
Chris Rossbach & Calvin Lin

cs380p

Parallel Runtimes: Cilk

Background

Cilk
DAG-based computation

Critical Path

Work-stealing

Continuation-passing

Outline

Review: Decomposition

Review: Decomposition

Domain v. Functional

Review: Decomposition

Domain v. Functional
Domain Decomposition

a.k.a. Data Parallel
Input domain
Output Domain

Review: Decomposition

Domain v. Functional
Domain Decomposition

a.k.a. Data Parallel
Input domain
Output Domain

Review: Decomposition

Domain v. Functional
Domain Decomposition

a.k.a. Data Parallel
Input domain
Output Domain

Functional Decomposition
a.k.a. Task Parallel
Independent Tasks
Pipelining

Review: Decomposition

Domain v. Functional
Domain Decomposition

a.k.a. Data Parallel
Input domain
Output Domain

Functional Decomposition
a.k.a. Task Parallel
Independent Tasks
Pipelining

Review: Decomposition

Domain v. Functional
Domain Decomposition

a.k.a. Data Parallel
Input domain
Output Domain

Functional Decomposition
a.k.a. Task Parallel
Independent Tasks
Pipelining

Real Problems: mix/nest

Review: Decomposition

Domain v. Functional
Domain Decomposition

a.k.a. Data Parallel
Input domain
Output Domain

Functional Decomposition
a.k.a. Task Parallel
Independent Tasks
Pipelining

Real Problems: mix/nest

Review: Decomposition

Domain v. Functional
Domain Decomposition

a.k.a. Data Parallel
Input domain
Output Domain

Functional Decomposition
a.k.a. Task Parallel
Independent Tasks
Pipelining

Real Problems: mix/nest

Serial Fibonacci:

Exercise: Parallelizing Fibonacci

Serial Fibonacci:

Exercise: Parallelizing Fibonacci

Parallel Fibonacci:

Serial Fibonacci:

Exercise: Parallelizing Fibonacci

Parallel Fibonacci:

Pros/Cons?

Serial Fibonacci:

Exercise: Parallelizing Fibonacci

Parallel Fibonacci:

Pros/Cons?

Challenges:
• Granularity/overheads
• Coupled algorithm, parallel structure
• Each level →more parallelism
• How to balance load?

Cilk

Goal:
Support dynamic, asynchronous, concurrent programs.

Cilk programmer optimizes:
Total work

Critical path

A Cilk computation:
Dynamic, directed acyclic graph (dag)

Cilk

Goal:
Support dynamic, asynchronous, concurrent programs.

Cilk programmer optimizes:
Total work

Critical path

A Cilk computation:
Dynamic, directed acyclic graph (dag)

Key idea(s):
• Programmer writes mostly algorithms
• Programmer identifies parallelism
• Runtime figures out mapping to machine

Cilk: Nomenclature

Cilk program is a set of procedures

A procedure is a sequence of threads

Cilk threads are:
represented by nodes in the DAG

Non-blocking: run to completion:

no waiting or suspension; atomic units of execution

Cilk: Nomenclature

Cilk program is a set of procedures

A procedure is a sequence of threads

Cilk threads are:
represented by nodes in the DAG

Non-blocking: run to completion:

no waiting or suspension; atomic units of execution

Cilk: Nomenclature

Cilk program is a set of procedures

A procedure is a sequence of threads

Cilk threads are:
represented by nodes in the DAG

Non-blocking: run to completion:

no waiting or suspension; atomic units of execution

Cilk: Nomenclature

Cilk program is a set of procedures

A procedure is a sequence of threads

Cilk threads are:
represented by nodes in the DAG

Non-blocking: run to completion:

no waiting or suspension; atomic units of execution
procedure

Cilk: Nomenclature

Cilk program is a set of procedures

A procedure is a sequence of threads

Cilk threads are:
represented by nodes in the DAG

Non-blocking: run to completion:

no waiting or suspension; atomic units of execution
procedure thread

Programming Model

Threads can spawn children

Primary mechanism to create parallel work

downward edges connect a parent to its children

A child & parent can run concurrently.

Non-blocking threads ➔ a child cannot return a value to its parent.

The parent spawns a successor that receives values from its children

Programming Model

Threads can spawn children

Primary mechanism to create parallel work

downward edges connect a parent to its children

A child & parent can run concurrently.

Non-blocking threads ➔ a child cannot return a value to its parent.

The parent spawns a successor that receives values from its children

Programming Model

Threads can spawn children

Primary mechanism to create parallel work

downward edges connect a parent to its children

A child & parent can run concurrently.

Non-blocking threads ➔ a child cannot return a value to its parent.

The parent spawns a successor that receives values from its children

procedure

Programming Model

Threads can spawn children

Primary mechanism to create parallel work

downward edges connect a parent to its children

A child & parent can run concurrently.

Non-blocking threads ➔ a child cannot return a value to its parent.

The parent spawns a successor that receives values from its children

procedure thread

Programming Model

Threads can spawn children

Primary mechanism to create parallel work

downward edges connect a parent to its children

A child & parent can run concurrently.

Non-blocking threads ➔ a child cannot return a value to its parent.

