| cupa Part |

Chris Rossbach and Calvin Lin
cs380p

IOutIine

Over the next few classes:

Background from many areas

Architecture

Vector processors

Hardware multi-threading
Graphics

Graphics pipeline

Graphics programming models
Algorithms

parallel architectures = parallel algorithms

Advanced: making it perform

— This
lecture

Acknowledgements:

http://developer.download.nvidia.com/compute/developertrainingm
aterials/presentations/cuda_language/Introduction to CUDA C.pptx

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx

eview

Thread block scheduler warp (thread) scheduler

SM

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT FP32 FP32 INT FP32 FP32

INT FP32 FP32 INT FP32 FP32

i

iy G

INT FP32 FP32 INT FP32 FP32

ejonues Riowsi

£ FP32FFS2 TENSOR TENSOR l FREFRE TENSOR TENSOR

INT Fp3afpsy CORE | CORE INT Fp3zFpsy CORE | CORE

INT FP32 FP32 INT FP32 FP32
INT FP32 FP32 INT FP32 FP32

INT FP32 FP32 INT FP32 FP32

LD/ / LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST ST sT

Memory Contra

L on Cache ache
””””” 5 Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

il

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT FP32 FP32 INT INT FP32 FP32

E13 £33 INT FP32 FP32 INT FP32 FP32
NVLink NVLink

INT FP32 FP32 INT FP32 FP32

Cw fPS2FPS2 TENSOR TENSOR T FP2FP2 TENSOR TENSOR

e 3ips | CORE | CORE N Ep33 Ep3y | CORE | CORE

INT FP32 FP32 INT FP32 FP32
INT FP32 FP32 FP32 FP32

Each SM has multiple vector units (4) 2w oo R
32 lanes wide = warp size

Vector units use hardware multi-threading
Execution = a grid of thread blocks (TBs)

Each TB has some number of threads

IProgramming Model

GPUs are I/0 devices, managed by user-code
“kernels” == “shader programs”
1000s of HW-scheduled threads per kernel

Threads grouped into independent blocks.
Threads in a block can synchronize (barrier)
This is the *only* synchronization

“Grid” == “launch” == “invocation” of a kernel
a group of blocks (or warps)

Details of architecture are
exposed to the programmer

| cuba

Architecture/Goals
Expose GPU parallelism for general-purpose computing
Retain performance

Small?

CU

f extensions to enable heterogeneous programming
orward APIs to manage devices, memory etc.

I Heterogeneous Computing

* Terminology:
The CPU and its memory (host memory)
The GPU and its memory (device memory)

Device

I Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
shared__ int temp[BLOCK_SIZE +2 * RADIUS];
int gindex = threadldx.x + blockldx.x * blockDim.x;
int lindex = threadldx.x + RADIUS;

/I Read input elements into shared memory
temp[index] = in[gindex];
if (threadidx.x < RADIUS) {
templlindex - RADIUS] = in[gindex - RADIUS];
templlindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}

J/ Synchronize (ensure all the data is available)
__syncthreads();

/I Apply the stencil

int result =
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += templlindex + offset];

1/ Store the result
outfgindex] = result;

}

void fill_ints(int *x, int n) {
fil_n(x, n, 1);

int main(void) {
int *in, *out; I host copies of a, b, ¢
int *d_in, *d_out; I/ device copies of a, b, ¢
int size = (N + 2'RADIUS) * sizeof(int);

I Alloc space for host copies and setup values
in = (int *)malloc(size); fillints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

I Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

I Copy to device
_in, in, size, fostToDevice);
out, out, size, fostToDevice);

If Launch stencil_1d() kemel on GPU
stencil_1d<<<N/BLOCK_SIZE BLOCK_SIZE>>>(d_in + RADIUS,
d_out + RADIUS);

I Copy resuit back to host
d_out, size, DeviceToHost);

/I Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;

- parallel function

- serial code

| parallel code

- serial code

€

I Processing Flow

PCI Bus

CPU Memory

1. Copy input data from CPU memory to
GPU memory

I Processing Flow

PCI Bus

CPU Memory

Copy input data from CPU memory to
GPU memory

Load GPU program and execute,
caching data on chip for performance

I Processing Flow

PCI Bus

Copy input data from CPU memory to
GPU memory

Load GPU program and execute,
caching data on chip for performance
Copy results from GPU memory to
CPU memory

AL

L2

DRAM

IHeIIo World

main () |

printf ("Hello World!\n"); Output:

0;
} S nvcc
hello world.cu
S a.out
o Standard C that runs on the host Hello World!
$

o NVIDIA compiler (nvcc) can be used to
compile programs with no device code

I Hello World! with Device Code

mykernel () |

main () {
mykernel<<<1l,1>>>() ;
printf ("Hello World!'\n");
0;
}

= Two new syntactic elements...

