leaving.")

func boring(msg string, c chan string) {
for 1 :=0; ; 1++ {
c <- fmt.Sprintf("%s %d", msg, i) // Expression to be sent
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)

IChanneB

Connect goroutines allowing them to communicate

func main() {

c := make(chan string)
go boring("boring!", c)
for 1 :=0; 1 <5; 1++ {

fmt.Printf("You say: %q\n", <-c) // Receive expression is just a value.
Iy

fmt.Println("You're boring; I'm leaving.")

func boring(msg string, c chan string) {
for 1 := 0; ; 1++ {
c <- fmt.Sprintf("%s %d", msg, i) // Expression to RCUEEEVEERLEIST:SNvE
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Mil\{CNNEE RN IIaTe- 30N
} You say: "boring! 2"
} You say: "boring! 3"
You say: "boring! 4"

You're boring; I'm leaving.

Program exited.

IChanneB

Connect goroutines allowing them to communicate
* When main executes <-c, it blocks

. * When boring executes c <- value it blocks
func main() {

¢ := make(chan string) * Channels communicate and synchronize
go boring("boring!", c)
for 1 :=0; 1 < 5; i++ {
fmt.Printf("You say: %g\n", <-c) // Receive expression is just a value.
}

fmt.Println("You're boring; I'm leaving.")

func boring(msg string, c chan string) {
for 1 := 0; ; 1++ {
c <- fmt.Sprintf("%s %d", msg, 1) // Expression to RLUEEE\EETISTF-4E
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Mil\{CNNEE RN IIaTe- 30N
} You say: "boring! 2"
} You say: "boring! 3"
You say: "boring! 4"

You're boring; I'm leaving.

Program exited.

ISeIect: Handling Multiple Channels

All channels are evaluated

Select blocks until one communication can proceed
Cf. Linux select system call, Windows WaitForMultipleObjectsEx
Cf. Alternatives and guards in CPS

If multiple can proceed select chooses randomly

Default clause executes immediately if no ready channel

ISeIect: Handling Multiple Channels

All channels are evaluated

Select blocks until one communication can proceed
Cf. Linux select system call, Windows WaitForMultipleObjectsEx
Cf. Alternatives and guards in CPS

If multiple can proceed select chooses randomly

Default clause executes immediately if no ready channel

select {
case v1 := <-c1l:

fmt.Printf("received %v from c1\n", v1)
case v2 := <-c2:

fmt.Printf("received %v from c2\n", v1)
case c3 <- 23:
fmt.Printf("sent %v to c3\n", 23)

default:
fmt.Printf("no one was ready to communicate\n")

Ilmplementing Search

Workload:
Accept query
Return page of results (with ugh, ads)

Get search results by sending query to
Web Search
Image Search
YouTube
Maps
News, etc

How to implement this?

ISearch 1.0

“Google” function takes query and returns a slice of results (strings)

Invokes Web, Image, Video search serially

ISearch 1.0

“Google” function takes query and returns a slice of results (strings)

Invokes Web, Image, Video search serially

func Google(query string) (results []Result) {
results = append(results, Web(query))
results = append(results, Image(query))
results = append(results, Video(query))
return

ISearch 2.0

Run Web, Image, Video searches concurrently, wait for results

No locks, conditions, callbacks

func Google(query string) (results []Result) {
c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

for 1 :=0;: 1 < 3: 1++ {

result := <-c

results = append(results, result)
}
return

ISearch 2.1

Don’t wait for slow servers: No locks, conditions, callbacks!

c := make(chan Result)
go func() { c <- Web(query) } ()

go func() { c <- Image(query) } ()
go func() { c <- Video(query) } ()

timeout := time.After(80 * time.Millisecond)
for 1 := 0; 1 < 3; 1++ {
select {
case result := <-c:
results = append(results, result)
case <-timeout:
fmt.Println("timed out")
return
}
}

return

ISearch 3.0

Reduce tail latency with replication. No locks, conditions, callbacks!

ISearch 3.0

Reduce tail latency with replication. No locks, conditions, callbacks!

c := make(chan Result)
go func() { c <- First(query, Web1, Web2) } ()
go func() { c <- First(query, Imagel, Image2) } ()
go func() { c <- First(query, Videol, Video2) } ()
timeout := time.After(80 * time.Millisecond)
for 1 :=0; 1 < 3; 1++ {
select {
case result := <-c:
results = append(results, result)
case <-timeout:
fmt.Println("timed out")
return

return

ISearch 3.0

Reduce tail latency with replication. No locks, conditions, callbacks!

c := make(chan Result)
go func() { c <- First(query, Web1, Web2) } ()
go func() { c <- First(query, Imagel, Image2) } ()
go func() { c <- First(query, Videol, Video2) } ()
timeout := time.After(80 * time.Millisecond)
for 1 :=0; 1 < 3; 1++ {
select {
case result := <-c:
results = append(results, result)
case <-timeout:
fmt.Println("timed out")

return func First(query string, replicas ...Search) Result {

} c := make(chan Result)
} searchReplica := func(i int) { c <- replicas[i](query) }
return for i := range replicas {
go searchReplica(i)

