I Parallel Runtimes: Cilk

Chris Rossbach & Calvin Lin
cs380p

IOutIine

Background

Cilk
DAG-based computation
Critical Path

Work-stealing
Continuation-passing

I Review: Decomposition

I Review: Decomposition

Domain v. Functional

I Review: Decomposition

Domain v. Functional

Domain Decomposition
a.k.a. Data Parallel
Input domain
Output Domain

I Review: Decomposition

Domain v. Functional

Domain Decomposition
a.k.a. Data Parallel

| I |
Input domain '
Output Domain .
task 0 task 1 task 2 task 3

Problem Data Set

I Review: Decomposition

Domain v. Functional
Domain Decomposition

Problem Data Set
a.k.a. Data Parallel A
Input domain ' ' “
Output Domain .
Functional Decomposition) task 1 task 2 tagk 3

a.k.a. Task Parallel
Independent Tasks
Pipelining

I Review: Decomposition

Domain v. Functional Problem Data Set

Domain Decomposition
a.k.a. Data Parallel

| N |
Input domain ' '
Output Domain .
Functional Decomposition task task 1 tagk 2 task 3

a.k.a. Task Parallel
Independent Tasks
Pipelining

Problem Instruction Set

I Review: Decomposition

Domain v. Functional

Domain Decomposition
a.k.a. Data Parallel

| N |
Input domain '
Output Domain .
Functional Decomposition task task 1 tagk 2 task 3

a.k.a. Task Parallel
Independent Tasks
Pipelining

Real Problems: mix/nest

Problem Data Set

Problem Instruction Set

I Review: Decomposition

Domain v. Functional

Domain Decomposition
a.k.a. Data Parallel
Input domain
Output Domain

Functional Decomposition
a.k.a. Task Parallel
Independent Tasks
Pipelining

Real Problems: mix/nest

Problem Data Set

I Review: Decomposition

Domain v. Functional

Domain Decomposition
a.k.a. Data Parallel
Input domain
Output Domain

Functional Decomposition
a.k.a. Task Parallel Problem pata se
Independent Tasks ‘
Pipelining

Real Problems: mix/nest

Problem Data Set

O 00 ~J oy U b= W

I Exercise: Parallelizing Fibonacci

Serial Fibonacci:

Eint fib(int n) {

if(n<2) {
return |;

} else {
int x = fib(n-1);
int y = fib(n-2);

return x+y;

O 00 ~J oy U b= W

I Exercise: Parallelizing Fibonacci

]

Serial Fibonacci:

int fib(int n) {
if (n<?) {
return |;
} else {
int x = fib(n-1);
int y = fib(n-2);
return x+y;

O ~J o U &= W N

e I R S S e
UG WN P O W

=]

Parallel Fibonacci:

Fvoid * fib(void * arg) {

int n = get input(arg);

if (n<2) {
put result(arg, 1);

} else {
pthread t xtid, ytid;
pthread create(&xtid, fib,
pthread create(&ytid, fib,
pthread join(xtid);
pthread join(ytid);
int x = ...
int y = ...
put result(arg, x+y);

arqg) ;
arqg) ;

// n-1
// n-2

O 00 ~J oy U b= W

I Exercise: Parallelizing Fibonacci

]

Serial Fibonacci:

int fib(int n) {
if(n<2) {
return |;
} else {
int x = fib(n-1);
int y = fib(n-2);
return x+y;

Pros/Cons?

O J o U b W

el e el
Uds WN - O W

=]

Parallel Fibonacci:

Fvoid * fib(void * arg) {

int n = get input(arg);

if (n<2) {
put result(arg, 1);

} else {
pthread t xtid, ytid;
pthread create(&xtid, fib,
pthread create(&ytid, fib,
pthread join(xtid);
pthread join(ytid);
int x = ...
int y = ...
put result(arg, x+y);

arqg) ;
arqg) ;

// n-1
// n-2

O 00 ~J oy U b= W

I Exercise: Parallelizing Fibonacci

]

