I Parallel Algorithms

Chris Rossbach and Calvin Lin
cs380p

IOutIine

Over the next few classes:

Background from many areas

Architecture

Vector processors

Hardware multi-threading
Graphics

Graphics pipeline

Graphics programming models
Algorithms

parallel architectures = parallel algorithms

Programming GPUs
CUDA
Basics: getting something working
Advanced: making it perform

IOutIine

Over the next few classes:

Background from many areas

Architecture
Vector processors
Hardware multi-threading
Graphics
Graphics pipeline

Graphics programming models

This
lecture

Programming GPUs
CUDA
Basics: getting something working
Advanced: making it perform

I Review

PCI Express 3.0 Host Interfac

Msiney oty

Memory Control

6 Kioweyy

£
£

[r——

g g1
NVLink NVLink

Review

Each SM has multiple vector units (4)
32 lanes wide = warp size

Review

Each SM has multiple vector units (4)
32 lanes wide = warp size

Vector units use hardware multi-threading

Review

Each SM has multiple vector units (4)
32 lanes wide - warp size

Vector units use hardware multi-threading
Execution = a grid of thread blocks (TBs)

Each TB has some number of threads

il

i |

PCI Express 3.0 Host Interface

Each SM has multiple vector units (4)

[N

wjonues Kiowsi

R r—

i

il

LD/
ST

FP64

FP64

P4

FP64

FP64

FP64

FP64

FPG4

Lp/
ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 HDEH
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
sT ST ST ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 ORH
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD LD/
ST ST ST ST ST

TENSOR TENSOR

CORE

TENSOR TENSOR

CORE

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/
sT

LD/
ST

Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 [BRH
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST sT

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 CORE
INT FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/ LD/ LD/
ST ST ST ST ST

TENSOR TENSOR

CORE

SFU

TENSOR TENSOR

CORE

SFU

32 lanes wide - warp size
Vector units use hardware multi-threading
Execution = a grid of thread blocks (TBs)

Each TB has some number of threads

il

i |

eview

Thread block scheduler

ejonues Riowsi

i

il

FP64

FP64

P4

FP64

FP64

FP64

FP64

FPG4

LD/
ST

Lp/
ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 HDEH
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
sT ST ST ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR TENSOR

CORE

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/
sT

LD/
ST

Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 [BRH
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST sT

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR TENSOR

CORE

SFU

R r—

INT FP32 FP32 INT INT FP32 FP32

INT FP32 FP32 INT FP32 FP32

INT FP32 FP32 INT FP32 FP32

Cw fPS2FPS2 TENSOR TENSOR T FP2FP2 TENSOR TENSOR

e 3ips | CORE | CORE N Ep33 Ep3y | CORE | CORE

INT FP32 FP32 INT FP32 FP32

INT FP32 FP32 FP32 FP32

Each SM has multiple vector units (4) R L
32 lanes wide - warp size

Vector units use hardware multi-threading

Execution = a grid of thread blocks (TBs)

Each TB has some number of threads

FP32 FP32

il

i |

eview

Thread block scheduler

ejonues Riowsi

i

il

FP64

FP64

P4

FP64

FP64

FP64

FP64

FPG4

LD/
ST

Lp/
ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 HDEH
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
sT ST ST ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR TENSOR

CORE

warp (thread) scheduler

SM

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/
sT

LD/
ST

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 [BRH
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST sT

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR TENSOR

CORE

SFU

R r—

INT FP32 FP32 INT INT FP32 FP32

INT FP32 FP32 INT FP32 FP32

INT FP32 FP32 INT FP32 FP32

Cw fPS2FPS2 TENSOR TENSOR T FP2FP2 TENSOR TENSOR

e 3ips | CORE | CORE N Ep33 Ep3y | CORE | CORE

INT FP32 FP32 INT FP32 FP32

INT FP32 FP32 FP32 FP32

Each SM has multiple vector units (4) R L
32 lanes wide - warp size

Vector units use hardware multi-threading

Execution = a grid of thread blocks (TBs)

Each TB has some number of threads

FP32 FP32

IProgramming Model

“kernels” == “shader programs”
1000s of HW-scheduled threads per kernel

Threads grouped into independent blocks.
Threads in a block can synchronize (barrier)
This is the *only* synchronization

“Grid” == “launch” == “invocation” of a kernel
a group of blocks (or warps)

IProgramming Model

“kernels” == “shader programs”
1000s of HW-scheduled threads per kernel

Threads grouped into independent blocks.
Threads in a block can synchronize (barrier)
This is the *only* synchronization

“Grid” == “launch” == “invocation” of a kernel
a group of blocks (or warps)

Need codes that are 1000s-X

parallel....

