
Chris Rossbach and Calvin Lin

cs380p

Parallel Algorithms

Outline

Over the next few classes:

Background from many areas
Architecture

Vector processors

Hardware multi-threading

Graphics
Graphics pipeline

Graphics programming models

Algorithms

parallel architectures → parallel algorithms

Programming GPUs
CUDA

Basics: getting something working

Advanced: making it perform

Outline

Over the next few classes:

Background from many areas
Architecture

Vector processors

Hardware multi-threading

Graphics
Graphics pipeline

Graphics programming models

Algorithms

parallel architectures → parallel algorithms

Programming GPUs
CUDA

Basics: getting something working

Advanced: making it perform

This
lecture

Review

3

Review

Each SM has multiple vector units (4)
32 lanes wide → warp size

3

Review

Each SM has multiple vector units (4)
32 lanes wide → warp size

Vector units use hardware multi-threading

3

Review

Each SM has multiple vector units (4)
32 lanes wide → warp size

Vector units use hardware multi-threading
Execution → a grid of thread blocks (TBs)

Each TB has some number of threads
3

Review

Each SM has multiple vector units (4)
32 lanes wide → warp size

Vector units use hardware multi-threading
Execution → a grid of thread blocks (TBs)

Each TB has some number of threads
3

Review

Each SM has multiple vector units (4)
32 lanes wide → warp size

Vector units use hardware multi-threading
Execution → a grid of thread blocks (TBs)

Each TB has some number of threads
3

Thread block scheduler

Review

Each SM has multiple vector units (4)
32 lanes wide → warp size

Vector units use hardware multi-threading
Execution → a grid of thread blocks (TBs)

Each TB has some number of threads
3

Thread block scheduler warp (thread) scheduler

Programming Model

“kernels” == “shader programs”

1000s of HW-scheduled threads per kernel

Threads grouped into independent blocks.
Threads in a block can synchronize (barrier)

This is the *only* synchronization

“Grid” == “launch” == “invocation” of a kernel
a group of blocks (or warps)

Programming Model

“kernels” == “shader programs”

1000s of HW-scheduled threads per kernel

Threads grouped into independent blocks.
Threads in a block can synchronize (barrier)

This is the *only* synchronization

“Grid” == “launch” == “invocation” of a kernel
a group of blocks (or warps)

Need codes that are 1000s-X
parallel….

Parallel Algorithms

Sequential algorithms often do not permit easy parallelization
Does not mean there work has no parallelism

A different approach can yield parallelism

but often changes the algorithm

Parallelizing != just adding locks to a sequential algorithm

Parallel Algorithms

Sequential algorithms often do not permit easy parallelization
Does not mean there work has no parallelism

A different approach can yield parallelism

but often changes the algorithm

Parallelizing != just adding locks to a sequential algorithm

If you can express your
algorithm using these patterns,

an apparently fundamentally
sequential algorithm can be

made parallel

Parallel Algorithms

6

Parallel Algorithms

Key idea:

6

Parallel Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

6

Parallel Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:

6

Parallel Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:
Map

6

Parallel Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:
Map

6

Parallel Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:
Map

6

Parallel Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:
Map
Reductions

6

Parallel Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:
Map
Reductions
Scans

6

Parallel Algorithms

Key idea:
Express sequential algorithms as combinations of parallel patterns

Examples:
Map
Reductions
Scans
Re-orderings (scatter/gather/sort)

6

Map

Inputs
Array A

Function f(x)

map(A, f) → apply f(x) on all elements in A

Parallelism trivially exposed
f(x) can be applied in parallel to all elements, in principle

Map

Inputs
Array A

Function f(x)

map(A, f) → apply f(x) on all elements in A

Parallelism trivially exposed
f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
labels[i] = findNearestCenter(points[i]);

}

map(points, findNearestCenter)

Scatter and Gather

Scatter and Gather

Gather:
Read multiple items to single /packed location

Scatter and Gather

Gather:
Read multiple items to single /packed location

Scatter:
Write single/packed data item to multiple locations

Scatter and Gather

Gather:
Read multiple items to single /packed location

Scatter:
Write single/packed data item to multiple locations

Inputs: x, y, indices, N

Scatter and Gather

Gather:
Read multiple items to single /packed location

Scatter:
Write single/packed data item to multiple locations

Inputs: x, y, indices, N

for (i=0; i<N; ++i)
x[i] = y[idx[i]];

for (i=0; i<N; ++i)
y[idx[i]] = x[i];

gather(x, y, idx)

scatter(x, y, idx)

Scatter and Gather

Gather:
Read multiple items to single /packed location

Scatter:
Write single/packed data item to multiple locations

Inputs: x, y, indices, N

for (i=0; i<N; ++i)
x[i] = y[idx[i]];

for (i=0; i<N; ++i)
y[idx[i]] = x[i];

gather(x, y, idx)

scatter(x, y, idx)

Reduce

Input
Associative operator op

Ordered set s = [a, b, c, … z]

Reduce(op, s) returns

a op b op c … op z

Reduce

Input
Associative operator op

Ordered set s = [a, b, c, … z]

Reduce(op, s) returns

a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Reduce

Input
Associative operator op

Ordered set s = [a, b, c, … z]

Reduce(op, s) returns

a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Why must op be associative?

