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“kernels” == “shader programs”
1000s of HW-scheduled threads per kernel

Threads grouped into independent blocks.
Threads in a block can synchronize (barrier)
This is the *only* synchronization

“Grid” == “launch” == “invocation” of a kernel
a group of blocks (or warps)

Need codes that are 1000s-X

parallel....
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Sequential algorithms often do not permit easy parallelization
Does not mean there work has no parallelism
A different approach can yield parallelism
but often changes the algorithm
Parallelizing != just adding locks to a sequential algorithm

If you can express your
algorithm using these patterns,

an apparently fundamentally
sequential algorithm can be
made parallel
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Key idea:
Express sequential algorithms as combinations of parallel patterns
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Red UCt|OnS ‘ ’ Q , 4 threads from a thread group

2 threads from a thread group
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Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:

Map

Reductions

Scans

Re-orderings (scatter/gather/sort)
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Inputs
Array A
Function f(x)

map(A, f) =2 apply f(x) on all elements in A

Parallelism trivially exposed
f(x) can be applied in parallel to all elements, in principle




II\/Iap

Inputs
Array A
Function f(x)

map(A, f) = apply f(x) on all elements in A

Parallelism trivially exposed
f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
labels[i] = findNearestCenter(points[i]);
}

map(points, findNearestCenter)
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Gather:
Read multiple items to single /packed location

Scatter:
Write single/packed data item to multiple locations

Inputs: x, vy, indices, N

for (i=0; i<N; ++i) _
Al = bl ‘ gather(x, y, idx)

for (i=0; i<N; ++i)

VTidxil] = x(il: scatter(x, y, idx)



I Scatter and Gather

Gather:
Read multiple items to single /packed location

Scatter:
Write single/packed data item to multiple locations

Inputs: x, vy, indices, N

for (i=0; i<N; ++i) _
Al = bl - gather(x, y, idx)

for (i=0; i<N; ++i)

VTidxil] = x(il: scatter(x, y, idx)

?
BHE
®

Scatter

¥
D DD
3

Gather




I Reduce

Input
Associative operator op
Ordered sets=1a, b, c, ... Z]

Reduce(op, s) returns

aopbopc..opz




I Reduce

Input
Associative operator op
Orderedsets=[a, b, c, ... Z]

Reduce(op, s) returns

aopbopc..opz

for(i=0; i<N; ++i) {
accum += (point[i]*point]i]) ‘accum = reduce(*, point)
}



I Reduce

Input
Associative operator op
Orderedsets=[a, b, c, ... Z]

Reduce(op, s) returns

aopbopc..opz

for(i=0; i<N; ++i) {
accum += (point[i]*point]i]) -accum = reduce(*, point)
}

Why must op be associative?
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N |o(log,N) steps, O(N) work

Input

Associative operator op

Orderedsets=[a, b, c, ... Z] :++.:++Hﬂ}:+>m
Reduce(op, s) returns wwz

MN"0(log,N) steps, O(MN) work |

aopbopc..opz

for(i=0; i<N; ++i) {
accum += (point[i]*point]i]) -accum = reduce(*, point)

Why must op be associative?



I Scan (Prefix Sum)

Input
Associative operator op
Ordered sets=1[a, b, ¢, ... Z]
ldentity |

scan(op,s)=[l,a, (aopb),(aopbopc)..]

Scan is the workhorse of parallel
algorithms:

Sort, histograms, sparse matrix, string
compare, ...

begin |

end

o>~
T | ab | B | &d | e | of |

‘a | a+b | atb+c [atb+cd|b+irdre | crdvesf |

a a+b

a+b+c

a+b+c+d

a+b+c
+d+e

a+b+c
+d+e+f

time
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I Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements = key

var res = ints.GroupBy(x => X);

foreach (T elem in ints)
10 30 20 10 20 30 10 {

4:L key = KeyLambda (elem) ;

]
x)3o= 20 20

|
|
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Lo — — |

Q
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GetGroup (key) ;

group.Add (elem) ;



I Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements = key

var res = ints.GroupBy(x => X);

foreach (T elem in PF(ints))
{

4;L key = KeyLambda (elem) ;

|
30 30 = 20 20

|
|
|
L — - L

' M
|

group = GetGroup (key)
; 1

&
group.Add (elem) ; n
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Process each input element in parallel

grouping ~ shuffling
input item = output offset such that groups are contiguous

— ~— ~— ~— ~— — ~—
X X X X X X X
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Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous
output offset = group offset + item number
... but how to get the group offset, item number?

