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A Modern GPU

80 SMs
64 cores/SM
5210 threads!
15.7 TFLOPS

640 Tensor cores
HBM2 memory

4096-bit bus
No cache coherence!

16 GB memory
PCIe-attached



Chapter 1

Understanding the machine
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Architecture Review: Pipelines

Processor algorithm: 
main() { 

while(true) {

do_next_instruction();

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

How can we get *more* parallelism?

Works well if pipeline is kept full
What kinds of things cause “bubbles”/stalls?
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main() {

for(i=0; i<CORES; i++) {

pthread_create(

do_next_instruction());

}

}

do_next_instruction() {

instruction = fetch();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Other techniques extract 
parallelism here, try to let the 

machine find parallelism

• Pros: Simple
• Cons: programmer has to find the parallelism!
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main() {

for(i=0; i<CORES; i++)

pthread_create(decode_exec);

while(true) {

instruction = fetch();

enqueue(instruction);

}

}

decode_exec() {

instruction = dequeue();

ops, regs = decode(instruction);

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Doesn’t look that different does it? Why do it?

independent

Enables independent instruction parallelism.
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over and over?
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Vector/SIMD processors
main() {

for(i=0; i<CORES; i++)

pthread_create(exec);

while(true) {

ops, regs = fetch_decode();

enqueue(ops, regs);

}

}

exec() {

ops, regs = dequeue(;

execute_calc_addrs(ops, regs);

access_memory(ops, regs);

write_back(regs);

}

Single instruction stream, multiple computations

But now all my instructions need multiple operands!
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Vector Processors

Process multiple data elements simultaneously.

Common in supercomputers of the 1970’s 80’s and 90’s.

Modern CPUs support some vector processing instructions
Usually called SIMD

Can operate on few vector elements per clock cycle in a pipeline or, 
SIMD operate on all per clock cycle

• 1962 University of Illinois Illiac IV - completed 1972 → 64 ALUs 100-150 MFlops

• (1973) TI’s Advance Scientific Computer (ASC) 20-80 MFlops

• (1975) Cray-1 first to have vector registers instead of keeping data in memory

Single instruction stream, multiple data →
Programming model has to change
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When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput? 

Only helps if memory can keep the pipeline busy!
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HW multi-threading

Address memory bottleneck
Share exec unit across 

Instruction streams
Switch on stalls

Looks like multiple cores to the OS
Three variants:

Coarse
Fine-grain
Simultaneous



Running Example

Thread A Thread B Thread C Thread D

• Colors → pipeline full
• White → stall
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Single thread run until costly stall

e.g. 2nd level cache miss

Another thread starts during stall

Pipeline fill time requires several 
cycles!

Does not cover short stalls

Hardware support required
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Looks like another CPU to OS
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Simultaneous Multithreading (SMT)

Instructions from multiple threads issued per cycle
Uses register renaming 

dynamic scheduling facility of multi-issue 
architecture

Needs more hardware support
Register files, PC’s for each thread

Temporary result registers before commit

Support to sort out which threads get results from 
which instructions

Maximizes utilization of execution units Skip A

Skip C

Latency 
Improvement



Why Vector and MT Background?

GPU: 

• A very wide vector machine

• Massively multi-threaded to hide memory latency

• Originally designed for graphics pipelines…



Graphics ~= Rendering
Inputs:

3D world model(objects, materials)
Geometry modeled using triangle meshes + 
surface normals

GPUs subdivide triangles into “fragments” 
(rasterization)

Materials modeled with “textures”

Texture coordinates and sampling to map 
textures → geometry

Light locations and properties
Attempt to model surface/light interactions 
with modeled objects/materials

View point

Output:

2D projection seen from the view-point



Simplified Rendering Algorithm

foreach(vertex v in model)

map vmodel → vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2) 

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg
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Late Modernity: unified shaders

Mapping to Graphics pipeline no longer apparent
Processing elements no longer specialized to a particular role
Model supports real control flow, larger instr count



Modern: Pascal



Pascal SM
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Cross-generational observations

GPUs designed for parallelism in graphics pipeline:

Data
Per-vertex

Per-fragment

Per-pixel

Task
Vertex processing

Fragment processing

Rasterization

Hidden-surface elimination

MLP
HW multi-threading for hiding memory latency

Even as GPU architectures become more 
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box 

with colored dots

But what if my workload isn’t 
“painting a box”?!!?!



Summary

Key Ideas: 
Simple cores
Single instruction stream

Vector instructions (SIMD) OR
Implicit HW-managed sharing (SIMT)

Hide memory latency with HW multi-threading