Serial Fibonacci: Parallel Fibonacci:
int fib(int n) { L gvold * fib(void * arg) {
) 2 int n = get input(arqg);
if(n<2) Ao 30 if(<2) {
return 1; 4 put result(arg, 1);
} else { 5 } else T
int x = fib(n-1); ¢ pthread t xtid, ytid;
int y = fib(n-2); 7 pthread create(&xtid, fib, arg); // n-1
return x+y; 8 pthread create(&ytid, fib, arg); // n-2
} 9 pthread join(xtid);
} 10 pthread join(ytid);
11 int x = ...
12 int y = ...
13 put result(arg, x+y);
14 }
I}

Challenges:
Pros/Cons? Granularity/overheads

Coupled algorithm, parallel structure
Each level 2 more parallelism
How to balance load?

| cilk

Goal:
Support dynamic, asynchronous, concurrent programs.

Cilk programmer optimizes:
Total work
Critical path

A Cilk computation:
Dynamic, directed acyclic graph (dag)

level O .

level 1
level 2

level 3

| cilk

Goal:
Support dynamic, asynchronous, concurrent programs.

Cilk prograr 1 @cilk int fib(int n) {
Total worl 2 ! if(n<?) A
Critical pa - return 1;
4 } else {
A Cilk comp 5 int x = spawn fib(n-1);
Dynamic, 6 int y = spawn fib(n-2);
7 sync;
8 return x+y;
S }
10 *}

Key idea(s):

* Programmer writes mostly algorithms

* Programmer identifies parallelism

* Runtime figures out mapping to machine

ICiIk: Nomenclature

Cilk program is a set of procedures
A procedure is a sequence of threads

Cilk threads are:
represented by nodes in the DAG
Non-blocking: run to completion:

no waiting or suspension; atomic units of execution

l_\

O W oo Joy bW

|

E

ICiIk: Nomenclature

Cilk program is a set of procedures
A procedure is a sequence of threads

Cilk threads are:
represented by nodes in the DAG
Non-blocking: run to completion:

no waiting or suspension; atomic units of execution

ocilk int fib(int n) {

if(n<?) {
return | ;

} else {
int x = spawn fib(n-1);
int y = spawn fib(n-2);
sync;
return x+y;

O W oo Joy bW

l_\

ICiIk: Nomenclature

Cilk program is a set of procedures
A procedure is a sequence of threads

Cilk threads are:
represented by nodes in the DAG
Non-blocking: run to completion:

no waiting or suspension; atomic units of execution

ocilk int fib(int n) {

i if(n<”) { level 0 .
return |;
} else { level 1

int x = spawn fib(n-1);
int y = spawn fib(n-2);
sync;

| level 2
return x+y;

} level 3

O W oo Joy bW

l_\

ICiIk: Nomenclature

Cilk program is a set of procedures
A procedure is a sequence of threads

Cilk threads are:
represented by nodes in the DAG
Non-blocking: run to completion:

no waiting or suspension; atomic units of execution

procedure
wcilk int fib(int n) {
= if(n<”) { level 0
return |;
} else { level 1

int x = spawn fib(n-1);
int y = spawn fib(n-2);
sync;

| level 2
return x+y;

} level 3

O W oo Joy bW

l._\

ICiIk: Nomenclature

Cilk program is a set of procedures
A procedure is a sequence of threads

Cilk threads are:
represented by nodes in the DAG
Non-blocking: run to completion:

no waiting or suspension; atomic units of execution
procedure thread

yd

wcilk int fib(int n) {

L if(n<”) { level 0
return |;
} else { level 1

int x = spawn fib(n-1);
int y = spawn fib(n-2);
sync;

| level 2
return x+y;

} level 3

IProgramming Model

Threads can spawn children
Primary mechanism to create parallel work

downward edges connect a parent to its children

A child & parent can run concurrently.

Non-blocking threads = a child cannot return a value to its parent.
The parent spawns a successor that receives values from its children

IProgramming Model

Threads can spawn children
Primary mechanism to create parallel work
downward edges connect a parent to its children

A child & parent can run concurrently.