¥

return <-c

IOther tools in Go

Note the absence of locks in previous examples!
Goroutines and channels are the main primitives

Sometimes you just need a reference counter or lock
“sync” and “sync/atomic” packages
Mutex, condition, atomic operations

Sometimes you need to wait for a go routine to finish
Didn’t happen in any of the examples in the slides
WaitGroups are key

WaitGroups

func testQ() {
var wg sync.WaitGroup
wg.Add(4)
ch := make(chan int)
for i:=0; i<4; i++ {
go func(id int) {
aval, amore := <- ch
if(amore) {
fmt.Printf("reader #%d got %d value\n", id, aval)

} else {
fmt.Printf("reader #%d terminated with nothing.\n", id)

}
wg.Done()

3(1)
}

time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()

WaitGroups

func testQ() {
var wg sync.WaitGroup
wg.Add(4)
ch := make(chan int)
for i:=0; i<4; i++ {
go func(id int) {
aval, amore := <- ch
if(amore) {
fmt.Printf("reader #%d got %d value\n", id, aval)

} else {
fmt.Printf("reader #%d terminated with nothing.\n", id)

}
wg.Done()

3(1)
}

time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()

WaitGroups

func tegtods

cir= L)
for i:=0; i<4; i++ {
go func(id int) {
aval, amore := <- ch
if(amore) {
fmt.Printf("reader #%d got %d value\n", id, aval)
} else {
fmt.Printf("reader #%d terminated with nothing.\n", id)

J

}
time.Sleep(1000 * time.Millisecond)

I Go: magic or threadpools and concurrent Qs?

We’ve seen several abstractions for

Control flow/exection
Communication

Lots of discussion of pros and cons

Ultimately still CPUs + instructions

Go: just sweeping issues under the language interface?

Why is it OK to have 100,000s of goroutines?

Why isn’t composition an issue?

VON NEUMANN ARCHITECTURE

MEMORY

INPUT

-
-

CcPU

» OUTPUT

IGo Implementation details

/ ff;'f\\\ LL

IGo implementation details

M = “machine” = OS thread

£ -
| |
P i— G.. P _.G
- @ (- &

IGo implementation details

M = “machine” = OS thread
P = (processing) context

IGo implementation details

M = “machine” = OS thread
P = (processing) context
| G = goroutines

IGo implementation details

M = “machine” - OS thread

P = (processing) context

| G = goroutines

| Each ‘M’ has a queue of goroutines

- & .

IGo implementation details

M = “machine” = OS thread
P = (processing) context

| Scheduler does work-stealing

M M
- | G = goroutines
N . . Each ‘M’ has a queue of goroutines
| Goroutine scheduling is cooperative
‘. | 2 Switch out on complete or block
G G £ = | Very light weight (fibers!)
|

IGo implementation details

M = “machine” - OS thread
P = (processing) context
T B G = goroutines
B (Each ‘M’ has a queue of goroutines
' Goroutine scheduling is cooperative
R, Switch out on complete or block
G | s Very light weight (fibers!)
T = | Scheduler does work-stealing

~ struct G
[<
. bytex stackguard; // stack guard information

bytex stackbase; // base of stack

bytex stackO; // current stack pointer

bytex entry; // initial function

void* param; // passed parameter on wakeup
intl6 status; // status

int32 goid; // unique id

M lockedm; // used for locking M’s and G'’s

IGo implementation details

M = “machine” = OS thread
P = (processing) context

| Scheduler does work-stealing

M M
- | G = goroutines
N . . Each ‘M’ has a queue of goroutines
| Goroutine scheduling is cooperative
‘. | 2 Switch out on complete or block
G G £ = | Very light weight (fibers!)
|

IGo implementation details

M M

| n

P — G. P G

] |

G G G G
.G :

M = “machine” = OS thread
P = (processing) context

G = goroutines

Each ‘M’ has a queue of goroutines

Goroutine scheduling is cooperative
Switch out on complete or block

Very light weight (fibers!)

Scheduler does work-stealing

struct M

{
G curg;
int32 id;
int32 locks::

MCache *mcache;

Gx*

uintptr createstack [32];

M*

lockedg;

nextwaitm:

// current running goroutine

// unique id

// locks held by this M

// cache for this thread

// used for locking M’s and G’s
// Stack that created this thread
// next M waiting for lock

IGo implementation details

M = “machine” - OS thread
P = (processing) context
T B G = goroutines
N | A Each ‘M’ has a queue of goroutines
F G P . G f
| @ - Goroutine scheduling is cooperative
Switch out on complete or block

G [| G . 6 | struct Sched {
- - - Lock; // global sched lock .
| // must be held to edit G or M queues
G *gfree; // available g’s (status == Gdead)
s G G *ghead; // g’s waiting to run queue
G *gtail; // tail of g’s waiting to run queue
int32 gwait; // number of g’s waiting to run

int32 gcount; // number of g’s that are alive
int32 grunning; // number of g’s running on cpu
// or in syscall

M smbhead; // m’s waiting for work
int32 mwait; // number of m’s waiting for work
int32 mcount; // number of m’s that have been created

