
Chris Rossbach and Calvin Lin

cs380p

Transactional Memory

Background
Transactional Memory

Acknowledgements: Yoav Cohen for some STM slides

Outline

Transactional Memory

3 Programming Model Dimensions:
How to specify computation
How to specify communication
How to specify coordination/control transfer

Threads, Futures, Events etc.
Mostly about how to express control

Transactional Memory
Shared state: synchronization through memory

co
m

m
un

ic
at

io
n

computatio
n

coordination

TM: Motivation

• Threads/Locks have a *lot* of down-sides:
• Tuning parallelism for different environments
• Load balancing/assignment brittle
• Shared state requires locks à

• Priority inversion
• Deadlock
• Incorrect synchronization

• …

• TM: restructure programming model à no locks!

4

Transactional Memory: ACI

Transactional Memory :

Make multiple memory accesses atomic

All or nothing – Atomicity
No interference – Isolation

Correctness – Consistency
No durability, for obvious reasons

Keywords : Commit, Abort,
Speculative access, Checkpoint

remove(list, x) {
lock(list);
pos = find(list, x);
if(pos)

erase(list, pos);
unlock(list);

}

remove(list, x) {

TXBEGIN();

pos = find(list, x);
if(pos)

erase(list, pos);
TXEND();

}

The Real Goal
remove(list, x) {

atomic {

pos = find(list, x);
if(pos)

erase(list, pos);
}

}

• Transactions: super-awesome
• TM: also super-awesome, but:
• Transactions != TM
• TM à implementation technique
• Often presented as programmer

abstraction

remove(list, x) {
lock(list);
pos = find(list, x);
if(pos)

erase(list, pos);
unlock(list);

}

remove(list, x) {

TXBEGIN();

pos = find(list, x);
if(pos)

erase(list, pos);
TXEND();

}

A Simple TM

remove(list, x) {
begin_tx();
pos = find(list, x);
if(pos)

erase(list, pos);
end_tx();

}

Actually, this
works fine…

But how can we
improve it?

Concurrency Control Revisited

Consider a hash-table

Concurrency Control Revisited

ht.add();

if(ht.contains())

ht.del();

thread T1
ht.add();

if(ht.contains())
ht.del();

thread T2

Concurrency Control Revisited

ht.lock()

ht.add();

if(ht.contains())

ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())
ht.del();

ht.unlock();

thread T2
lock

Pessimistic concurrency control

ht.lock();

ht.add();

if(ht.contains())
ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())
ht.del();

ht.unlock();

thread T2
lock

Optimistic concurrency control

ht.lock();

ht.add();

if(ht.contains())
ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())
ht.del();

ht.unlock();

thread T2
lock

What do we do when
same data is accessed?

TM Primer

Key Ideas:
} Critical sections

execute concurrently
} Conflicts are

detected dynamically
} If conflict

serializability is
violated, rollback

Key Abstractions:
Primitives

xbegin, xend, xabort

Conflict
Φ != {W_A} {W_B U W_R}

Contention Manager
Need flexible policy

TM Basics: Example

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set
R{ }

W{}
A

PC: 2

Working Set
R{ }
W{}

A

PC: 3

Working Set
R{ }

W{}
A,B

PC: 3

Working Set
R{ }

W{}
A,B

PC: 6 PC: 4PC: 7

Working Set
R{ }

W{}
A,B,C

PC: 7

Working Set
R{ }
W{ }

A,B
C

CONFLICT:
C is in the read set of
cpu0, and in the write
set of cpu1

Assume contention
manager decides cpu1
wins:

cpu0 rolls back

cpu1 commits

PC: 0

Working Set
R{}
W{}

PC: 8

Working Set
R{}
W{}

TM Implementation
Data Versioning
• How to manage uncommitted state?
• Eager Versioning
• Lazy Versioning

Conflict Detection and Resolution
• How to tell when same data are touched?
• Pessimistic Concurrency Control
• Optimistic Concurrency Control

Conflict Detection Granularity
•What is the unit of protected state?
• Object Granularity
•Word Granularity
• Cache line Granularity

ve
rs

io
ni

ng

granularity

conflict detection

TM Design Alternatives
Hardware (HTM)

Caches track RW set, HW speculation/checkpoint

Software (STM)
Instrument RW
Inherit TX Object

Hardware

Memory

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Hardware

Memory
Th

re
ad

 1

Th
re

ad
 2

Th
re

ad
 3

STM

Hardware Transactional Memory

Idea: Track read / write sets in HW
commit / rollback in hardware as well

Cache coherent hardware already manages much of this
Basic idea: cache == speculative storage

HTM ~= smarter cache

Can support many different TM paradigms
Eager, lazy
optimistic, pessimistic

Hardware TM

“Small” modification to cache

Core

Regular
Accesses

L1 $

Ta
g

Da
ta

L1 $

Core

Regular
Accesses

Transactional $L1 $

Ta
g

Da
ta Ta
g

Ad
dl

. T
ag

O
ld

 D
at

a

N
ew

 D
at

a

Transactional
Accesses

L1 $

Key ideas
• Checkpoint architectural state
• Caches: ‘versioning’ for memory
• Change coherence protocol
• Conflict detection in hardware
• ‘Commit’ tx if no conflict
• ‘Abort’ on conflict
• ‘Retry’ aborted transaction

Pros/Cons?

Case Study: SUN Rock

Major challenge: diagnosing cause of Transaction aborts
Necessary for intelligent scheduling of transactions
Also for debugging code
debugging the processor architecture / µarchitecture

Many unexpected causes of aborts
Rock v1 diagnostics unable to distinguish distinct failure modes

A Simple STM

remove(list, x) {
begin_tx();
pos = find(list, x);
if(pos)

erase(list, pos);
end_tx();

}

Is this Transactional
Memory?

Yes…just not optimistic

A Better STM: System Model

System == <threads, memory>
Memory cell supports TM operations:

§Writei(L,v) - thread i writes v to L
§Readi(L,v) - thread i reads v from L
§LLi(L,v) - thread i reads v from L, marks L read by I
§SCi(L,v) - thread i writes v to L

§returns success if L is marked as read by i.
§Otherwise it returns failure. Memory

STM Design Overview

Memory

Ownerships

status
version
size
locs[]
oldValues[]

Rec1

status
version
size
locs[]
oldValues[]

Rec2

status
version
size
locs[]
oldValues[]

Recn

This is the
shared memory,
(STM Object)

Pointers to
threads
(Rec
Objects)

HTM vs. STM

Hardware Software

Fast (due to hardware operations) Slow (due to software validation/commit)

Light code instrumentation Heavy code instrumentation

HW buffers keep amount of metadata low Lots of metadata

No need of a middleware Runtime library needed

Only short transactions allowed (why?) Large transactions possible

How could you get the best of both?

Hybrid-TM

Best-effort HTM (use STM for long txns)
Possible conflicts between HW,SW and HW-SW Txn

What kind of conflicts do SW-Txns care about?
What kind of conflicts do HW-Txns care about?

Some initial proposals:
HyTM: uses an ownership record per memory location (overhead?)
PhTM: HTM-only or (heavy) STM-only, low instrumentation
Current HW essentially requires something like this

Concluding Remarks

• Transactions: a great abstraction
• Solve reliability and concurrency problems
• Transactional Memory: an implementation

• Solves only concurrency problems
• Implementable in many ways (HW, SW, hybrid,…)

