
Chris Rossbach and Calvin Lin

cs380p

Parallelism at Scale: MPI

Outline for Today

Scale
MPI

Acknowledgements:

Portions of the lectures slides were adopted from:

Argonne National Laboratory, MPI tutorials.

Lawrence Livermore National Laboratory, MPI tutorials

See online tutorial links in course webpage

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with
the Message Passing Interface, MIT Press, ISBN 0-262-57133-1, 1999.

W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the Message
Passing Interface, MIT Press, ISBN 0-262-57132-3, 1999.

http://www-unix.mcs.anl.gov/mpi/usingmpi/
http://www-unix.mcs.anl.gov/mpi/usingmpi2/

Scale Out vs Scale Up

Scale Out vs Scale Up

Scale Out vs Scale Up

Parallel Systems Architects Wanted

Parallel Systems Architects Wanted

Hot Startup Idea:

www.purchase-a-pooch.biz

Parallel Systems Architects Wanted

Parallel Systems Architects Wanted

1. User Browses Potential Pets

Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”

Purchase
Pooch

Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”
3. Web Server, CGI/EJB + Database complete request

Purchase
Pooch

Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”
3. Web Server, CGI/EJB + Database complete request
4. Pooch delivered (not shown)

Purchase
Pooch

Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”
3. Web Server, CGI/EJB + Database complete request
4. Pooch delivered (not shown)

Purchase
Pooch

How to handle lots and lots of dogs?

3 Tier architecture

User
request

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally

User
request

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server → scales vertically

Horizontal Scale → “Shared Nothing”

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server → scales vertically

Horizontal Scale → “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server → scales vertically

Horizontal Scale → “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server → scales vertically

Horizontal Scale → “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server → scales vertically

Horizontal Scale → “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server → scales vertically

Horizontal Scale → “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server → scales vertically

Horizontal Scale → “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server → scales vertically

Horizontal Scale → “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

Vertical scale gets you a long
way, but there is always a

bigger problem size

Horizontal Scale: Goal

Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

Parallel Architectures and MPI

Parallel Architectures and MPI

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)

Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)

Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)

Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Cluster of SMPs
• Shared memory in SMP

node
• Messaging → SMP nodes

• also regarded as MPP if
processor # is large

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP
network
interface

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)

Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Cluster of SMPs
• Shared memory in SMP

node
• Messaging → SMP nodes

• also regarded as MPP if
processor # is large

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP
network
interface

Multicore SMP+GPU Cluster

• Shared mem in SMP node

• Messaging between nodes

• GPU accelerators attached

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)

Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Cluster of SMPs
• Shared memory in SMP

node
• Messaging → SMP nodes

• also regarded as MPP if
processor # is large

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP
network
interface

Multicore SMP+GPU Cluster

• Shared mem in SMP node

• Messaging between nodes

• GPU accelerators attached

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP

What have we left out?

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)

Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Cluster of SMPs
• Shared memory in SMP

node
• Messaging → SMP nodes

• also regarded as MPP if
processor # is large

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP
network
interface

Multicore SMP+GPU Cluster

• Shared mem in SMP node

• Messaging between nodes

• GPU accelerators attached

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP

What have we left out?
• DSMs
• CMPs
• Non-GPU Accelerators

What requires extreme scale?

What requires extreme scale?

Simulations—why?

What requires extreme scale?

Simulations—why?
Simulations are sometimes more
cost effective than experiments

What requires extreme scale?

Simulations—why?
Simulations are sometimes more
cost effective than experiments

Why extreme scale?
More compute cycles, more
memory, etc, lead for faster
and/or more accurate simulations

What requires extreme scale?

Simulations—why?
Simulations are sometimes more
cost effective than experiments

Why extreme scale?
More compute cycles, more
memory, etc, lead for faster
and/or more accurate simulations

C
lim

a
te

 C
h
a
n
g
e

A
s
tr

o
p
h
y
s
ic

s

Nuclear Reactors

Im
a

g
e

 c
re

d
it
:
P

ra
b

h
a

t,
 L

B
N

L

How big is “extreme” scale?

Measured in FLOPs

FLoating point Operations Per second
1 GigaFLOP = 1 billion FLOPs

1 TeraFLOP = 1000 GigaFLOPs

1 PetaFLOP = 1000 TeraFLOPs
Most current super computers

1 ExaFLOP = 1000 PetaFLOPs
Arriving in 2018 (supposedly)

How big is “extreme” scale?