The parent spawns a successor that receives values from its children

procedure thread

child

Programming Model

Threads can spawn children

Primary mechanism to create parallel work

downward edges connect a parent to its children

A child & parent can run concurrently.

Non-blocking threads ➔ a child cannot return a value to its parent.

The parent spawns a successor that receives values from its children

procedure thread

child

successor

Programming Model

Thread & successor: parts of the same Cilk procedure.

Connected by horizontal arcs

Children’s returned values:

Received before their successor begins

They constitute data dependencies.

Connected by curved arcs

procedure thread

child

successor

Execution Model

Source: http://supertech.csail.mit.edu/cilk/lecture-1.pdf

sync;

Explicit Continuation Passing

Nonblocking threads ➔ parent cannot block on children’s results.

Parent spawns a successor thread.

Called explicit continuation passing.

Cilk primitive to send a value from a closure to another:

send_argument(k, value)
sends value to the argument slot of a waiting

closure specified by continuation k.

spawn

spawn_next

send_argument

parent

child

successor

Environment: Closures and Continuations

A closure is a data structure that has:

a pointer to the C function for T

a slot for each argument

(inputs & continuations)

join counter: # of missing arg values

Closure is ready when join counter == 0.

A closure is waiting otherwise.

Closures allocated from a runtime heap

• Continuation is a data type,

cont int x;

• Global reference to an empty slot of
a closure.

• Implemented as 2 items:
• pointer to closure; (what thread)

• int value: slot number. (what input)

Execution Time & Scheduling

Execution time of a Cilk program using P cores depends on:

Work (T1): time for Cilk program with 1 processor to complete.

Critical path (T): the time to execute the longest directed path in the DAG.

TP >= T1 / P

TP >= T

Parallelism = T1 / T or (Work/Depth)

• Cilk uses run time scheduling: work stealing.

• For “fully strict” programs

• asymptotic optimality for:

• space, time, & communication

Nonblocking Threads: Pros, Cons

Nonblocking Threads: Pros, Cons

Shallow call stack.

Simplify runtime system:

Completed threads leave C runtime stack empty.

Portable runtime implementation

Nonblocking Threads: Pros, Cons

Shallow call stack.

Simplify runtime system:

Completed threads leave C runtime stack empty.

Portable runtime implementation

Con: programmer deals with continuation passing.

Stealing Work: The Ready Deque

Work-stealing:
Process with no work selects a victim
Gets shallowest thread in victim’s spawn tree.

Thieves choose victim processor randomly.

Each closure has a level:

level(child) = level(parent) + 1

level(successor) = level(parent)

Each processor keeps a ready deque:

Contains ready closures

The Lth element contains the list of all ready

closures whose level is L.

Ready Deque

if (! readyDeque .isEmpty())

take deepest thread

else

steal shallowest thread from

readyDeque of randomly

selected victim

Ready Deque

if (! readyDeque .isEmpty())

take deepest thread

else

steal shallowest thread from

readyDeque of randomly

selected victim

Ready Deque

if (! readyDeque .isEmpty())

take deepest thread

else

steal shallowest thread from

readyDeque of randomly

selected victim

Why steal shallowest closure?

Ready Deque

if (! readyDeque .isEmpty())

take deepest thread

else

steal shallowest thread from

readyDeque of randomly

selected victim

Why steal shallowest closure?

They probably produce more work →

reduce communication.

Ready Deque

if (! readyDeque .isEmpty())

take deepest thread

else

steal shallowest thread from

readyDeque of randomly

selected victim

Why steal shallowest closure?

They probably produce more work → reduce

communication.

Shallow threads more likely to be on critical path.

Cilk Language

Cilk is an extension of C

Cilk programs are:

preprocessed to C

linked with a runtime library

• Declaring a thread:

thread T (<args>) { <stmts> }

• T is preprocessed
• C function of 1 argument

• return type void.

• The 1 argument: points to closure

Cilk Language

Cilk is an extension of C

Cilk programs are:

preprocessed to C

linked with a runtime library

• Declaring a thread:

thread T (<args>) { <stmts> }

• T is preprocessed
• C function of 1 argument

• return type void.

• The 1 argument: points to closure

Serial Elision: remove cilk keywords→serial program

Cilk Language

Cilk is an extension of C

Cilk programs are:

preprocessed to C

linked with a runtime library

• Declaring a thread:

thread T (<args>) { <stmts> }

• T is preprocessed
• C function of 1 argument

• return type void.

• The 1 argument: points to closure

Serial Elision: remove cilk keywords→serial program

Cilk Language

Cilk is an extension of C

Cilk programs are:

preprocessed to C

linked with a runtime library

• Declaring a thread:

thread T (<args>) { <stmts> }

• T is preprocessed
• C function of 1 argument

• return type void.

• The 1 argument: points to closure

Serial Elision: remove cilk keywords→serial program

Concluding Remarks

Cilk illustrates a number of important (recurring) ideas:

DAG-based parallel execution model

Critical-path heuristic for available parallelism

Continuation passing

Work-stealing scheduling

Discussion/Food For Thought:

Is continuation passing style (CPS) difficult?

Why/why not?

Content

Title

