ITransactionaI Memory

Chris Rossbach and Calvin Lin
cs380p

IOutIine

Background

Transactional Memory

Acknowledgements: Yoav Cohen for some STM slides

ITransactionaI Memory

3 Programming Model Dimensions:
How to specify computation
How to specify communication

How to specify coordination/control transfer

communication

Threads, Futures, Events etc.

Mostly about how to express control

coordination

Transactional Memory

Shared state: synchronization through memory

TM: Motivation

* Threads/Locks have a *lot* of down-sides:

uning parallelism for different environmen x
<<T’mevg,/assisg,nment brittle
 Shared state requires locks =
* Priority inversion

* Deadlock
* Incorrect synchronizatio

e TM: restructure programming model = no locks!

ITransactional Memory

Transactional Memory :

Make multiple memory accesses atomic
All or nothing — Atomicity

No interference — Isolation

Correctness — Consistency

No durability, for obvious reasons

Keywords : Commit, Abort,

Speculative access, Checkpoint

- ACI

remove(list, x) {
lock(list);
pos = find(list, x);
if(pos)
erase(list, pos);
unlock(list);

¥

remove(list, x) {
TXBEGIN();
pos = find(list, x);
if(pos)
erase(list, pos);
TXEND();

The Real Goal

remove(list, x) { remove
atomic {

pos = find(list, x);
if(pos)

erase(list, pos);

}

* Transactions: super-awesome
 TM: also super-awesome, but:
* Transactions I=TM
 TM - implementation technique
e Often presented as programmer
abstraction

remove(list, x) {
begin_tx();

. pos = find(list, x);
IA Simple TM -
erase(list, pos);
end_tx();
pthread mutex t g global lock; }

begin tx() {
T pthread mutex lock(g global lock);

}
end Ex() {1
T pthread mutex unlock(g global lock);
}
aboreEf{) 4
T // can't happen
} Actually, this

Well CRili -

But how can we
improve it?

Concurrency Control Revisited

Consider a hash-table

00— 0B -G -0

1 b @

2 wmmpd

3 =

4 ===

5 =0 -0

Concurrency Control Revisited

thread T1 thread T2
ht.add();

ht.add();

if(ht.contains(({))

B if(ht.contains(@))
0 g 0 g ht.del((@Q);
&)

ht.del(-);x

Concurrency Control Revisited

1 ———p

2 wmmpd
3 =)
4 w==)p

12— g

E

3

;-
-8
a8
-8

thread T1 thread T2
ht.lock() ht.lock();
ht.add(); ht.add();

if(ht.contains(({))
if(ht.contains((@l))

ht.del(@®);

ht.del (@B);
ht.unlock(); ht.unlock();

Pessimistic concurrency control

thread T1 thread T2
ht.lock(); ht.lock();
ht.add({)); ht.add({));

if(ht.contains(@))) if(ht.contains({C])))

ht.del(@m); ht.del(@);

ht.unlock(); ht.unlock();

Optimistic concurrency control

What do we do when
same data is accessed?

thread T1 thread T2
ht.lock(); ht.lock();

ht.add({)); ht.add({));
2 m=m D) | . . .
3 ey) if(ht.contains(@)) if(ht.contains({C])))
4w () ht.del(@) ; ht.del (@) ;
5:"“ ht.unlock(); ht.unlock();

ITIVI Primer

Key Ideas: Key Abstractions:

» Critical sections Primitives
execute concurrently xbegin, xend, xabort

» Conflicts are .
Conflict

detected dynamically o, rypr v 1R, U W)

» If C_On_ﬂICt. o Contention Manager
serializability is Need flexible policy

violated, rollback

I TM Basics: Example

cpu 1
PC: 8
Working Set Working Set
R{} 0: xbegin 0: xbegin; R{}
W{ 1: read A 1: read A Wi}
2:read B 2:read B
3: if(cpu % 2) 3: if(cpu % 2)
4: write C 4: write C
5: else 9: else
6: read C 6: read C
7 ... 7 ...
8: xend 8: xend

Assume Contention
Rana0g! decides ery
cpu% and in the write
sptiBfrofia back

cpul commits

cpu 1
IL_Pc:8]
'1 Working Set Il Working Set
= rq? A: 0: xbegin I:> 0: xbegin; r(@%
° W 1:read A 1:read A W
w 2:read B = 2 ead B
TM Implementation — e
4: write C ¥ 4: writeC
5: else 5: else
¥ 6: readC 6: fead C
= .. ¥ | [:...
8: xend = 8:xend

