
Chris Rossbach and Calvin Lin

cs380p

Parallel Architectures



Outline

Over the next few classes:

Background from many areas
Architecture

Vector processors

Hardware multi-threading

Graphics
Graphics pipeline

Graphics programming models

Algorithms

parallel architectures → parallel algorithms

Programming GPUs
CUDA

Basics: getting something working

Advanced: making it perform



Outline

Over the next few classes:

Background from many areas
Architecture

Vector processors

Hardware multi-threading

Graphics
Graphics pipeline

Graphics programming models

Algorithms

parallel architectures → parallel algorithms

Programming GPUs
CUDA

Basics: getting something working

Advanced: making it perform

This 
lecture



A Modern GPU



A Modern GPU



A Modern GPU



A Modern GPU

80 SMs



A Modern GPU

80 SMs
64 cores/SM
5210 threads!
15.7 TFLOPS



A Modern GPU

80 SMs
64 cores/SM
5210 threads!
15.7 TFLOPS

All super-computers 
in the world!



A Modern GPU

80 SMs
64 cores/SM
5210 threads!
15.7 TFLOPS



A Modern GPU

80 SMs
64 cores/SM
5210 threads!
15.7 TFLOPS

640 Tensor cores



A Modern GPU

80 SMs
64 cores/SM
5210 threads!
15.7 TFLOPS

640 Tensor cores
HBM2 memory

4096-bit bus
No cache coherence!



A Modern GPU

80 SMs
64 cores/SM
5210 threads!
15.7 TFLOPS

640 Tensor cores
HBM2 memory

4096-bit bus
No cache coherence!

16 GB memory
PCIe-attached



Chapter 1

Understanding the machine



Architecture Review: Pipelines

Processor algorithm: 
main() { 

while(true) {

do_next_instruction();

}



Architecture Review: Pipelines

Processor algorithm: 
main() { 

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}



Architecture Review: Pipelines

Processor algorithm: 
main() { 

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}



Architecture Review: Pipelines

Processor algorithm: 
main() { 

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}



Architecture Review: Pipelines

Processor algorithm: 
main() { 

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?



Architecture Review: Pipelines

Processor algorithm: 
main() { 

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?



Multi-core/SMPs



Multi-core/SMPs



Multi-core/SMPs



Multi-core/SMPs



Multi-core/SMPs
main() {

for(i=0; i<CORES; i++) {

pthread_create(

do_next_instruction());

}

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}



Multi-core/SMPs
main() {

for(i=0; i<CORES; i++) {

pthread_create(

do_next_instruction());

}

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

• Pros: Simple
• Cons: programmer has to find the parallelism!



Multi-core/SMPs
main() {

for(i=0; i<CORES; i++) {

pthread_create(

do_next_instruction());

}

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Other techniques extract 
parallelism here, try to let the 

machine find parallelism

• Pros: Simple
• Cons: programmer has to find the parallelism!



Superscalar processors



Superscalar processors
Remove extra 

instruction streams



Superscalar processors



Superscalar processors



Superscalar processors
main() {

for(i=0; i<CORES; i++)

pthread_create(decode_exec);

while(true) {

instruction = fetch();

enqueue(instruction);

}

}

decode_exec() {

instruction = dequeue();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}



Superscalar processors
main() {

for(i=0; i<CORES; i++)

pthread_create(decode_exec);

while(true) {

instruction = fetch();

enqueue(instruction);

}

}

decode_exec() {

instruction = dequeue();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Doesn’t look that different does it? Why do it?



Superscalar processors
main() {

for(i=0; i<CORES; i++)

pthread_create(decode_exec);

while(true) {

instruction = fetch();

enqueue(instruction);

}

}

decode_exec() {

instruction = dequeue();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Doesn’t look that different does it? Why do it?

Enables independent instruction parallelism.



Superscalar processors
main() {

for(i=0; i<CORES; i++)

pthread_create(decode_exec);

while(true) {

instruction = fetch();

enqueue(instruction);

}

}

decode_exec() {

instruction = dequeue();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Doesn’t look that different does it? Why do it?

Enables independent instruction parallelism.



Superscalar processors
main() {

for(i=0; i<CORES; i++)

pthread_create(decode_exec);

while(true) {

instruction = fetch();

enqueue(instruction);

}

}

decode_exec() {

instruction = dequeue();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Doesn’t look that different does it? Why do it?

independent

Enables independent instruction parallelism.



Vector/SIMD processors



Vector/SIMD processors



Vector/SIMD processors

Why decode same instruction 
over and over?