IParaIIeI Algorithms

Sequential algorithms often do not permit easy parallelization
Does not mean there work has no parallelism
A different approach can yield parallelism
but often changes the algorithm
Parallelizing != just adding locks to a sequential algorithm

IParaIIeI Algorithms

Sequential algorithms often do not permit easy parallelization
Does not mean there work has no parallelism
A different approach can yield parallelism
but often changes the algorithm
Parallelizing != just adding locks to a sequential algorithm

If you can express your
algorithm using these patterns,

an apparently fundamentally
sequential algorithm can be
made parallel

IParaIIeI Algorithms

IParaIIeI Algorithms

Key idea:

IParaIIeI Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

IParaIIeI Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:

IParaIIeI Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:
Map

IParaIIeI Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:
Map

IParaIIeI Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:
Map

IParaIIeI Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:
M d p Q , Q , Q , Q , 8 threads from a thread group
Red UCt|OnS ‘ ’ Q , 4 threads from a thread group

2 threads from a thread group

——

IParaIIeI Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:
Map
Reductions
Scans

IParaIIeI Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:

Map

Reductions

Scans

Re-orderings (scatter/gather/sort)

— ——4 | —

5 4 45 5 4 o o [+
—
- —1 - -

4 4 14— 5 4 o ¢
— 4 — 4 o
b 5 45 44 1 4+ 2
—— — - 1

SRR ==

IMap

Inputs
Array A
Function f(x)

map(A, f) =2 apply f(x) on all elements in A

Parallelism trivially exposed
f(x) can be applied in parallel to all elements, in principle

II\/Iap

Inputs
Array A
Function f(x)

map(A, f) = apply f(x) on all elements in A

Parallelism trivially exposed
f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
labels[i] = findNearestCenter(points[i]);
}

map(points, findNearestCenter)

I Scatter and Gather

I Scatter and Gather

Gather:
Read multiple items to single /packed location

I Scatter and Gather

Gather:
Read multiple items to single /packed location

Scatter:
Write single/packed data item to multiple locations

I Scatter and Gather

Gather:
Read multiple items to single /packed location

Scatter:
Write single/packed data item to multiple locations

Inputs: x, vy, indices, N

I Scatter and Gather

Gather:
Read multiple items to single /packed location

Scatter:
Write single/packed data item to multiple locations

Inputs: x, vy, indices, N

for (i=0; i<N; ++i) _
Al = bl ‘ gather(x, y, idx)

for (i=0; i<N; ++i)

VTidxil] = x(il: scatter(x, y, idx)

I Scatter and Gather

Gather:
Read multiple items to single /packed location

Scatter:
Write single/packed data item to multiple locations

Inputs: x, vy, indices, N

for (i=0; i<N; ++i) _
Al = bl - gather(x, y, idx)

for (i=0; i<N; ++i)

VTidxil] = x(il: scatter(x, y, idx)

?
BHE
®

Scatter

¥
D DD
3

Gather

I Reduce

Input
Associative operator op
Ordered sets=1a, b, c, ... Z]

Reduce(op, s) returns

aopbopc..opz

I Reduce

Input
Associative operator op
Orderedsets=[a, b, c, ... Z]

Reduce(op, s) returns

aopbopc..opz

for(i=0; i<N; ++i) {
accum += (point[i]*point]i]) ‘accum = reduce(*, point)
}

I Reduce

Input
Associative operator op
Orderedsets=[a, b, c, ... Z]

Reduce(op, s) returns

aopbopc..opz

for(i=0; i<N; ++i) {
accum += (point[i]*point]i]) -accum = reduce(*, point)
}

Why must op be associative?

N/4... 1

e e
IReduce ,+*!.+* o

N |o(log,N) steps, O(N) work

Input

Associative operator op

Orderedsets=[a, b, c, ... Z] :++.:++Hﬂ}:+>m
Reduce(op, s) returns wwz

MN"0(log,N) steps, O(MN) work |

aopbopc..opz

for(i=0; i<N; ++i) {
accum += (point[i]*point]i]) -accum = reduce(*, point)

Why must op be associative?

I Scan (Prefix Sum)

Input
Associative operator op
Ordered sets=1[a, b, ¢, ... Z]
ldentity |

scan(op,s)=[l,a, (aopb),(aopbopc)..]