I Hello World! with Device Code

__global void mykernel (void) {
}

CUDA C/C++ keyword global indicates a function that:
Runs on the device
Is called from host code

nvcc separates source code into host and device components
Device functions (e.g. mykernel ()) processed by NVIDIA compiler

Host functions (e.g. main ()) processed by standard host compiler
gcc, cl.exe

I Hello World! with Device Code

mykernel<<<1l,1>>>() ;

Triple angle brackets mark a call from host code to device code
Also called a “kernel launch”
What do parameters <<<1,1>>> mean?
stay tuned

That’s all that is required to execute a function on the GPU!

I Hello World! with Device Code

mykernel () {

main () |
mykernel<<<1l,1>>>() ;
printf ("Hello World!'\n");
0;
} S nvcc
hello.cu

S a.out
Hello World!

S

Output:

 mykernel () does nothing

I Parallel Programming in CUDA C/C++

« But wait... GPUs are massively parallel!
 We need a more interesting example...

 Start with integers addition
build up to vector addition

IAddition on the Device

A simple kernel to add two integers

__global wvoid add(int *a, int *b, int *c) {

*c = *a + *Db;

Same as before _global —> CUDA C/C++ keyword:
add () will execute on the device
add () will be called from the host

IAddition on the Device

Note that we use pointers for the variables

__global wvoid add(int *a, int *b, int *c) ({

*c = *a + *b;

add () runson the device
SO a, b and c must point to device memory

Must allocate memory on the GPU!

II\/Iemory Management

Host and device memory are separate entities

Device pointers point to GPU memqQ : ..
Truth in advertising:
May be passed to/from host code - This is changing (UVM)

May not be dereferenced in host code
Host pointers point to CPU memory
May be passed to/from device code

e More on this later

May not be dereferenced in device code

Simple CUDA API for handling device memory
cudaMalloc (), cudaFree (), cudaMemcpy ()
Similar to the C equivalentsmalloc (), free (), memcpy ()

IAddition on the Device: aqqa ()

Returning to our add () kernel

__global void add(int *a, int *b, int *c) ({

*c = *a + *b;

Let’s take a look at main()...

IAddition on the Device: mnain ()

int main(void) {
int a, b, c; // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c

int size = sizeof (int);

// Allocate space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);

cudaMalloc((void **)&d c, size);

// Setup input values
a = 2;
b =7;

IAddition on the Device: mnain ()

// Copy inputs to device
cudaMemcpy (d a, &a, size, cudaMemcpyHostToDevice)

cudaMemcpy (d b, &b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU
add<<<1l,1>>>(d a, d b, d c);

// Copy result back to host

cudaMemcpy (&c, d c, size, cudaMemcpyDeviceToHost) ;
// Cleanup

cudaFree(d a); cudaFree(d b); cudaFree(d c);

return 0;

IGetting Parallel

GPU computing is about massive parallelism
So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

Instead of executing add () once, execute N times in parallel

IVector Addition on the Device

With add () running in parallel we can do vector addition

Terminology: each parallel invocation of add () is a block

The set of blocks is referred to as a grid
Each invocation can refer to its block index using blockIdx.x

__global wvoid add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

By using blockidx.x to index into the array, each block handles a
different index

IVector Addition on the Device

__global wvoid add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

On the device, each block can execute in parallel:

Block O Block 1 Block 2 Block 3

c[0] = a[0] + b[0]; c[1l] = a[l] + b[1l]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

IVector Addition on the Device: adqa()

Returning to our parallelized add () kernel

__global wvoid add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

Let’s take a look at main()...