I Scaling to 1000s of goroutines

func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
wg.Add(consumers)
ch := make(chan int)
for i:=0; i<consumers; i++ {
go func(id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {

info("reader #%d terminated with nothing.\n", id)

}
wg.Done()

3(1)
}

time.Sleep(1000 * time.Millisecond)
close(ch)

wg.Wait()

stopTimes["testQ"] = time.Now()

IScaImg to 1000s of goroutmes

Creates a channel
func testQ(consumers int) { * Creates “consumers” goroutines

JCIga bl BTSRRI ST W@ * Each of them tries to read from the channel

var wg sync.WaitGroup e Main either:

wg.Add(consumers) .
ch := make(chan int) Sleeps for 1 second, closes the channel

for i:=0; i<consumers; i++ { e sends “consumers” values
go func(id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {
info("reader #%d terminated with nothing.\n", id)

}
wg.Done()

3(1)

}
time.Sleep(1000 * time.Millisecond)

close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

IScaImg to 1000s of goroutmes

Creates a channel
func testQ(consumers int) { * Creates “consumers” goroutines

JCIga bl BTSRRI ST W@ * Each of them tries to read from the channel

var wg sync.WaitGroup e Main either:
wg.Add(consumers)

ch := make(chan int) * Sleeps for 1 second, closes the channel
for i:=0; i<consumers; i++ { e sends “consumers” values
go func(id int) {
aval, amore := <- ch
if(amore) {
info("reader #%d got %d value\n", id, aval)
} else {
info("reader #%d terminated with nothing.\n", id)

PS E:\Users\ihris\ga\srﬂ\i53?3\Lab3> LA\lab3.exe 18
testQ: 1.0016706s
PS C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 100
} testQ: 1.0011655s
timeps (; :\Users\chris\go\src\cs378\1ab3> .\lab3.exe 1000
clostestQ: 1.0084796s
Wg.Ws c:\users\chris\go\src\cs378\1lab3> .\lab3.exe 10000
stoptestQ: 1.0547925s
PS C:\Users\chris\go\src\cs378\1lab3> .\lab3.exe 100000
estQ: 1.3987835s
S C:\Users\chris\go\src\cs378\1ab3> .\lab3.exe 1000000
estQ: 4.2485814s

77 ENTRY POINT TOM € ¢- X TroM COMpLLED CO0e

//geinosplit

func chansend1({c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

Iid

* generic single channel send/recv
* If bleck is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

IChanneI Implementation

* sleep can wake up with g.param == nil

¥ when a channel invelved in the sleep has

* been closed. if is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*
. . func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) boel {
You can just read it:
L] if Iblock {
return false
}

gopark({nil, nil, "chan send (nil chan)", tracecvGostop, 2)
throu("unreachable”)

https://golang.org/src/runtime/chan.go

b

Some hi hli h S if debugchan {
g g t print("chansend: chan=", c, "\n")

}

if raceenabled {
racereadpc {unsafe.Peinter(c), callerpc, funcPC(chansend))

b

/f Fast path: check for failed non-blocking operation without acquiring the lock.
7
/1 After cbserving that the channel is not clesed, we observe that the channel is
/f not ready for sending. Each of these cbservations is a single word-sized read
/f (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
/f Because a closed channel cannot transition from 'ready for sending' to
/f 'not ready for sending', even if the channel is closed between the two observations,
/1 they imply a moment between the two when the channel was both not yet closed
/f and not ready for sending. We behave as if we cbserved the channel at that moment,
/1 and report that the send cannot proceed.
7
/f It is okay if the reads are reordered here: if we observe that the channel is not
{1 ready for sending and then observe that it is not closed, that implies that the
/f channel wasn't closed during the first observation.
if Iblock & c.closed == @ & ((c.datagsiz == @ & c.recvg.first == nil) ||
(c.datagsiz > @ & c.qcount == c.datagsiz)) {
return false

}

var te intes
if bleckprofilerate » @ {
1@ = cputicks()

}
lock(&c.lock)

if c.closed 1= @ {
unlock{&c. lock)
panic(plaintrrer("send on clesed channel”))

b

if sg := c.recvq.dequeue(); sg != nil {
/{ Found a waiting receiver. We pass the value we want to send

1 directly to the receiver, bypassing the channel buffer (if any).
candfe <o en Fnc() £ ounlackffe Tardkd 320

https://golang.org/src/runtime/chan.go

77 ENTRY POINT TOM € ¢- X TroM COMpLLED CO0e

//geinosplit

func chansend1({c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

Iid

* generic single channel send/recv
* If bleck is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

IChanneI Implementation

* sleep can wake up with g.param == nil

¥ when a channel invelved in the sleep has

* been closed. if is easiest to loop and re-run

* the operation; we'll see that it's now closed.

*

unc chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) boel {

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if ¢ == nil {

if c=nil {
. if Iblock {
if !block { return false
}

return false

gopark({nil, nil, "chan send (nil chan)", tracecvGostop, 2)
throu("unreachable”)

}
gopark(nil, nil, “"chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable™)

b

if debugthan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc {unsafe.Peinter(c), callerpc, funcPC(chansend))

'
if debugChan {
print(“chansend: chan=", ¢, "\n")

/f Fast path: check for failed non-blocking operation without acquiring the lock.