Scan is the workhorse of parallel
algorithms:

Sort, histograms, sparse matrix, string
compare, ...

begin |

end

o>~
T | ab | B | &d | e | of |

‘a | a+b | atb+c [atb+cd|b+irdre | crdvesf |

a a+b

a+b+c

a+b+c+d

a+b+c
+d+e

a+b+c
+d+e+f

time

I Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements = key

I Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements = key

var res = ints.GroupBy(x => X);

I Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements = key

var res = ints.GroupBy(x => X);

10 30 20 10 20 30 10

I Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements = key

var res = ints.GroupBy(x => X);

10 30 20 10 20 30 10

I Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements = key

var res = ints.GroupBy(x => X);

foreach (T elem in ints)
10 30 20 10 20 30 10 {

4:L key = KeyLambda (elem) ;

]
x)3o= 20 20

|
|
|
Lo — — |

Q
R)
(o)
o

o
I

GetGroup (key) ;

group.Add (elem) ;

I Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements = key

var res = ints.GroupBy(x => X);

foreach (T elem in PF(ints))
{

4;L key = KeyLambda (elem) ;

|
30 30 = 20 20

|
|
|
L — - L

' M
|

group = GetGroup (key)
; 1

&
group.Add (elem) ; n

IParaIIeI GroupBy

iBel-l 10 30 20 10 20 30 10

or-p 10 10 10 30 30 20 20

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous

iBol-l 10 30 20 10 20 30 10

or-p 10 10 10 30 30 20 20

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous

iBol-l 10 30 20 10 20 30 10

or-p 10 10 10 30 30 20 20

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous

iBol-l 10 30 20 10 20 30 10

N

or-p 10 10 10 30 30 20 20

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous

iBol-l 10 30 20 10 20 30 10

res 30 30 20 20

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous

iBol-l 10 30 20 10 20 30 10

res 30 30 20 20

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous

iBol-l 10 30 20 10 20 30 10

res 30 30 20 20

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous

iRelet-ll 10 30 20 10 20

res 30 30 20

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous

iRelet-ll 10 30 20 10 20

res

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous

iBol-l 10 30 20 10 20 30 10

or-p 10 10 10 30 30 20 20

IParaIIeI GroupBy

Process each input element in parallel

grouping ~ shuffling
input item = output offset such that groups are contiguous

— ~— ~— ~— ~— — ~—
X X X X X X X

iBol-l 10 30 20 10 20 30 10

or-p 10 10 10 30 30 20 20

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous

ints

res

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous
output offset = group offset + item number
... but how to get the group offset, item number?

— — — —
X X X X

//
N
X

ints

res

P Startindex of each

(,
N\

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous
output offset = group offset + item number
... but how to get the group offset, item number?

— — — —
X X X X

//
N
X

ints

group in the)

N v
- outputsequence
output sequence.

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous
output offset = group offset + item number
... but how to get the group offset, item number?

ints

res

Start index of each
group in the
output sequence

Number of
elements in each

group

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous
output offset = group offset + item number
... but how to get the group offset, item number?

X X X X X X X
ints
res

Start index of each

_ Number of Number of groups
U [116 elements in each and input = group
output sequence mapping

group

IParaIIeI GroupBy

Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous
output offset = group offset + item number
... but how to get the group offset, item number?

X X X X X X X
ints
res

Start index of each

_ Number of Number of groups
U [116 elements in each and input = group
output sequence mapping

group

IGroupBy with Parallel Primitives

10 30 20 10 20 30 10

IGroupBy with Parallel Primitives

Fl !

ST TN NN
¥ ¥ ¥ ¥ ¥ YK

10 30 20 10 20 30 10

IGroupBy with Parallel Primitives

Fl !

ST TN NN
¥ ¥ ¥ ¥ ¥ YK

10 30 20 10 20 30 10

Assign group IDs

Group ID : ‘ ‘ H \

IGroupBy with Parallel Primitives

el

S5 5N S NS
¥ ¥ ¥ ¥ ¥ YK

10 30 20 10 20 30 10

Assign group IDs

Group ID : ‘ ‘ H \

Compute group sizes </

Group ID : 0 1 2

Group Size : 3 2 2

IGroupBy with Parallel Primitives

Fl el

/
S5 5N S NS
¥ ¥ ¥ ¥ ¥ YK

10 30 20 10 20 30 10

Assign group IDs

Group ID : ‘ ‘ H \

Compute group sizes @ </
0 1 2

Group Size : 3 2 2

Group ID :

Compute start indices

10 20 30
GroupiD: | 0 | 1 | 2 |
Group Start Index :

IGroupBy with Parallel Primitives

Fl el

/
S5 5N S NS
¥ ¥ ¥ ¥ ¥ YK

10 30 20 10 20 30 10

Assign group IDs

Group ID : ‘ ‘ H \

Compute group sizes @ </
0 1 2

Group Size : 3 2 2

Group ID :

Compute start indices

10 20 30
GroupiD: | 0 | 1 | 2 |
Group Start Index :