Non-blocking threads = a child cannot return a value to its parent.
The parent spawns a successor that receives values from its children

level 0 .

level 1

level 2

level 3

IProgramming Model

Threads can spawn children
Primary mechanism to create parallel work

downward edges connect a parent to its children

A child & parent can run concurrently.

Non-blocking threads = a child cannot return a value to its parent.
The parent spawns a successor that receives values from its children

procedure

level O

level 1

level 2

level 3

IProgramming Model

Threads can spawn children
Primary mechanism to create parallel work

downward edges connect a parent to its children

A child & parent can run concurrently.

Non-blocking threads = a child cannot return a value to its parent.
The parent spawns a successor that receives values from its children

procedure thread

level O ;

level 1

level 2

level 3

IProgramming Model

Threads can spawn children
Primary mechanism to create parallel work

downward edges connect a parent to its children

A child & parent can run concurrently.

Non-blocking threads = a child cannot return a value to its parent.
The parent spawns a successor that receives values from its children

procedure thread

level O

level 1

child

level 2

level 3

IProgramming Model

Threads can spawn children
Primary mechanism to create parallel work

downward edges connect a parent to its children

A child & parent can run concurrently.

Non-blocking threads = a child cannot return a value to its parent.
The parent spawns a successor that receives values from its children

procedure thread successor

level O
level 1
child

level 2

level 3

IProgramming Model

Thread & successor: parts of the same Cilk procedure.

Connected by horizontal arcs

Children’s returned values:
Received before their successor begins
They constitute data dependencies.

Connected by curved arcs

procedure thread successor

level O
level 1
child

level 2

level 3

I Execution Model

Compute: fib (4)

return rst;

Source: http://supertech.csail.mit.edu/cilk/lecture-1.pdf

I Explicit Continuation Passing

Nonblocking threads =» parent cannot block on children’s results.
Parent spawns a successor thread.

Called explicit continuation passing.

Cilk primitive to send a value from a closure to another:

send_argument(k, value)

sends value to the argument slot of a waiting
closure specified by continuation k.

spawn_ next

I Environment: Closures and Continuations

A closure is a data structure that has: e Continuation is a data type,

a pointer to the C function for T cont 1int x;

* Global reference to an empty slot of

a slot for each argument
a closure.

(inputs & continuations) .
* Implemented as 2 items:

* pointer to closure; (what thread)

Closure is ready when join counter == 0. * int value: slot number. (what input)

join counter: # of missing arg values

A closure is waiting otherwise.

waiting closure code

Closures allocated from a runtime heap x: [71 o

Join L7
counters ﬁ
6

arguments

ready closure

I Execution Time & Scheduling

Execution time of a Cilk program using P cores depends on:
Work (T,): time for Cilk program with 1 processor to complete.
Critical path (T_): the time to execute the longest directed path in the DAG.
T,>=T,/P
Tp>=T,
Parallelism = T/ T or (Work/Depth)

* Cilk uses run time scheduling: work stealing.

* For “fully strict” programs
e asymptotic optimality for: level 0

* space, time, & communication level |

level 2

level 3

I Nonblocking Threads: Pros, Cons

I Nonblocking Threads: Pros, Cons

Shallow call stack.

Simplify runtime system:

Completed threads leave C runtime stack empty.

Portable runtime implementation

I Nonblocking Threads: Pros, Cons

Shallow call stack.

Simplify runtime system:

Completed threads leave C runtime stack empty.

Portable runtime implementation

Con: programmer deals with continuation passing.

I Stealing Work: The Ready Deque

Work-stealing:
Process with no work selects a victim

Gets shallowest thread in victim’s spawn tree. level 0 [/
. . . next closure
Thieves choose victim processor randomly. level | [/J,m
level 2 [
Each closure has a level: LN
) level 3 E1
level(child) = level(parent) + 1
level 4 [/]
level(successor) = level(parent) n
k=N N N |
Each processor keeps a ready deque: e
| "R
Contains ready closures . \
. . next closure
The L™ element contains the list of all ready : o execue

closures whose level is L.