7

/1 After cbserving that the channel is not clesed, we observe that the channel is

/f not ready for sending. Each of these cbservations is a single word-sized read

/f (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
/f Because a closed channel cannot transition from 'ready for sending' to

/f 'not ready for sending', even if the channel is closed between the two observations,
/1 they imply a moment between the two when the channel was both not yet closed

/f and not ready for sending. We behave as if we cbserved the channel at that moment,
/1 and report that the send cannot proceed.

7

/f It is okay if the reads are reordered here: if we observe that the channel is not
{1 ready for sending and then observe that it is not closed, that implies that the

/f channel wasn't closed during the first observation.

if Iblock & c.closed == @ & ((c.datagsiz == @ & c.recvg.first == nil) ||

i (c.datagsiz > @ & c.gcount == c.datagsiz)) {

173 return false

if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))

}

var te intes

if bleckprofilerate » @ {
1@ = cputicks()

}

lock(&c.lock)

if c.closed 1= @ {
unlock{&c. lock)
panic(plaintrrer("send on clesed channel”))

b

if sg := c.recvq.dequeue(); sg != nil {
/{ Found a waiting receiver. We pass the value we want to send

1 directly to the receiver, bypassing the channel buffer (if any).
candfe <o en Fnc() £ ounlackffe Tardkd 320

https://golang.org/src/runtime/chan.go

TZZ 77 ENCrY POITC TO0r € ¢- X oM COMpLLED CO08

123 /fgoinosplit

func chansend1({c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

Iid

* generic single channel send/recv
* If bleck is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

IChanneI Implementation

* sleep can wake up with g.param == nil

¥ when a channel invelved in the sleep has

* been closed. if is easiest to loop and re-run

* the operation; we'll see that it's now closed.

*

unc chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) boel {

func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if ¢ == nil {

if c=nil {
. if Iblock {
if !block { return false
}

return false

gopark({nil, nil, "chan send (nil chan)", tracecvGostop, 2)
throu("unreachable”)

}
gopark(nil, nil, “"chan send (nil chan)", traceEvGoStop, 2)
throw("unreachable™)

}
if debugthan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc {unsafe.Peinter(c), callerpc, funcPC(chansend))

;
if debugChan {

print(“chansend: chan=", ¢, "\n")

} Race | Cool!

/f Fast path: check for failed non-blocking operation without acquiring the lock.

7

/1 After cbserving that the channel is not clesed, we observe that the channel is

/f not ready for sending. Each of these cbservations is a single word-sized read

/f (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
/f Because a closed channel cannot transition from 'ready for sending' to

/f 'not ready for sending', even if the channel is closed between the two observations,
/1 they imply a moment between the two when the channel was both not yet closed

/f and not ready for sending. We behave as if we cbserved the channel at that moment,
/1 and report that the send cannot proceed.

7

/f It is okay if the reads are reordered here: if we observe that the channel is not
{1 ready for sending and then observe that it is not closed, that implies that the

/f channel wasn't closed during the first observation.

if Iblock & c.closed == @ & ((c.datagsiz == @ & c.recvg.first == nil) ||

i (c.datagsiz > @ & c.gcount == c.datagsiz)) {

173 return false

allerpc, funcPC(chansend))

}

var te intes

if bleckprofilerate » @ {
1@ = cputicks()

}

lock(&c.lock)

if c.closed 1= @ {
unlock{&c. lock)
panic(plaintrrer("send on clesed channel”))

b

if sg := c.recvq.dequeue(); sg != nil {
/f Found 3 waiting receiver. We pass the value we want to send
1 directly to the receiver, bypassing the channel buffer (if any).
candfe <o en Fnc() £ ounlackffe Tardkd 320

https://golang.org/src/runtime/chan.go

77 ENTRY POINT TOM € ¢- X TroM COMpLLED CO0e

//geinosplit

func chansend1({c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

Iid

* generic single channel send/recv
* If bleck is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

IChanneI Implementation

* sleep can wake up with g.param == nil

¥ when a channel invelved in the sleep has

* been closed. if is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*
. . func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) boel {
You can just read it:
L] if Iblock {
return false
}

gopark({nil, nil, "chan send (nil chan)", tracecvGostop, 2)
throu("unreachable”)

https://golang.org/src/runtime/chan.go

b

Some hi hli h S if debugchan {
g g t print("chansend: chan=", c, "\n")

}

if raceenabled {
racereadpc {unsafe.Peinter(c), callerpc, funcPC(chansend))

b

/f Fast path: check for failed non-blocking operation without acquiring the lock.
7
/1 After cbserving that the channel is not clesed, we observe that the channel is
/f not ready for sending. Each of these cbservations is a single word-sized read
/f (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
/f Because a closed channel cannot transition from 'ready for sending' to
/f 'not ready for sending', even if the channel is closed between the two observations,
/1 they imply a moment between the two when the channel was both not yet closed
/f and not ready for sending. We behave as if we cbserved the channel at that moment,
/1 and report that the send cannot proceed.
7
/f It is okay if the reads are reordered here: if we observe that the channel is not
{1 ready for sending and then observe that it is not closed, that implies that the
/f channel wasn't closed during the first observation.
if Iblock & c.closed == @ & ((c.datagsiz == @ & c.recvg.first == nil) ||
(c.datagsiz > @ & c.qcount == c.datagsiz)) {
return false