Vector/SIMD processors



Vector/SIMD processors
main() {

for(i=0; i<CORES; i++)

pthread_create(exec);

while(true) {

ops, regs = fetch_decode();

enqueue(ops, regs);

}

}

exec() {

ops, regs = dequeue(;

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}



Vector/SIMD processors
main() {

for(i=0; i<CORES; i++)

pthread_create(exec);

while(true) {

ops, regs = fetch_decode();

enqueue(ops, regs);

}

}

exec() {

ops, regs = dequeue(;

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Single instruction stream, multiple computations



Vector/SIMD processors
main() {

for(i=0; i<CORES; i++)

pthread_create(exec);

while(true) {

ops, regs = fetch_decode();

enqueue(ops, regs);

}

}

exec() {

ops, regs = dequeue(;

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Single instruction stream, multiple computations

But now all my instructions need multiple operands!



Vector Processors

Process multiple data elements simultaneously.

Common in supercomputers of the 1970’s 80’s and 90’s.

Modern CPUs support some vector processing instructions
Usually called SIMD

Can operate on few vector elements per clock cycle in a pipeline or, 
SIMD operate on all per clock cycle



Vector Processors

Process multiple data elements simultaneously.

Common in supercomputers of the 1970’s 80’s and 90’s.

Modern CPUs support some vector processing instructions
Usually called SIMD

Can operate on few vector elements per clock cycle in a pipeline or, 
SIMD operate on all per clock cycle

• 1962 University of Illinois Illiac IV - completed 1972 → 64 ALUs 100-150 MFlops

• (1973) TI’s Advance Scientific Computer (ASC) 20-80 MFlops

• (1975) Cray-1 first to have vector registers instead of keeping data in memory



Vector Processors

Process multiple data elements simultaneously.

Common in supercomputers of the 1970’s 80’s and 90’s.

Modern CPUs support some vector processing instructions
Usually called SIMD

Can operate on few vector elements per clock cycle in a pipeline or, 
SIMD operate on all per clock cycle

• 1962 University of Illinois Illiac IV - completed 1972 → 64 ALUs 100-150 MFlops

• (1973) TI’s Advance Scientific Computer (ASC) 20-80 MFlops

• (1975) Cray-1 first to have vector registers instead of keeping data in memory

Single instruction stream, multiple data →
Programming model has to change



When does vector processing help?



When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput? 



When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput? 

Only helps if memory can keep the pipeline busy!



HW multi-threading



HW multi-threading

Address memory bottleneck



HW multi-threading

Address memory bottleneck
Share exec unit across 

Instruction streams
Switch on stalls



HW multi-threading

Address memory bottleneck
Share exec unit across 

Instruction streams
Switch on stalls



HW multi-threading

Address memory bottleneck
Share exec unit across 

Instruction streams
Switch on stalls



HW multi-threading

Address memory bottleneck
Share exec unit across 

Instruction streams
Switch on stalls

Looks like multiple cores to the OS



HW multi-threading

Address memory bottleneck
Share exec unit across 

Instruction streams
Switch on stalls

Looks like multiple cores to the OS
Three variants:

Coarse
Fine-grain
Simultaneous



Running Example

Thread A Thread B Thread C Thread D

• Colors → pipeline full
• White → stall



Coarse-grain Multi-threading



Coarse-grain Multi-threading

Single thread run until costly stall

e.g. 2nd level cache miss



Coarse-grain Multi-threading

Single thread run until costly stall

e.g. 2nd level cache miss

Another thread starts during stall

Pipeline fill time requires several 
cycles!



Coarse-grain Multi-threading

Single thread run until costly stall

e.g. 2nd level cache miss

Another thread starts during stall

Pipeline fill time requires several 
cycles!

Does not cover short stalls



Coarse-grain Multi-threading

Single thread run until costly stall

e.g. 2nd level cache miss

Another thread starts during stall

Pipeline fill time requires several 
cycles!

Does not cover short stalls

Hardware support required

PC and register file for each thread 

little other hardware

Looks like another CPU to OS



Coarse-grain Multi-threading

Single thread run until costly stall

e.g. 2nd level cache miss

Another thread starts during stall

Pipeline fill time requires several 
cycles!

Does not cover short stalls

Hardware support required

PC and register file for each thread 

little other hardware

Looks like another CPU to OS



Coarse-grain Multi-threading

Single thread run until costly stall

e.g. 2nd level cache miss

Another thread starts during stall

Pipeline fill time requires several 
cycles!