Write Outputs

10 10 30 30

IGroupBy with Parallel Primitives

Cl Ll

/
S5 5N S NS
¥ ¥ ¥ ¥ ¥ ¥

10 30 20 10 20 30 10

Assign group IDs Sorting or hashing
Group ID : | ‘ M }

Compute group sizes
-
0 1 2

Group Size : 3 2 2

Group ID :

Compute start indices

10 20 30
GroupiD: | 0 | 1 | 2 |
Group Start Index :

Write Outputs

IGrcupBy with Parallel Primitives

Cl Ll

/
S5 5N S NS
¥ ¥ ¥ ¥ ¥ ¥

10 30 20 10 20 30 10

Assign group IDs Sorting or hashing
Group ID : | ‘ M }
Hash table lookup: group ID

Compute group sizes -- Uses atomic increment

! or

Group Size : 3 2 2

Group ID :

Compute start indices

10 20 30
GroupD: | 0 | 1] 2 |
Group Start Index :

Write Outputs

IGroupBy with Parallel Primitives

Cl Ll

/
S5 5N S NS
¥ ¥ ¥ ¥ ¥ ¥

10 30 20 10 20 30 10

Assign group IDs Sorting or hashing
Group ID : | ‘ M }
Hash table lookup: group ID

Compute group sizes -- Uses atomic increment

20
Group ID : 0-1’ = hnfefe
Group Size : 3 2 2
IS, /refix sum of group sizes
Compute start indices
10 20 30
Group Start Index :
@

Write Outputs

IGroupBy with Parallel Primitives

Cl Ll

/
S5 5N S NS
¥ ¥ ¥ ¥ ¥ ¥

10 30 20 10 20 30 10

Assign group IDs Sorting or hashing
Group ID : | ‘ M }
Hash table lookup: group ID

Compute group sizes -- Uses atomic increment

Group ID : ’ -- map
Group Size : 3 2 2
IS, /refix sum of group sizes
Compute start indices
10 20 30
Group Strt nex: @ Write to output location

Write Outputs

— Uses atomic increment

— Scatter gather

IGroupBy with Parallel Primitives

Cl Ll

/
S5 5N S NS
¥ ¥ ¥ ¥ ¥ ¥

10 30 20 10 20 30 10

Assign group IDs Sorting or hashing
Group ID : | ‘ M }
Hash table lookup: group ID

Compute group sizes -- Uses atomic increment

Group ID : ’ -- map
Group Size : 3 2 2
IS, /refix sum of group sizes
Compute start indices
10 20 30
Group Strt nex: @ Write to output location

Write Outputs

— Uses atomic increment

— Scatter gather

We’ll revisit after
more CUDA
background...

I Parallel Patterns

I Parallel Patterns

Thrust:

. Sum of a sequence
Large set of algorithms
~75 fu nCtiO ns First position where two sequences differ

~125 variations Dot product of two sequences

First position of a value in a sequence

Whether two sequences are equal

. Position of the smallest value
Flexible

Number of instances of a value

User_defl ned types Whether sequence is in sorted order
User-defined operators Sum of transformed sequence

I Parallel Patterns

IParaIIeI Patterns

Dwarf Popularity (Red Hot —)

HPC Embed SPEC ML Games DB
1 Dense Matrix
2 Sparse Matrix
3 Spectral (FFT)

4 N-Body

5 Structured Grid

6 Unstructured
7 MapReduce
8 Combinational

9 Graph Traversal
10 Dynamic Prog
11 Backtrack/ B&B

12 Graphical Models
13 FSM

I Parallel Patterns

IParaIIeI Patterns

TBB is a collection of components for parallel programming:

¢ Basic algorithms: parallel_for , parallel_reduce , parallel_scan

¢ Advanced algorithms: parallel_while , parallel_do , parallel_pipeline , parallel_sort

e Containers: concurrent_queue , concurrent_priority_queue , concurrent_vector , concurrent_hash_map

* Memory allocation: scalable_malloc , scalable_free, scalable_realloc, scalable_calloc, scalable_allocator , cache_aligned_allocator
e Mutual exclusion: mutex , spin_mutex , queuing_mutex , spin_rw_mutex , queuing_rw_mutex , recursive_mutex

e Atomic operations: fetch_and_add , fetch_and_increment , fetch_and_decrement , compare_and_swap , fetch_and_store

e Timing: portable fine grained global time stamp

¢ Task scheduler: direct access to control the creation and activation of tasks

I Parallel Patterns

ISummary

Re-expressing apparently sequential algorithms as combinations of
parallel patterns is a common technique when targeting GPUs

Examples
Reductions
Scans
Re-orderings (scatter/gather)
Sort
Map

What is the right set of parallel patterns to support?