}

var te intes
if bleckprofilerate » @ {
1@ = cputicks()

}
lock(&c.lock)

if c.closed 1= @ {
unlock{&c. lock)
panic(plaintrrer("send on clesed channel”))

b

if sg := c.recvq.dequeue(); sg != nil {
/{ Found a waiting receiver. We pass the value we want to send

1 directly to the receiver, bypassing the channel buffer (if any).
candfe <o en Fnc() £ ounlackffe Tardkd 320

https://golang.org/src/runtime/chan.go

Channel Implementation

You can just read it:

https://golang.org/src/runtime/chan.go
S;()vwﬂnr\ hirmrhlirch+e

if sg := c.recvg.dequeue(); sg != nil {
[/ Found a waiting receiver. We pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
send(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true

77 ENTRY POINT TOM € ¢- X TroM COMpLLED CO0e

//geinosplit

func chansend1({c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

Iid

* generic single channel send/recv
* If bleck is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

* sleep can wake up with g.param == nil

¥ when a channel invelved in the sleep has

* been closed. if is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*
func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) boel {
if c=nil {
if Iblock {

return false
}
gopark({nil, nil, "chan send (nil chan)", tracecvGostop, 2)
throu("unreachable”)
}

if debugthan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc {unsafe.Peinter(c), callerpc, funcPC(chansend))

b

/f Fast path: check for failed non-blocking operation without acquiring the lock.
7
/1 After cbserving that the channel is not clesed, we observe that the channel is
/f not ready for sending. Each of these cbservations is a single word-sized read
/f (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
/f Because a closed channel cannot transition from 'ready for sending' to
/f 'not ready for sending', even if the channel is closed between the two observations,
/1 they imply a moment between the two when the channel was both not yet closed
/f and not ready for sending. We behave as if we cbserved the channel at that moment,
/1 and report that the send cannot proceed.
7
/f It is okay if the reads are reordered here: if we observe that the channel is not
{1 ready for sending and then observe that it is not closed, that implies that the
/f channel wasn't closed during the first observation.
if Iblock & c.closed == @ & ((c.datagsiz == @ & c.recvg.first == nil) ||
(c.datagsiz > @ & c.qcount == c.datagsiz)) {
return false

}

var te intes

if bleckprofilerate » @ {
1@ = cputicks()

}

lock(&c.lock)

if c.closed 1= @ {
unlock{&c. lock)
panic(plaintrrer("send on clesed channel”))

b

if sg := c.recvq.dequeue(); sg != nil {
/f Found 3 waiting receiver. We pass the value we want to send
1 directly to the receiver, bypassing the channel buffer (if any).
candfe <o en Fnc() £ ounlackffe Tardkd 320

https://golang.org/src/runtime/chan.go

77 ENTRY POINT TOM € ¢- X TroM COMpLLED CO0e

//geinosplit

func chansend1({c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

Iid

* generic single channel send/recv
* If bleck is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

IChanneI Implementation

* sleep can wake up with g.param == nil

¥ when a channel invelved in the sleep has

* been closed. if is easiest to loop and re-run
* the operation; we'll see that it's now closed.

*
. . func chansend{c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) boel {
You can just read it:
L] if Iblock {
return false
}

gopark({nil, nil, "chan send (nil chan)", tracecvGostop, 2)
throu("unreachable”)

https://golang.org/src/runtime/chan.go

b

Some hi hli h S if debugchan {
g g t print("chansend: chan=", c, "\n")

}

if raceenabled {
racereadpc {unsafe.Peinter(c), callerpc, funcPC(chansend))

b

/f Fast path: check for failed non-blocking operation without acquiring the lock.
7
/1 After cbserving that the channel is not clesed, we observe that the channel is
/f not ready for sending. Each of these cbservations is a single word-sized read
/f (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
/f Because a closed channel cannot transition from 'ready for sending' to
/f 'not ready for sending', even if the channel is closed between the two observations,
/1 they imply a moment between the two when the channel was both not yet closed
/f and not ready for sending. We behave as if we cbserved the channel at that moment,
/1 and report that the send cannot proceed.
7
/f It is okay if the reads are reordered here: if we observe that the channel is not
{1 ready for sending and then observe that it is not closed, that implies that the
/f channel wasn't closed during the first observation.
if Iblock & c.closed == @ & ((c.datagsiz == @ & c.recvg.first == nil) ||
(c.datagsiz > @ & c.qcount == c.datagsiz)) {
return false

}

var te intes
if bleckprofilerate » @ {
1@ = cputicks()

}
lock(&c.lock)

if c.closed 1= @ {
unlock{&c. lock)
panic(plaintrrer("send on clesed channel”))

b

if sg := c.recvq.dequeue(); sg != nil {
/{ Found a waiting receiver. We pass the value we want to send

1 directly to the receiver, bypassing the channel buffer (if any).
candfe <o en Fnc() £ ounlackffe Tardkd 320

https://golang.org/src/runtime/chan.go

295
296
297

298

%)
0
L

(WH)

[an]
o

L
[an]

(1]
fan]
fd =

[WE]
e]
J

[or}
[aw)
P

L
[an]
[

[N)

2
[=]

(WS
[in]
|

(WH)

=

vl

L
o

(WN)

[

(1]
L

(W)
e

=

L

!
!
/o
!
!
!
!
!
!