Measured in FLOPs

FLoating point Operations Per second
1 GigaFLOP = 1 billion FLOPs

1 TeraFLOP = 1000 GigaFLOPs

1 PetaFLOP = 1000 TeraFLOPs
Most current super computers

1 ExaFLOP = 1000 PetaFLOPs
Arriving in 2018 (supposedly)

How big is “extreme” scale?

Measured in FLOPs

FLoating point Operations Per second
1 GigaFLOP = 1 billion FLOPs

1 TeraFLOP = 1000 GigaFLOPs

1 PetaFLOP = 1000 TeraFLOPs
Most current super computers

1 ExaFLOP = 1000 PetaFLOPs
Arriving in 2018 (supposedly)

Distributed Memory Multiprocessors

Distributed Memory Multiprocessors

Network

M $

P

M $

P

M $

P

Network interface

Distributed Memory Multiprocessors

• Nodes: complete computer
• Including I/O

• Nodes communicate via network
• Standard networks (IP)
• Specialized networks (RDMA, fiber)

Network

M $

P

M $

P

M $

P

Network interface

Distributed Memory Multiprocessors

Each processor has a local memory
Physically separated address space

• Nodes: complete computer
• Including I/O

• Nodes communicate via network
• Standard networks (IP)
• Specialized networks (RDMA, fiber)

Network

M $

P

M $

P

M $

P

Network interface

Distributed Memory Multiprocessors

Each processor has a local memory
Physically separated address space

Processors communicate to access
non-local data

Message communication

Message passing architecture

Processor interconnection network

• Nodes: complete computer
• Including I/O

• Nodes communicate via network
• Standard networks (IP)
• Specialized networks (RDMA, fiber)

Network

M $

P

M $

P

M $

P

Network interface

Distributed Memory Multiprocessors

Each processor has a local memory
Physically separated address space

Processors communicate to access
non-local data

Message communication

Message passing architecture

Processor interconnection network

Parallel applications partitioned across
Processors: execution units

Memory: data partitioning

• Nodes: complete computer
• Including I/O

• Nodes communicate via network
• Standard networks (IP)
• Specialized networks (RDMA, fiber)

Network

M $

P

M $

P

M $

P

Network interface

Distributed Memory Multiprocessors

Each processor has a local memory
Physically separated address space

Processors communicate to access
non-local data

Message communication

Message passing architecture

Processor interconnection network

Parallel applications partitioned across
Processors: execution units

Memory: data partitioning

Scalable architecture
Incremental cost to add hardware
(cost of node)

• Nodes: complete computer
• Including I/O

• Nodes communicate via network
• Standard networks (IP)
• Specialized networks (RDMA, fiber)

Network

M $

P

M $

P

M $

P

Network interface

Performance: Latency and Bandwidth

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Wait…bisection bandwidth?

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Wait…bisection bandwidth?

if network is bisected, bisection
bandwidth == bandwidth

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Wait…bisection bandwidth?

if network is bisected, bisection
bandwidth == bandwidth
between the two partitions

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Wait…bisection bandwidth?

if network is bisected, bisection
bandwidth == bandwidth
between the two partitions

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Is this different from metrics we’ve
cared about so far?

Ostensible Advantages of
Distributed Memory Architectures

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable

Communication explicit, simpler to understand

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable

Communication explicit, simpler to understand

Explicit communication →
focus attention on costly aspect of parallel computation

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable

Communication explicit, simpler to understand

Explicit communication →
focus attention on costly aspect of parallel computation

Synchronization →
naturally associated with sending messages

reduces possibility for errors from incorrect synchronization

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable

Communication explicit, simpler to understand

Explicit communication →
focus attention on costly aspect of parallel computation

Synchronization →
naturally associated with sending messages

reduces possibility for errors from incorrect synchronization

Easier to use sender-initiated communication →
some advantages in performance

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable

Communication explicit, simpler to understand

Explicit communication →
focus attention on costly aspect of parallel computation

Synchronization →
naturally associated with sending messages

reduces possibility for errors from incorrect synchronization

Easier to use sender-initiated communication →
some advantages in performance

Can you think of any disadvantages?