Reduce

Input
Associative operator op

Ordered set s = [a, b, c, … z]

Reduce(op, s) returns

a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Why must op be associative?

Scan (Prefix Sum)

Input
Associative operator op

Ordered set s = [a, b, c, … z]

Identity I

scan(op, s) = [I, a, (a op b), (a op b op c) …]

Scan is the workhorse of parallel
algorithms:

Sort, histograms, sparse matrix, string
compare, …

Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements → key

Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements → key

var res = ints.GroupBy(x => x);

Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements → key

var res = ints.GroupBy(x => x);

10 30 20 10 20 30 10

Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements → key

var res = ints.GroupBy(x => x);

10 30 20 10 20 30 10

101010 202030 30

Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements → key

var res = ints.GroupBy(x => x);

10 30 20 10 20 30 10

101010 202030 30

foreach(T elem in ints)

{

key = KeyLambda(elem);

group = GetGroup(key);

group.Add(elem);

}

Example: Parallel GroupBy

Group a collection by key

Lambda function maps elements → key

var res = ints.GroupBy(x => x);

10 30 20 10 20 30 10

101010 202030 30

foreach(T elem in ints)

{

key = KeyLambda(elem);

group = GetGroup(key);

group.Add(elem);

}

foreach(T elem in PF(ints))

{

key = KeyLambda(elem);

group = GetGroup(key);

group.Add(elem);

}

Parallel GroupBy

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous
output offset = group offset + item number
… but how to get the group offset, item number?

10 30 20 10 20 30 10

101010 202030 30

ints

res

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous
output offset = group offset + item number
… but how to get the group offset, item number?

10 30 20 10 20 30 10

101010 202030 30

ints

res

Start index of each
group in the

output sequence

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous
output offset = group offset + item number
… but how to get the group offset, item number?

10 30 20 10 20 30 10

101010 202030 30

ints

res

Number of
elements in each

group

Start index of each
group in the

output sequence

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous
output offset = group offset + item number
… but how to get the group offset, item number?

10 30 20 10 20 30 10

101010 202030 30

ints

res

Number of groups
and input → group

mapping

Number of
elements in each

group

Start index of each
group in the

output sequence

Parallel GroupBy

Process each input element in parallel
grouping ~ shuffling
input item → output offset such that groups are contiguous
output offset = group offset + item number
… but how to get the group offset, item number?

10 30 20 10 20 30 10

101010 202030 30

ints

res

Number of groups
and input → group

mapping

Number of
elements in each

group

Start index of each
group in the

output sequence

GroupBy with Parallel Primitives

10 30 20 10 20 30 10

GroupBy with Parallel Primitives

10 30 20 10 20 30 10

GroupBy with Parallel Primitives

10 30 20 10 20 30 10

Assign group IDs

0 1 2

10 20 30

Group ID :

GroupBy with Parallel Primitives

10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

GroupBy with Parallel Primitives

10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

GroupBy with Parallel Primitives

10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

GroupBy with Parallel Primitives

Sorting or hashing

10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

GroupBy with Parallel Primitives

Sorting or hashing

10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

Hash table lookup: group ID

-- Uses atomic increment

-- map

GroupBy with Parallel Primitives

Sorting or hashing

10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

Hash table lookup: group ID

-- Uses atomic increment

-- map

prefix sum of group sizes

GroupBy with Parallel Primitives

Sorting or hashing

10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

Hash table lookup: group ID

-- Uses atomic increment

-- map

prefix sum of group sizes

Write to output location
– Uses atomic increment
– Scatter gather

GroupBy with Parallel Primitives

Sorting or hashing

10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

Hash table lookup: group ID

-- Uses atomic increment

-- map

prefix sum of group sizes

Write to output location
– Uses atomic increment
– Scatter gather

We’ll revisit after
more CUDA

background…

Parallel Patterns

Parallel Patterns

Thrust:

Large set of algorithms
~75 functions

~125 variations

Flexible
User-defined types

User-defined operators

Algorithm Description

reduce Sum of a sequence

find First position of a value in a sequence

mismatch First position where two sequences differ

inner_product Dot product of two sequences

equal Whether two sequences are equal

min_element Position of the smallest value

count Number of instances of a value

is_sorted Whether sequence is in sorted order

transform_reduce Sum of transformed sequence

Parallel Patterns

Parallel Patterns

Parallel Patterns

Parallel Patterns

Parallel Patterns

Summary

Re-expressing apparently sequential algorithms as combinations of
parallel patterns is a common technique when targeting GPUs

Examples
Reductions
Scans
Re-orderings (scatter/gather)
Sort
Map

What is the right set of parallel patterns to support?