IChanneI Implementation

Sends and receives on unbuffered or empty-buffered channels are the
only operations where one running goroutine writes to the stack of
another running goroutine. The GC assumes that stack writes only
happen when the goroutine is running and are only done by that
goroutine. Using a write barrier is sufficient to make up for
violating that assumption, but the write barrier has to work.
typedmemmove will call bulkBarrierPreWrite, but the target bytes
are not in the heap, so that will not help. We arrange to call
memmove and typeBitsBulkBarrier instead.

func sendDirect(t * type, sg *sudog, src unsafe.Pointer) {

f/ src is on our stack, dst is a slot on another stack.

// Once we read sg.elem out of sg, it will no longer

// be updated if the destination’'s stack gets copied (shrunk}.

[/ 5o make sure that no preemption points can happen between read & use.
dst := sg.elem

typeBitsBulkBarrier(t, uintptr(dst), uintptr{src), t.size)

memmove (dst, src, t.size)

{1 ENTrY POINT TOr C - X from CompILEa COoE

123 /fgoinosplit

func chansend1({c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

Iid

* generic single channel send/recv
* If bleck is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

* sleep can wake up with g.param == nil

¥ when a channel invelved in the sleep has

* been closed. if is easiest to loop and re-run
* the operation; we'll see that it's now closed.
*

& func chansend{c *hchan, ep unsafe.Peinter, block bool, callerpc uintptr) bocl {

if c=nil {
if Iblock {
return false
}
gopark({nil, nil, "chan send (nil chan)", tracecvGostop, 2)
throu("unreachable”)
}

if debugthan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc {unsafe.Peinter(c), callerpc, funcPC(chansend))

b

/f Fast path: check for failed non-blocking operation without acquiring the lock.
7
/1 After cbserving that the channel is not clesed, we observe that the channel is
/f not ready for sending. Each of these cbservations is a single word-sized read
/f (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
/f Because a closed channel cannot transition from 'ready for sending' to
/f 'not ready for sending', even if the channel is closed between the two observations,
/1 they imply a moment between the two when the channel was both not yet closed
/f and not ready for sending. We behave as if we cbserved the channel at that moment,
/1 and report that the send cannot proceed.
7
/f It is okay if the reads are reordered here: if we observe that the channel is not
{1 ready for sending and then observe that it is not closed, that implies that the
/f channel wasn't closed during the first observation.
if Iblock & c.closed == @ & ((c.datagsiz == @ & c.recvg.first == nil) ||
(c.datagsiz > @ & c.qcount == c.datagsiz)) {
return false

}

var te intes

if bleckprofilerate » @ {
1@ = cputicks()

}

lock(&c.lock)

if c.closed 1= @ {
unlock{&c. lock)
panic(plaintrrer("send on clesed channel”))

b

if sg := c.recvq.dequeue(); sg != nil {
/{ Found a waiting receiver. We pass the value we want to send

1 directly to the receiver, bypassing the channel buffer (if any).
candfe <o en Fnc() £ ounlackffe Tardkd 320

https://golang.org/src/runtime/chan.go

295
296
297

298

%)
0
L

(WH)

[an]
o

L
[an]

(1]
fan]
fd =

[WE]
e]
J

[or}
[aw)
P

L
[an]
[

[N)

2
[=]

(WS
[in]
|

(WH)

=

vl

L
o

(WN)

[

(1]
L

(W)
e

=

L

!
!
/o
!
!
!
!
!
!

IChanneI Implementation

Sends and receives on unbuffered or empty-buffered channels are the
only operations where one running goroutine writes to the stack of

another running goroutine. The GC assumes that stack writes only

happen when the goroutine is running and are only done by that
goroutine. Using a write barrier is sufficient to make up for
violating that assumption, but the write barrier has to work.
typedmemmove will call bulkBarrierPreWrite, but the target bytes
are not in the heap, so that will not help. We arrange to call
memmove and typeBitsBulkBarrier instead.

func sendDirect(t * type, sg *sudog, src unsafe.Pointer) {

f/ src is on our stack, dst is a slot on another stack.

// Once we read sg.elem out of sg, it will no longer

// be updated if the destination’'s stack gets copied (shrunk}.