Running on Supercomputers

Running on Supercomputers

• Programmer plans a job; job ==
• parallel binary program

• “input deck” (specifies input data)

• Submit job to a queue

• Scheduler allocates resources when
• resources are available,

• (or) the job is deemed “high priority”

Running on Supercomputers

• Programmer plans a job; job ==
• parallel binary program

• “input deck” (specifies input data)

• Submit job to a queue

• Scheduler allocates resources when
• resources are available,

• (or) the job is deemed “high priority”

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

• Programmer plans a job; job ==
• parallel binary program

• “input deck” (specifies input data)

• Submit job to a queue

• Scheduler allocates resources when
• resources are available,

• (or) the job is deemed “high priority”

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs

• Programmer plans a job; job ==
• parallel binary program

• “input deck” (specifies input data)

• Submit job to a queue

• Scheduler allocates resources when
• resources are available,

• (or) the job is deemed “high priority”

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs
Supercomputers used continuously

Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program

• “input deck” (specifies input data)

• Submit job to a queue

• Scheduler allocates resources when
• resources are available,

• (or) the job is deemed “high priority”

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs
Supercomputers used continuously

Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program

• “input deck” (specifies input data)

• Submit job to a queue

• Scheduler allocates resources when
• resources are available,

• (or) the job is deemed “high priority”

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs
Supercomputers used continuously

Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program

• “input deck” (specifies input data)

• Submit job to a queue

• Scheduler allocates resources when
• resources are available,

• (or) the job is deemed “high priority”

• Scheduler runs scripts that initialize the environment
• Typically done with environment variables

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs
Supercomputers used continuously

Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program

• “input deck” (specifies input data)

• Submit job to a queue

• Scheduler allocates resources when
• resources are available,

• (or) the job is deemed “high priority”

• Scheduler runs scripts that initialize the environment
• Typically done with environment variables

• At the end of initialization, it is possible to infer:
• What the desired job configuration is (i.e., how many tasks per node)
• What other nodes are involved
• How your node’s tasks relates to the overall program

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs
Supercomputers used continuously

Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program

• “input deck” (specifies input data)

• Submit job to a queue

• Scheduler allocates resources when
• resources are available,

• (or) the job is deemed “high priority”

• Scheduler runs scripts that initialize the environment
• Typically done with environment variables

• At the end of initialization, it is possible to infer:
• What the desired job configuration is (i.e., how many tasks per node)
• What other nodes are involved
• How your node’s tasks relates to the overall program

• MPI library interprets this information, hides the details

The Message-Passing Model

Process: a program counter and address space

Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization

Data movement

P1 P2 P3 P4
process

thread

address

space
(memory)

The Message-Passing Model

Process: a program counter and address space

Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization

Data movement

P1 P2 P3 P4
process

thread

address

space
(memory)

How does this compare with
CSP?

The Message-Passing Model

Process: a program counter and address space

Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization

Data movement

P1 P2 P3 P4
process

thread

address

space
(memory)

How does this compare with
CSP?

The Message-Passing Model

Process: a program counter and address space

Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization

Data movement

P1 P2 P3 P4
process

thread

address

space
(memory)

How does this compare with
CSP?

• MPI == Message-Passing Interface specification
• Extended message-passing model
• Not a language or compiler specification
• Not a specific implementation or product

The Message-Passing Model

Process: a program counter and address space

Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization

Data movement

P1 P2 P3 P4
process

thread

address

space
(memory)

How does this compare with
CSP?

• MPI == Message-Passing Interface specification
• Extended message-passing model
• Not a language or compiler specification
• Not a specific implementation or product

• Specified in C, C++, Fortran 77, F90

The Message-Passing Model

Process: a program counter and address space

Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization

Data movement

P1 P2 P3 P4
process

thread

address

space
(memory)

How does this compare with
CSP?

• MPI == Message-Passing Interface specification
• Extended message-passing model
• Not a language or compiler specification
• Not a specific implementation or product

• Specified in C, C++, Fortran 77, F90
• Message Passing Interface (MPI) Forum

• http://www.mpi-forum.org/
• http://www.mpi-forum.org/docs/docs.html

http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/docs.html

The Message-Passing Model

Process: a program counter and address space

Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization

Data movement

P1 P2 P3 P4
process

thread

address

space
(memory)

How does this compare with
CSP?

