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“kernels” == “shader programs”

1000s of HW-scheduled threads per kernel

Threads grouped into independent blocks.
Threads in a block can synchronize (barrier)

This is the *only* synchronization

“Grid” == “launch” == “invocation” of a kernel 
a group of blocks (or warps)

Need codes that are 1000s-X 
parallel….
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Parallel Algorithms

Sequential algorithms often do not permit easy parallelization
Does not mean there work has no parallelism

A different approach can yield parallelism

but often changes the algorithm 

Parallelizing != just adding locks to a sequential algorithm

If you can express your 
algorithm using these  patterns, 

an apparently fundamentally 
sequential algorithm can be 

made parallel
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Examples:
Map
Reductions
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Map

Inputs
Array A

Function f(x)

map(A, f) → apply f(x) on all elements in A

Parallelism trivially exposed
f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
labels[i] = findNearestCenter(points[i]);

}

map(points, findNearestCenter)
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Gather:
Read multiple items to single /packed location

Scatter:
Write single/packed data item to multiple locations

Inputs: x, y, indices, N

for (i=0; i<N; ++i)
x[i] = y[idx[i]];

for (i=0; i<N; ++i)
y[idx[i]] = x[i];

gather(x, y, idx)

scatter(x, y, idx)
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Scan (Prefix Sum)

Input
Associative operator op

Ordered set s = [a, b, c, … z]

Identity I

scan(op, s) = [I, a, (a op b), (a op b op c) …]

Scan is the workhorse of parallel 
algorithms:

Sort, histograms, sparse matrix, string 
compare, … 
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Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements → key

var res = ints.GroupBy(x => x);

10 30 20 10 20 30 10

101010 202030 30

foreach(T elem in ints)

{

key   = KeyLambda(elem);

group = GetGroup(key); 

group.Add(elem);

}

foreach(T elem in PF(ints))

{

key   = KeyLambda(elem);

group = GetGroup(key); 

group.Add(elem);

}



Parallel GroupBy

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous
output offset = group offset + item number
… but how to get the group offset, item number?

10 30 20 10 20 30 10

101010 202030 30

ints

res



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous
output offset = group offset + item number
… but how to get the group offset, item number?

10 30 20 10 20 30 10

101010 202030 30

ints

res

Start index of each 
group in the 

output sequence



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous
output offset = group offset + item number
… but how to get the group offset, item number?

10 30 20 10 20 30 10

101010 202030 30

ints

res

Number of 
elements in each 

group

Start index of each 
group in the 

output sequence



Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous
output offset = group offset + item number
… but how to get the group offset, item number?

10 30 20 10 20 30 10

101010 202030 30

ints

res

Number of groups 
and input → group 

mapping

Number of 
elements in each 

group

Start index of each 
group in the 

output sequence
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Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous
output offset = group offset + item number
… but how to get the group offset, item number?

10 30 20 10 20 30 10

101010 202030 30

ints

res

Number of groups 
and input → group 

mapping

Number of 
elements in each 

group

Start index of each 
group in the 

output sequence
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GroupBy with Parallel Primitives

Sorting or hashing

10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

Hash table lookup: group ID

-- Uses atomic increment

-- map

prefix sum of group sizes

Write to output location
– Uses atomic increment
– Scatter gather

We’ll revisit after 
more CUDA 

background…
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Parallel Patterns

Thrust:

Large set of algorithms
~75 functions

~125 variations

Flexible
User-defined types

User-defined operators

Algorithm Description

reduce Sum of a sequence

find First position of a value in a sequence

mismatch First position where two sequences differ

inner_product Dot product of two sequences

equal Whether two sequences are equal

min_element Position of the smallest value

count Number of instances of a value

is_sorted Whether sequence is in sorted order

transform_reduce Sum of transformed sequence
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Summary

Re-expressing apparently sequential algorithms as combinations of 
parallel patterns is a common technique when targeting GPUs

Examples
Reductions
Scans
Re-orderings (scatter/gather)
Sort
Map

What is the right set of parallel patterns to support?