[/ 5o make sure that no preemption points can happen between read & use.
dst := sg.elem

typeBitsBulkBarrier(t, uintptr(dst), uintptr{src), t.size)

memmove (dst, src, t.size)

{1 ENTrY POINT TOr C - X from CompILEa COoE

123 /fgoinosplit

func chansend1({c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

Iid

* generic single channel send/recv
* If bleck is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

* sleep can wake up with g.param == nil

¥ when a channel invelved in the sleep has

* been closed. if is easiest to loop and re-run
* the operation; we'll see that it's now closed.
*

& func chansend{c *hchan, ep unsafe.Peinter, block bool, callerpc uintptr) bocl {

if c=nil {
if Iblock {
return false
}
gopark({nil, nil, "chan send (nil chan)", tracecvGostop, 2)
throu("unreachable”)
}

if debugthan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc {unsafe.Peinter(c), callerpc, funcPC(chansend))

b

/f Fast path: check for failed non-blocking operation without acquiring the lock.
7
/1 After cbserving that the channel is not clesed, we observe that the channel is
/f not ready for sending. Each of these cbservations is a single word-sized read
/f (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
/f Because a closed channel cannot transition from 'ready for sending' to
/f 'not ready for sending', even if the channel is closed between the two observations,
/1 they imply a moment between the two when the channel was both not yet closed
/f and not ready for sending. We behave as if we cbserved the channel at that moment,
/1 and report that the send cannot proceed.
7
/f It is okay if the reads are reordered here: if we observe that the channel is not
{1 ready for sending and then observe that it is not closed, that implies that the
/f channel wasn't closed during the first observation.
if Iblock & c.closed == @ & ((c.datagsiz == @ & c.recvg.first == nil) ||
(c.datagsiz > @ & c.qcount == c.datagsiz)) {
return false

}

var te intes

if bleckprofilerate » @ {
1@ = cputicks()

}

lock(&c.lock)

if c.closed 1= @ {
unlock{&c. lock)
panic(plaintrrer("send on clesed channel”))

b

if sg := c.recvq.dequeue(); sg != nil {
/{ Found a waiting receiver. We pass the value we want to send

1 directly to the receiver, bypassing the channel buffer (if any).
candfe <o en Fnc() £ ounlackffe Tardkd 320

https://golang.org/src/runtime/chan.go

IChanneI Implementation

295 /f
296 J/f

Sends and receives on unbuffered or empty-buffered channels are the
only operations where one running goroutine writes to the stack of

297 7/
298 //
299 7/
300 //

another running goroutine.

304
385 func sendDirect(t * type, sg *sudog, src unsafe.Pointer) {
386 f/ src is on our stack, dst is a slot on another stack.
3687
3 // Once we read sg.elem out of sg, it will no longer
3089 // be updated if the destination’'s stack gets copied (shrunk}.
318 [/ 5o make sure that no preemption points can happen between read & use.
311 dst := sg.elem
T ——— dst), uintptr{src), t.size)

G1 stack

G2 stack

per-goroutine stacks

E e SRS

stack

heap

G1 writes to G2's stack!

The GC assumes that stack writes only
happen when the goroutine is running and are only done by that
goroutine. Using a write barrier is sufficient to make up for
violating that assumption, but the write barrier has to work.

/i typedmemmove will call bulkBarrierPreWrite, but the target bytes
// are not in the heap, so that will not help. We arrange to call
f/ memmove and typeBitsBulkBarrier instead.

{1 ENTrY POINT TOr C - X from CompILEa COoE

123 /fgoinosplit

func chansend1({c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

Iid

* generic single channel send/recv
* If bleck is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

* sleep can wake up with g.param == nil

¥ when a channel invelved in the sleep has

* been closed. if is easiest to loop and re-run
* the operation; we'll see that it's now closed.
*

& func chansend{c *hchan, ep unsafe.Peinter, block bool, callerpc uintptr) bocl {

if c=nil {
if Iblock {
return false
}
gopark({nil, nil, "chan send (nil chan)", tracecvGostop, 2)
throu("unreachable”)
}

if debugthan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc {unsafe.Peinter(c), callerpc, funcPC(chansend))

b

/f Fast path: check for failed non-blocking operation without acquiring the lock.
7
/1 After cbserving that the channel is not clesed, we observe that the channel is
/f not ready for sending. Each of these cbservations is a single word-sized read
/f (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
/f Because a closed channel cannot transition from 'ready for sending' to
/f 'not ready for sending', even if the channel is closed between the two observations,
/1 they imply a moment between the two when the channel was both not yet closed
/f and not ready for sending. We behave as if we cbserved the channel at that moment,
/1 and report that the send cannot proceed.
7
/f It is okay if the reads are reordered here: if we observe that the channel is not
{1 ready for sending and then observe that it is not closed, that implies that the
/f channel wasn't closed during the first observation.
if Iblock & c.closed == @ & ((c.datagsiz == @ & c.recvg.first == nil) ||
(c.datagsiz > @ & c.qcount == c.datagsiz)) {
return false

}

var te intes

if bleckprofilerate » @ {
1@ = cputicks()

