
Chris Rossbach and Calvin Lin

cs380p

Transactions

Background

Transactions

Outline

Transactions

3 Programming Model Dimensions:
How to specify computation

How to specify communication

How to specify coordination/control transfer

Threads, Futures, Events etc.
Mostly about how to express control

Transactions
Mostly about how to deal with shared state (coordination)

Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir)

{
delete(file, old-dir)

add(file, new-dir)

}

create(file, dir)

{
alloc-disk(file, header, data)

write(header)

add (file, dir)

}

Problem: crash in the middle
• Modified data in memory/caches

• Even if in-memory data is durable, multiple disk updates

Problems: Unreliability, Conflicts

Want reliable update of two resources (e.g. two disks, machines…)
Move file from A to B

Create file (update free list, inode, data block)

Bank transfer (move $100 from my account to VISA account)

Move directory from server A to B

Machines can crash, messages can be lost, or conflict

Can we use messages? E.g.
with retries over unreliable
medium to synchronize with
guarantees?

No.
Not even if all messages get
through!

General’s paradox

Two generals on separate mountains

Can only communicate via messengers

Messengers can get lost or captured

Need to coordinate attack
attack at same time good, different times bad!

General A → General B: let’s attack at dawn

General B → General A: OK, dawn.

General A → General B: Check. Dawn it is.

General B → General A: Alright already—dawn.

…

• Even if all messages
delivered, can’t
assume– maybe some
message didn’t get
through.

• No solution: one of the
few CS impossibility
results.

Transactions can help
(but can’t solve it)

Solves weaker problem:
2 things will either happen or not

not necessarily at the same time

Core idea: one entity has power to say yes/no for all
Local txn: one update (TxEND) irrevocably triggers several

Distributed transactions
2 phase commit

One machine has final say for all machines

Other machines bound to comply

What is the role of
synchronization here?

ACID Semantics

Atomic – all updates happen or none do

Consistent – system invariants maintained across updates

Isolated – no visibility into partial updates

Durable – once done, stays done

Are subsets ever appropriate?
When would ACI be useful?

ACD?

Isolation only?

What are they?
• A
• C
• I
• D

begin transaction;

x = read(“x-values”,);

y = read(“y-values”,);

z = x+y;

write(“z-values”, z,);

commit transaction;

Transactional Programming Model

begin transaction;

x = read(“x-values”,);

y = read(“y-values”,);

z = x+y;

write(“z-values”, z,);

commit transaction;

What has changed from
previous programming
models?

Transactions: Implementation

Key idea: turn multiple updates into a single one

Many implementation Techniques
Two-phase locking

Timestamp ordering

Optimistic Concurrency Control

Journaling

2,3-phase commit

Speculation-rollback

Single global lock

Compensating transactions

Key problems:
• output commit
• synchronization

Implementing Transactions

BEGIN_TXN();

x = read(“x-values”,);

y = read(“y-values”,);

z = x+y;

write(“z-values”, z,);

COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
LOCK(single-global-lock);

}

COMMIT_TXN() {
UNLOCK(single-global-lock);

}

Pros/Cons?

Two-phase locking

Phase 1: only acquire locks in order

Phase 2: unlock at commit

avoids deadlock

BEGIN_TXN();

x = x + 1
y = y – 1

COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
rwset = Union(rset, wset);
rwset = sort(rwset);
forall x in rwset

LOCK(x);
}

COMMIT_TXN() {
forall x in rwset

UNLOCK(x);
}

Pros/Cons?

A: grab locks
A: modify x, y,
A: unlock y, x
B: grab locks
B: update x, y
B: unlock y, x
B: COMMIT
A: CRASH What happens on failures?

B commits changes
that depend on A’s
updates!

Two-phase commit

N participants agree or don’t (atomicity)

Phase 1: everyone “prepares”

Phase 2: Master decides and tells everyone to actually commit

2PC: Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Example—distributed FS move(foo, server1:/bar, server2:/baz):
REQ for server1: delete foo from /bar
REQ for server2: add foo to /baz

Failure case:
server1 logs rm /bar/foo, VOTE_COMMIT
server1 sends VOTE_COMMIT
server2 decides permission problem
server2 writes/sends VOTE_ABORT

Success case:
server1 logs rm /bar/foo, VOTE_COMMIT
server1 sends VOTE_COMMIT
server2 writes add foo to /baz/
server2 writes/sends VOTE_COMMIT

2PC: Phase 2

Case 1: receive VOTE_ABORT or timeout
Write GLOBAL_ABORT to log

send GLOBAL_ABORT to participants

Case 2: receive VOTE_COMMIT from all
Write GLOBAL_COMMIT to log

send GLOBAL_COMMIT to participants

Participants receive decision, write GLOBAL_* to log

2PC corner cases

Phase 1

1. Coordinator sends REQUEST to all

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT
local log

5. Send VOTE_COMMIT or VOTE_ABORT
to coordinator

Phase 2

• Case 1: receive VOTE_ABORT or timeout

• Write GLOBAL_ABORT to log

• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all

• Write GLOBAL_COMMIT to log

• send GLOBAL_COMMIT to participants

• Participants recv, write GLOBAL_* to log

• What if participant crashes at X?
• Coordinator crashes at Y?
• Participant crashes at Z?
• Coordinator crashes at W?

Z

X
Y

W

2PC limitation(s)

Coordinator crashes at W, never wakes up

All nodes block forever!

Can participants ask each other what happened?

2PC: always has risk of indefinite blocking

Solution: (yes) 3 phase commit!
Reliable replacement of crashed “leader”

2PC often good enough in practice

Nested Transactions

Composition of transactions
E.g. interact with multiple organizations, each supporting txns
Travel agency: canonical example

Nesting: view transaction as collection of:
actions on unprotected objects
protected actions that my be undone or redone
real actions that may be deferred but not undone
nested transactions that may be undone

Nested transaction may return compensating transaction

Parent includes compensating transaction in log of parent transaction

Invoke compensating transactions from log if parent txn aborted

Consistent, atomic, durable, but not necessarily isolated

Concluding Remarks

• Transactions: a great abstraction
• Solve reliability and concurrency problems
• Transactional Memory: an implementation

• Solves only concurrency problems
• Implementable in many ways (HW, SW, hybrid,…)