* How to manage uncommitted state?
* Eager Versioning
* Lazy Versioning

versioning

* How to tell when same data are touched?
* Pessimistic Concurrency Control
* Optimistic Concurrency Control

confilict detectiop

* What is the unit of protected state?
* Object Granularity

* Word Granularity

* Cache line Granularity

ITI\/I Design Alternatives

Hardware (HTM)
Caches track RW set, HW speculation/checkpoint

Software (STM)

Instrument RW
Inherit TX Object

Hardware Hardware

— (@] on
O O O
© O O
() v ()
S S S
{ i (i
= — —

I Hardware Transactional Memory

ldea: Track read / write sets in HW
commit / rollback in hardware as well

Cache coherent hardware already manages much of this

Basic idea: cache == speculative storage
HTM ~= smarter cache

Can support many different TM paradigms
Eager, lazy
optimistic, pessimistic

Key ideas

* Checkpoint architectural state
I H a rd Wa re T I\/I * Caches: ‘versioning’ for memory

* Change coherence protocol

* Conflict detection in hardware

” * ‘Commit’ tx if no conflict

modification to cache

o
Smal « ‘“Abort’ on conflict

* ‘Retry’ aborted transaction

Transactional
Accesses

Regular
Accesses

Pros/Cons?

Case Study: SUN Rock

Major challenge: diagnosing cause of Transaction aborts
Necessary for intelligent scheduling of transactions

Also for debugging code
debugging the processor architecture / parchitecture

Many unexpected causes of aborts

Rock v1 diagnostics unable to distinguish distinct failure modes

[Mask | Name | Description and example cause

0x001 | EXOG Exogenous - Intervening code has run: cpe register contents are invalid.
0x002 | COH Coherence - Conflicting memory operation.

0x004 | TCC Trap Instruction - A trap instruction evaluates to “taken”

0x008 | INST Unsupported Instruction - Instruction not supported inside transactions.
0x010 | PREC Precise Exception - Execution generated a precise exception.

0x020 | ASYNC | Async - Received an asynchronous interrupt.

0x040 | SIZ Size - Transaction write set exceeded the size of the store queve.

0x080 | LD Load - Cache line in read set evicted by transaction.

0x100 | ST Store - Data TLB miss on a store.

0x200 | CTI Control transfer - Mispredicted branch.

0x400 | FP Floating point - Divide instruction.

0x3800 | UCTI Unresolved control transfer - branch executed withowt resolving load on which it depends

Table 1. cps register: bit definitions and example failure reasons that set them.

remove(list, x) {
begin_tx();

. pos = find(list, x);
IA Simple STM)
erase(list, pos);
end_tx();
pthread mutex t g global lock; }

begin tx() {
T pthread mutex lock(g global lock);

}
end Ex() {1
T pthread mutex unlock(g global lock);
}
aboreEf{) 4
T // can't happen
}

Is this Transactional

Memory?
Yes...just not optimistic

IA Better STM: System Model

System == <threads, memory>

Memory cell supports TM operations:
»\Writel(L,v) - thread | writes v to L
mRead(L,v) - thread i reads v from L
uLi(L,v) - thread i reads v from L, marks L read by |

aSCi(L,v) - thread i writes v to L
=returns success if L is marked as read by i.
=QOtherwise it returns failure.

ISTIVI Design Overview

IHTM vs. STM

Fast (due to hardware operations) Slow (due to software validation/commit)
Light code instrumentation Heavy code instrumentation

HW buffers keep amount of metadata low Lots of metadata

No need of a middleware Runtime library needed

Only short transactions allowed (why?) Large transactions possible

How could you get the best of both?

| Hybrid-T™

Best-effort HTM (use STM for long txns)

Possible conflicts between HW,SW and HW-SW Txn
What kind of conflicts do SW-Txns care about?
What kind of conflicts do HW-Txns care about?

Some initial proposals:
HyTM: uses an ownership record per memory location (overhead?)
PhTM: HTM-only or (heavy) STM-only, low instrumentation
Current HW essentially requires something like this

IConcIuding Remarks

* Transactions: a great abstraction
* Solve reliability and concurrency problems
* Transactional Memory: an implementation
* Solves only concurrency problems
* Implementable in many ways (HW, SW, hybrid,...)