}

lock(&c.lock)

if c.closed 1= @ {
unlock{&c. lock)
panic(plaintrrer("send on clesed channel”))

b

if sg := c.recvq.dequeue(); sg != nil {
/f Found 3 waiting receiver. We pass the value we want to send
1 directly to the receiver, bypassing the channel buffer (if any).
candfe <o en Fnc() £ ounlackffe Tardkd 320

https://golang.org/src/runtime/chan.go

IChanneI Implementation

Sends and receives on unbuffered or empty-buffered channels are the
only operations where one running goroutine writes to the stack of -

{1 ENTrY POINT TOr C - X from CompILEa COoE

123 /fgoinosplit

295 ff
296 [ff
297 /f another running goroutine.
298 [/
299 J/

300 //
i
i
'

The GC assumes that stack writes only
happen when the goroutine is running and are only done by that
goroutine. Using a write barrier is sufficient to make up for
violating that assumption, but the write barrier has to work.
typedmemmove will call bulkBarrierPreWrite, but the target bytes
are not in the heap, so that will not help. We arrange to call
memmove and typeBitsBulkBarrier instead.

304

385 func sendDirect(t * type, sg *sudog, src unsafe.Pointer) {

386 f/ src is on our stack, dst is a slot on another stack.

3687

3 // Once we read sg.elem out of sg, it will no longer

3089 // be updated if the destination’'s stack gets copied (shrunk}.

318 [/ 5o make sure that no preemption points can happen between read & use.

311 dst := sg.elem m
N ——— dst), uintptr{src), t.size) ™

G1 stack

G2 stack

per-goroutine stacks

stack

heap

G1 writes to G2's stack!

Transputers did this in hardware in
the 90s btw.

func chansend1({c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())

Iid

* generic single channel send/recv
* If bleck is not nil,

* then the protocol will not

* sleep but return if it could

* not complete.

*

* sleep can wake up with g.param == nil

¥ when a channel invelved in the sleep has

* been closed. if is easiest to loop and re-run
* the operation; we'll see that it's now closed.
*

& func chansend{c *hchan, ep unsafe.Peinter, block bool, callerpc uintptr) bocl {
if c=nil {
if Iblock {
return false
i

gopark({nil, nil, "chan send (nil chan)", tracecvGostop, 2)
throu("unreachable”)
}

if debugthan {
print("chansend: chan=", ¢, "\n")

}

if raceenabled {
racereadpc {unsafe.Peinter(c), callerpc, funcPC(chansend))

b

/f Fast path: check for failed non-blocking operation without acquiring the lock.
7
/1 After cbserving that the channel is not clesed, we observe that the channel is
/f not ready for sending. Each of these cbservations is a single word-sized read
/f (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
/f Because a closed channel cannot transition from 'ready for sending' to
/f 'not ready for sending', even if the channel is closed between the two observations,
/1 they imply a moment between the two when the channel was both not yet closed
/f and not ready for sending. We behave as if we cbserved the channel at that moment,
/1 and report that the send cannot proceed.
7
/f It is okay if the reads are reordered here: if we observe that the channel is not
{1 ready for sending and then observe that it is not closed, that implies that the
/f channel wasn't closed during the first observation.
if Iblock & c.closed == @ & ((c.datagsiz == @ & c.recvg.first == nil) ||
(c.datagsiz > @ & c.qcount == c.datagsiz)) {
return false

}

var te intes

if bleckprofilerate » @ {
1@ = cputicks()

}

lock(&c.lock)

if c.closed 1= @ {
unlock{&c. lock)
panic(plaintrrer("send on clesed channel”))

b

if sg := c.recvq.dequeue(); sg != nil {
/{ Found a waiting receiver. We pass the value we want to send

1 directly to the receiver, bypassing the channel buffer (if any).
candfe <o en Fnc() £ ounlackffe Tardkd 320

https://golang.org/src/runtime/chan.go

Go: Sliced Bread 2.0?

31

Go: Sliced Bread 2.0?

* Lacks compile-time generics

31

Go: Sliced Bread 2.0?

* Lacks compile-time generics
* Results in code duplication

31

Go: Sliced Bread 2.0?

* Lacks compile-time generics
* Results in code duplication
 Metaprogramming cannot be statically checked

31

Go: Sliced Bread 2.0?

* Lacks compile-time generics
* Results in code duplication
 Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

31

Go: Sliced Bread 2.0?

* Lacks compile-time generics
* Results in code duplication
 Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose

31

Go: Sliced Bread 2.0?

* Lacks compile-time generics
* Results in code duplication
 Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

31

Go: Sliced Bread 2.0?

* Lacks compile-time generics

* Results in code duplication
 Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

* Pauses and overhead of garbage collection

31

Go: Sliced Bread 2.0?

* Lacks compile-time generics

* Results in code duplication
 Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

* Pauses and overhead of garbage collection

e Limit Go’s use in systems programming compared to languages with manual memory
management

31

Go: Sliced Bread 2.0?

Lacks compile-time generics
* Results in code duplication
 Metaprogramming cannot be statically checked
» Standard library cannot offer generic algorithms

* Lack of language extensibility makes certain tasks more verbose
* Lacks operator overloading (Java)

Pauses and overhead of garbage collection

e Limit Go’s use in systems programming compared to languages with manual memory
management

Right tradeoffs? None of these problems have to do with concurrency!

31