• MPI == Message-Passing Interface specification
• Extended message-passing model
• Not a language or compiler specification
• Not a specific implementation or product

• Specified in C, C++, Fortran 77, F90
• Message Passing Interface (MPI) Forum

• http://www.mpi-forum.org/
• http://www.mpi-forum.org/docs/docs.html

• Two flavors for communication
• Cooperative operations

• One-sided operations

http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/docs.html

Cooperative Operations

Cooperative Operations

Process 0 Process 1

Send(data)

Receive(data)

time

Cooperative Operations

Data is cooperatively exchanged in message-passing

Process 0 Process 1

Send(data)

Receive(data)

time

Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another

Process 0 Process 1

Send(data)

Receive(data)

time

Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another
Advantage of local control of memory

Change in the receiving process’s memory made with receiver’s explicit
participation

Process 0 Process 1

Send(data)

Receive(data)

time

Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another
Advantage of local control of memory

Change in the receiving process’s memory made with receiver’s explicit
participation

Communication and synchronization are combined

Process 0 Process 1

Send(data)

Receive(data)

time

Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another
Advantage of local control of memory

Change in the receiving process’s memory made with receiver’s explicit
participation

Communication and synchronization are combined

Process 0 Process 1

Send(data)

Receive(data)

time

Familiar argument?

One-Sided Operations

One-Sided Operations

Process 0 Process 1

Put(data)

(memory)

(memory)

Get(data)

time

One-Sided Operations

One-sided operations between processes
Include remote memory reads and writes

Process 0 Process 1

Put(data)

(memory)

(memory)

Get(data)

time

One-Sided Operations

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Process 0 Process 1

Put(data)

(memory)

(memory)

Get(data)

time

One-Sided Operations

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
Communication and synchronization are decoupled

Process 0 Process 1

Put(data)

(memory)

(memory)

Get(data)

time

One-Sided Operations

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
Communication and synchronization are decoupled

Process 0 Process 1

Put(data)

(memory)

(memory)

Get(data)

time

Are 1-sided
operations better
for performance?

A Simple MPI Program

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf("Hello, world!\n");

MPI_Finalize();

return 0;

}

MPI_Init

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

Start processes on different nodes
Where does their executable program come from?

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait…what do they need to know?

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait…what do they need to know?

Configure OS-level resources

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait…what do they need to know?

Configure OS-level resources
Configure tools that are running with MPI

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait…what do they need to know?

Configure OS-level resources
Configure tools that are running with MPI
…

MPI_Finalize

MPI_Finalize

Why do we need to finalize MPI?

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

Executive Summary
• Undo all of init
• Be able to do it on

success or failure
exit

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

Executive Summary
• Undo all of init
• Be able to do it on

success or failure
exit

• By default, an error causes all processes to abort

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

Executive Summary
• Undo all of init
• Be able to do it on

success or failure
exit

• By default, an error causes all processes to abort
• The user can cause routines to return (with an error code)

• In C++, exceptions are thrown (MPI-2)

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

Executive Summary
• Undo all of init
• Be able to do it on

success or failure
exit

• By default, an error causes all processes to abort
• The user can cause routines to return (with an error code)

• In C++, exceptions are thrown (MPI-2)

• A user can also write and install custom error handlers

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

Executive Summary
• Undo all of init
• Be able to do it on

success or failure
exit

• By default, an error causes all processes to abort
• The user can cause routines to return (with an error code)

• In C++, exceptions are thrown (MPI-2)

• A user can also write and install custom error handlers
• Libraries may handle errors differently from applications

Running MPI Programs

Running MPI Programs

MPI-1 does not specify how to run an MPI program

Running MPI Programs

MPI-1 does not specify how to run an MPI program

Starting an MPI program is dependent on implementation

Scripts, program arguments, and/or environment variables

Running MPI Programs

MPI-1 does not specify how to run an MPI program

Starting an MPI program is dependent on implementation

Scripts, program arguments, and/or environment variables

% mpirun -np <procs> a.out

For MPICH under Linux

Running MPI Programs

MPI-1 does not specify how to run an MPI program

Starting an MPI program is dependent on implementation

Scripts, program arguments, and/or environment variables

% mpirun -np <procs> a.out

For MPICH under Linux

mpiexec <args>

Recommended part of MPI-2, as a recommendation

mpiexec for MPICH (distribution from ANL)

mpirun for SGI’s MPI

Finding Out About the Environment

Finding Out About the Environment

Two important questions that arise in message passing
How many processes are being use in computation?
Which one am I?

Finding Out About the Environment

Two important questions that arise in message passing
How many processes are being use in computation?
Which one am I?

MPI provides functions to answer these questions
MPI_Comm_size reports the number of processes
MPI_Comm_rank reports the rank

number between 0 and size-1
identifies the calling process

Hello World Revisited

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("I am %d of %d\n", rank, size);

MPI_Finalize();

return 0;

}

Hello World Revisited

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("I am %d of %d\n", rank, size);

MPI_Finalize();

return 0;

}

 What does this program do?