— — — —
X X X X

//
N
X

ints

res
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Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous
output offset = group offset + item number
... but how to get the group offset, item number?
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Process each input element in parallel
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input item = output offset such that groups are contiguous
output offset = group offset + item number
... but how to get the group offset, item number?
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output sequence

Number of
elements in each
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Process each input element in parallel
grouping ~ shuffling
input item = output offset such that groups are contiguous
output offset = group offset + item number
... but how to get the group offset, item number?

X X X X X X X
ints
res

Start index of each

_ Number of Number of groups
U [ 116 elements in each and input = group
output sequence mapping

group
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Assign group IDs

Group ID : ‘ ‘ H \

Compute group sizes @ </
0 1 2

Group Size : 3 2 2

Group ID :

Compute start indices

10 20 30
GroupiD: | 0 | 1 | 2 |
Group Start Index :

Write Outputs

10 10 30 30
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Assign group IDs Sorting or hashing
Group ID : | ‘ M }

Compute group sizes
-
0 1 2

Group Size : 3 2 2

Group ID :

Compute start indices

10 20 30
GroupiD: | 0 | 1 | 2 |
Group Start Index :

Write Outputs
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Assign group IDs Sorting or hashing
Group ID : | ‘ M }
Hash table lookup: group ID

Compute group sizes -- Uses atomic increment
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Group Size : 3 2 2
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Write Outputs
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Assign group IDs Sorting or hashing
Group ID : | ‘ M }
Hash table lookup: group ID

Compute group sizes -- Uses atomic increment

20
Group ID : 0-1’ = hnfefe
Group Size : 3 2 2
IS, /refix sum of group sizes
Compute start indices
10 20 30
Group Start Index :
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Assign group IDs Sorting or hashing
Group ID : | ‘ M }
Hash table lookup: group ID

Compute group sizes -- Uses atomic increment

Group ID : ’ -- map
Group Size : 3 2 2
IS, /refix sum of group sizes
Compute start indices
10 20 30
Group Strt nex: @ Write to output location

Write Outputs

— Uses atomic increment

— Scatter gather
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Cl Ll

/
S5 5N S NS
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10 30 20 10 20 30 10

Assign group IDs Sorting or hashing
Group ID : | ‘ M }
Hash table lookup: group ID

Compute group sizes -- Uses atomic increment

Group ID : ’ -- map
Group Size : 3 2 2
IS, /refix sum of group sizes
Compute start indices
10 20 30
Group Strt nex: @ Write to output location

Write Outputs

— Uses atomic increment

— Scatter gather

We’ll revisit after
more CUDA
background...
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Thrust:

. Sum of a sequence
Large set of algorithms
~75 fu nCtiO ns First position where two sequences differ

~125 variations Dot product of two sequences

First position of a value in a sequence

Whether two sequences are equal

. Position of the smallest value
Flexible

Number of instances of a value

User_defl ned types Whether sequence is in sorted order
User-defined operators Sum of transformed sequence
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Dwarf Popularity (Red Hot — )

HPC Embed SPEC ML Games DB
1 Dense Matrix
2 Sparse Matrix
3 Spectral (FFT)

4 N-Body

5 Structured Grid

6 Unstructured
7 MapReduce
8 Combinational

9 Graph Traversal
10 Dynamic Prog
11 Backtrack/ B&B

12 Graphical Models
13 FSM
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TBB is a collection of components for parallel programming:

¢ Basic algorithms: parallel_for , parallel_reduce , parallel_scan

¢ Advanced algorithms: parallel_while , parallel_do , parallel_pipeline , parallel_sort

e Containers: concurrent_queue , concurrent_priority_queue , concurrent_vector , concurrent_hash_map

* Memory allocation: scalable_malloc , scalable_free, scalable_realloc, scalable_calloc, scalable_allocator , cache_aligned_allocator
e Mutual exclusion: mutex , spin_mutex , queuing_mutex , spin_rw_mutex , queuing_rw_mutex , recursive_mutex

e Atomic operations: fetch_and_add , fetch_and_increment , fetch_and_decrement , compare_and_swap , fetch_and_store

e Timing: portable fine grained global time stamp

¢ Task scheduler: direct access to control the creation and activation of tasks
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ISummary

Re-expressing apparently sequential algorithms as combinations of
parallel patterns is a common technique when targeting GPUs

Examples
Reductions
Scans
Re-orderings (scatter/gather)
Sort
Map

What is the right set of parallel patterns to support?



