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Exercise: Parallelizing Fibonacci

Parallel Fibonacci:

Pros/Cons?

Challenges: 
• Granularity/overheads
• Coupled algorithm, parallel structure
• Each level →more parallelism
• How to balance load?
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Cilk

Goal:
Support dynamic, asynchronous, concurrent programs.

Cilk programmer optimizes: 
Total work

Critical path

A Cilk computation:
Dynamic, directed acyclic graph (dag)

Key idea(s):
• Programmer writes mostly algorithms
• Programmer identifies parallelism
• Runtime figures out mapping to machine
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A procedure is a sequence of threads
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represented by nodes in the DAG
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Programming Model

Thread & successor: parts of the same Cilk procedure.

Connected by horizontal arcs

Children’s returned values: 

Received before their successor begins 

They constitute data dependencies.

Connected by curved arcs  

procedure thread

child

successor



Execution Model

Source: http://supertech.csail.mit.edu/cilk/lecture-1.pdf

sync;



Explicit Continuation Passing

Nonblocking threads ➔ parent cannot block on children’s results.

Parent spawns a successor thread.

Called explicit continuation passing.

Cilk primitive to send a value from a closure to another:

send_argument( k, value )
sends value to the argument slot of a waiting 

closure specified by continuation k.

spawn

spawn_next

send_argument

parent

child

successor



Environment: Closures and Continuations

A closure is a data structure that has:

a pointer to the C function for T

a slot for each argument 

(inputs & continuations)

join counter: # of missing arg values

Closure is ready when join counter == 0.

A closure is waiting otherwise.

Closures allocated from a runtime heap

• Continuation is a data type,

cont int x;

• Global reference to an empty slot of 
a closure.

• Implemented as 2 items:
• pointer to closure; (what thread)

• int value: slot number.  (what input)



Execution Time & Scheduling

Execution time of a Cilk program using P cores depends on:

Work (T1): time for Cilk program with 1 processor to complete.

Critical path (T): the time to execute the longest directed path in the DAG.

TP >= T1 / P

TP >= T

Parallelism = T1 / T or (Work/Depth)

• Cilk uses run time scheduling: work stealing.

• For “fully strict” programs

• asymptotic optimality for:

• space, time, & communication
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Nonblocking Threads: Pros, Cons

Shallow call stack. 

Simplify runtime system:

Completed threads leave C runtime stack empty.

Portable runtime implementation

Con: programmer deals with continuation passing.



Stealing Work: The Ready Deque

Work-stealing: 
Process with no work selects a victim
Gets shallowest thread in victim’s spawn tree.

Thieves choose victim processor randomly.

Each closure has a level:

level( child ) = level( parent ) + 1

level( successor ) = level( parent )

Each processor keeps a ready deque:

Contains ready closures

The Lth element contains the list of all ready 

closures whose level is L.
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Ready Deque

if ( ! readyDeque .isEmpty()  )

take deepest thread

else

steal shallowest thread from 

readyDeque of randomly 

selected victim

Why steal shallowest closure?

They probably produce more work → reduce

communication.

Shallow threads more likely to be on critical path.
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• C function of 1 argument

• return type void.
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Concluding Remarks

Cilk illustrates a number of important (recurring) ideas:

DAG-based parallel execution model

Critical-path heuristic for available parallelism

Continuation passing

Work-stealing scheduling

Discussion/Food For Thought: 

Is continuation passing style (CPS) difficult?

Why/why not?
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