IVector Addition on the Device: main()

int main(void) {

int // host copies of a, b, c
int *d_a, *d b, *d c; // device copies of a, b, c
int size = sizeof (int) ;

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);

cudaMalloc((void **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup values

IVector Addition on the Device: main()

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice)

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice)

// Launch add() kernel on GPU with N blocks
add<<<i,1>>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup

cudaFree (d a); cudaFree(d b); cudaFree(d c);
0;

I CUDA Threads

* Terminology: a block can be split into parallel

* Change add () to use parallel threads instead of parallel blocks:

add (*a, *b, *c) {
cl] = al] + b] 1;
}
e Use instead of

* Need to make one change in main()...

IVector Addition Using Threads: nain

#define N 512

int main(void) {

int *a,

int *d a, *d b, *d c;

int size

*b, *c; // host copies of a, b, c
// device copies of a, b, c

= N * sizeof (int);

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);

cudaMalloc((void **)&d c, size);

// Alloc
a = (int
b = (int
c = (int

space for host copies of a, b, c¢c and setup values
*)malloc(size); random ints(a, N);
*)malloc(size); random ints(b, N);

*)malloc (size) ;

IVector Addition Using Threads: nain ()

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU with N
add<<< >>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

Traditional CPU Graphics Shaders CUDA OpenCL

SIMD lane thread thread work-item
~thread - warp -
thread group block work group

- grid N-D range

ICombining Blocks and Threads

We’ve seen parallel vector addition using:
Many blocks with one thread each (M:1)
One block with many threads (1:M)

How to make vector addition to use both blocks and threads?

How to deal with blockldx.* vs threadldx.*?

I Indexing Arrays with Blocks and Threads

* Most kernels use both and
* Index an array with one elem. per thread (8 threads/block)

threadIdx.x threadIdx.x

01/2/3/4/5/6/7/0/12345|6|7

. A J
Y Y

blockIdx.x = 2 blockIdx.x = 3

e With M threads/block, unique index per thread is :
index = threadldx.x + blockIdx.x * M;

Ilndexing Arrays: Example

Which thread will operate on the red element?
M=8 Threads, 4 blocks

[0 11234 |5|6|7|8|9/|10|11 1213141516171819202223242526272829

threadIdx.x = 5

[01234‘67012345

N Y
Y
blockIdx.x = 2

int index = threadIdx.x + blockIdx.x * M;
5 + 2 * 8;

21;

IVector Addition with Blocks and Threads

* Use the built-in variable blockpim.x for threads per block
index = threadIdx.x + blockIdx.x *

 Combined add () using parallel threads and blocks

add (*a, *b, *c) |
index = threadIdx.x + blockIdx.x *
c[index] = a[index] + b[index];

}

* What changes need to be made in main () ?

Addition with Blocks and Threads

malin ()

int main (void) {
int *a, *b, *c; // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c

int size = N * sizeof (int);

// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);

// Alloc space for host copies of a, b, ¢ and setup values
a = (int *)malloc(size); random ints(a, N);

b = (int *)malloc(size); random ints(b, N);

c = (int *)malloc(size) ;

Addition with Blocks and Threads

malin ()

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice)

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU
add<<< >>>(d a, d b, d c);

// Copy result back to host
cudaMemcpy (c, d ¢, size, cudaMemcpyDeviceToHost) ;

// Cleanup

free(a); free(b); free(c);

cudaFree(d a); cudaFree(d b); cudaFree(d c);
0;

Anyone see a
problem?

I Handling Arbitrary Vector Sizes

* Typical problems are not friendly multiples of

* Avoid accessing beyond the end of the arrays:

add (*a, *b, *c, n) {
index = threadIdx.x + blockIdx.x *
if (index < n)
c[index] = a[index] + b[index];

}

* Update the kernel launch:

add<<< , M>>>(d a, d b, d c, N);

IWhy Bother with Threads?

Threads seem unnecessary
They add a level of complexity
What do we gain?

Unlike parallel blocks, threads have mechanisms to:
Communicate
Synchronize

To look closer, we need a new example...stay tuned

I Summary + Review

Heterogeneous Computing
BSP-like Programming Model
Host and Device Code

Launching parallel kernels
Launch N copies of add () with add<<<N/M,M>>>(...) ;
Use to access block index
Use to access thread index within block

Allocate elements to threads:

index = threadIdx.x + blockIdx.x *