Does not cover short stalls

Hardware support required

PC and register file for each thread 

little other hardware

Looks like another CPU to OS



Fine-grained multithreading



Fine-grained multithreading
Two+ threads interleave instructions

Round-robin fashion

Skip stalled threads



Fine-grained multithreading
Two+ threads interleave instructions

Round-robin fashion

Skip stalled threads

Hardware support required
Separate PC and register file for 
each thread

Hardware to control alternating 
pattern



Fine-grained multithreading
Two+ threads interleave instructions

Round-robin fashion

Skip stalled threads

Hardware support required
Separate PC and register file for 
each thread

Hardware to control alternating 
pattern

Naturally hides delays
Data hazards, Cache misses

Pipeline runs with rare stalls



Fine-grained multithreading
Two+ threads interleave instructions

Round-robin fashion

Skip stalled threads

Hardware support required
Separate PC and register file for 
each thread

Hardware to control alternating 
pattern

Naturally hides delays
Data hazards, Cache misses

Pipeline runs with rare stalls

Does not make full use of multi-issue 
architecture



Fine-grained multithreading
Two+ threads interleave instructions

Round-robin fashion

Skip stalled threads

Hardware support required
Separate PC and register file for 
each thread

Hardware to control alternating 
pattern

Naturally hides delays
Data hazards, Cache misses

Pipeline runs with rare stalls

Does not make full use of multi-issue 
architecture



Simultaneous Multithreading (SMT)

Skip A

Skip C



Simultaneous Multithreading (SMT)

Instructions from multiple threads issued per cycle
Uses register renaming 

dynamic scheduling facility of multi-issue 
architecture

Skip A

Skip C



Simultaneous Multithreading (SMT)

Instructions from multiple threads issued per cycle
Uses register renaming 

dynamic scheduling facility of multi-issue 
architecture

Needs more hardware support
Register files, PC’s for each thread

Temporary result registers before commit

Support to sort out which threads get results from 
which instructions

Skip A

Skip C



Simultaneous Multithreading (SMT)

Instructions from multiple threads issued per cycle
Uses register renaming 

dynamic scheduling facility of multi-issue 
architecture

Needs more hardware support
Register files, PC’s for each thread

Temporary result registers before commit

Support to sort out which threads get results from 
which instructions

Maximizes utilization of execution units Skip A

Skip C



Simultaneous Multithreading (SMT)

Instructions from multiple threads issued per cycle
Uses register renaming 

dynamic scheduling facility of multi-issue 
architecture

Needs more hardware support
Register files, PC’s for each thread

Temporary result registers before commit

Support to sort out which threads get results from 
which instructions

Maximizes utilization of execution units Skip A

Skip C

Latency 
Improvement



Why Vector and MT Background?

GPU: 

• A very wide vector machine

• Massively multi-threaded to hide memory latency

• Originally designed for graphics pipelines…



Graphics ~= Rendering
Inputs:

3D world model(objects, materials)
Geometry modeled using triangle meshes + 
surface normals

GPUs subdivide triangles into “fragments” 
(rasterization)

Materials modeled with “textures”

Texture coordinates and sampling to map 
textures → geometry

Light locations and properties
Attempt to model surface/light interactions 
with modeled objects/materials

View point

Output:

2D projection seen from the view-point



Simplified Rendering Algorithm

foreach(vertex v in model)

map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2) 

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg


Algorithm → Graphics Pipeline

foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2) 

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));
OpenGL pipeline

To first order, DirectX looks the same!



Algorithm → Graphics Pipeline

foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2) 

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));
OpenGL pipeline

To first order, DirectX looks the same!



Algorithm → Graphics Pipeline

foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2) 

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));
OpenGL pipeline

To first order, DirectX looks the same!



Algorithm → Graphics Pipeline

foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2) 

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));
OpenGL pipeline

To first order, DirectX looks the same!



Algorithm → Graphics Pipeline

foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2) 

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));
OpenGL pipeline

To first order, DirectX looks the same!



Graphics pipeline → GPU architecture

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series



Graphics pipeline → GPU architecture

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series



Graphics pipeline → GPU architecture

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series



Graphics pipeline → GPU architecture

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series



Graphics pipeline → GPU architecture

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series



Late Modernity: unified shaders

Mapping to Graphics pipeline no longer apparent
Processing elements no longer specialized to a particular role
Model supports real control flow, larger instr count



Modern: Pascal



Pascal SM



Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

Data
Per-vertex

Per-fragment

Per-pixel

Task
Vertex processing

Fragment processing

Rasterization

Hidden-surface elimination

MLP
HW multi-threading for hiding memory latency



Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

Data
Per-vertex

Per-fragment

Per-pixel

Task
Vertex processing

Fragment processing

Rasterization

Hidden-surface elimination

MLP
HW multi-threading for hiding memory latency

Even as GPU architectures become more 
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box 

with colored dots



Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

Data
Per-vertex

Per-fragment

Per-pixel

Task
Vertex processing

Fragment processing

Rasterization

Hidden-surface elimination

MLP
HW multi-threading for hiding memory latency

Even as GPU architectures become more 
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box 

with colored dots

But what if my workload isn’t 
“painting a box”?!!?!



Summary

Key Ideas: 
Simple cores
Single instruction stream

Vector instructions (SIMD) OR
Implicit HW-managed sharing (SIMT)

Hide memory latency with HW multi-threading