Hello World Revisited

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("I am %d of %d\n", rank, size);

MPI_Finalize();

return 0;

}

 What does this program do?
Comm?
“Communicator”

Basic Concepts

Processes can be collected into groups

Each message is sent in a context
Must be received in the same context!

A group and context together form a communicator

A process is identified by its rank
With respect to the group associated with a communicator

There is a default communicator MPI_COMM_WORLD
Contains all initial processes

MPI Datatypes

MPI Datatypes

Message data (sent or received) is described by a triple

address, count, datatype

MPI Datatypes

Message data (sent or received) is described by a triple

address, count, datatype
An MPI datatype is recursively defined as:

Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

MPI Datatypes

Message data (sent or received) is described by a triple

address, count, datatype
An MPI datatype is recursively defined as:

Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes
Array of (int, float) pairs
Row of a matrix stored columnwise

MPI Datatypes

Message data (sent or received) is described by a triple

address, count, datatype
An MPI datatype is recursively defined as:

Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes
Array of (int, float) pairs
Row of a matrix stored columnwise

MPI Datatypes

Message data (sent or received) is described by a triple

address, count, datatype
An MPI datatype is recursively defined as:

Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes
Array of (int, float) pairs
Row of a matrix stored columnwise

• Enables heterogeneous communication
• Support communication between processes on machines with different

memory representations and lengths of elementary datatypes
• MPI provides the representation translation if necessary

MPI Datatypes

Message data (sent or received) is described by a triple

address, count, datatype
An MPI datatype is recursively defined as:

Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes
Array of (int, float) pairs
Row of a matrix stored columnwise

• Enables heterogeneous communication
• Support communication between processes on machines with different

memory representations and lengths of elementary datatypes
• MPI provides the representation translation if necessary

• Allows application-oriented layout of data in memory
• Reduces memory-to-memory copies in implementation
• Allows use of special hardware (scatter/gather)

MPI Tags

MPI Tags

Messages are sent with an accompanying user-defined integer tag
Assist the receiving process in identifying the message

MPI Tags

Messages are sent with an accompanying user-defined integer tag
Assist the receiving process in identifying the message

Messages can be screened at receiving end by specifying specific tag
MPI_ANY_TAG matches any tag in a receive

MPI Tags

Messages are sent with an accompanying user-defined integer tag
Assist the receiving process in identifying the message

Messages can be screened at receiving end by specifying specific tag
MPI_ANY_TAG matches any tag in a receive

Tags are sometimes called “message types”
MPI calls them “tags” to avoid confusion with datatypes

MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

The message buffer is described by:
start, count, datatype

The target process is specified by dest

Rank of the target process in the communicator
specified by comm

Process blocks until:

Data has been delivered to the system

Buffer can then be reused

Message may not have been received by target process!

MPI with Only Six Functions

MPI with Only Six Functions

Many parallel programs can be written using:
MPI_INIT()

MPI_FINALIZE()

MPI_COMM_SIZE()

MPI_COMM_RANK()

MPI_SEND()

MPI_RECV()

MPI with Only Six Functions

Many parallel programs can be written using:
MPI_INIT()

MPI_FINALIZE()

MPI_COMM_SIZE()

MPI_COMM_RANK()

MPI_SEND()

MPI_RECV()

Why have any other APIs (e.g. broadcast, reduce, etc.)?

MPI with Only Six Functions

Many parallel programs can be written using:
MPI_INIT()

MPI_FINALIZE()

MPI_COMM_SIZE()

MPI_COMM_RANK()

MPI_SEND()

MPI_RECV()

Why have any other APIs (e.g. broadcast, reduce, etc.)?

Point-to-point (send/recv) isn’t always the most efficient...
Add more support for communication

Excerpt: Barnes-Hut

Excerpt: Barnes-Hut

Excerpt: Barnes-Hut

To use or not use MPI?

38Introduction to Parallel Computing, University of Oregon, IPCC

To use or not use MPI?

• USE
• You need a portable parallel program

• You are writing a parallel library

• You have irregular or dynamic data relationships

• You care about performance

38Introduction to Parallel Computing, University of Oregon, IPCC

To use or not use MPI?

• USE
• You need a portable parallel program

• You are writing a parallel library

• You have irregular or dynamic data relationships

• You care about performance

• NOT USE
• You don’t need parallelism at all

• You can use libraries (which may be written in MPI) or other tools

• You can use multi-threading in a concurrent environment
• You don’t need extreme scale

38Introduction to Parallel Computing, University of Oregon, IPCC