I Ready Deque

level 5

level 2 E

next closure

level 1 [/] / to steal

3]

=

3]

level 3 [

]

level 4 /]

level 5 E

3

=

e =

level 6 [

]

E

]

level 7 A \

next closure
to execllte

if (! readyDeque .isEmpty())
take deepest thread
else

steal shallowest thread from
readyDeque of randomly

selected victim

I Ready Deque

level 5

level 2 E

3]

=

3]

level 3 [

]

level 4 /]

level 5 E

next closure

level 1 [/] / to steal

3

=

e =

level 6 [

]

E

]

level 7 A \

next closure
to execllte

if (! readyDeque .isEmpty())
take deepest thread
else

steal shallowest thread from
readyDeque of randomly

selected victim

I Ready Deque

level E

fevel 2 E

3]

=

3]

level 3 [

]

level 4 /]

level 5 E

next closure

level 1 [/] / to steal

3

=

e =

level 6 [

]

E

]

level 7 A \

to execllte

Why steal shallowest closure?

if (! readyDeque .isEmpty())
take deepest thread
else

steal shallowest thread from

readyDeque of randomly

next closure selected victim

Why steal shallowest closure?

I Ready Deque They probably produce more work =2

level E

level 1 [/] / to steal

reduce communication.

if (! readyDeque .isEmpty())

next closure

level2 g take deepest thread
level 3 E—P
else
level 4 /]
level 5 [F->mB—rE— steal shallowest thread from
level 6 [—>E—»

readyDeque of randomly

level 7 /] \
next closure selected victim

to execllte

I Ready Deque

level E

level 1 [/] / to steal

Why steal shallowest closure?

They probably produce more work = reduce
communication.

Shallow threads more likely to be on critical path.

if (! readyDeque .isEmpty())

next closure

take deepest thread

fevel 2 E—l' 5
level 3 [~
else
level 4 /]
level 5 [>rB—>E—> steal shallowest thread from
level 6 [—>E—»

readyDeque of randomly

level 7 /] \
next closure selected victim

to execllte

ICiIk Language

Cilk is an extension of C * Declaring a thread:

thread T (<args>) { <stmts>}

Cilk programs are: _
* Tis preprocessed

preprocessed to C e Cfunction of 1 argument

linked with a runtime library * return type void.

* The 1 argument: points to closure

ICiIk Language

Cilk is an extension of C * Declaring a thread:

thread T (<args>) { <stmts>}

Cilk programs are: _
* Tis preprocessed

preprocessed to C e Cfunction of 1 argument

linked with a runtime library * return type void.

* The 1 argument: points to closure

Serial Elision: remove cilk keywords—>serial program

[

ICiIk Language

Cilk is an extension of C * Declaring a thread:

thread T (<args>) { <stmts>}

Cilk programs are: .
* Tis preprocessed

preprocessed to C e Cfunction of 1 argument

linked with a runtime library * return type void.

* The 1 argument: points to closure

Serial Elision: remove cilk keywords—>serial program

gcilk int fib(int n) {

= if(n<2) {
return | ;
} else {
int x = spawn fib(n-1);
int y = spawn fib(n-2);

sync;
return x+y;

O W o Joy Uk WwMNhE

r T
b

[

O W o Joy Uk WwMNhE

I Cilk Language
Cilk is an extension of C

Cilk programs are:

preprocessed to C

linked with a runtime library

e Declaring a thread:

thread T (<args>) { <stmts>}

* Tis preprocessed
e Cfunction of 1 argument
* return type void.

* The 1 argument: points to closure

Serial Elision: remove cilk keywords—>serial program

ocilk int fib(int n) { 1 eint fib(int n) {
B if (n<2) { 2 Z if (n<2) {
return |; 3 return |;
} else { » 4 } else {
int x = spawn fib(n-1); 5 int x = fib(n-1);
int y = spawn fib(n-2); 6 int y = fib(n-2);
sync; 7 return x+y;
return x+y; g | }
} 9 L}

r T
b

IConcIuding Remarks

Cilk illustrates a number of important (recurring) ideas:
DAG-based parallel execution model

Critical-path heuristic for available parallelism
Continuation passing

Work-stealing scheduling

Discussion/Food For Thought:
Is continuation passing style (CPS) difficult?
Why/why not?

ITitIe

Content

